这个总结文章本来是学完复变函数之后的复习总结,打印应付考试用的,后来假期里面又添加了一些公式、注意点什么的,稍稍完善了一些。

本文主要整理自我的复变函数老师的课件和作业、相关教材和上课笔记,不做商用,侵删。

一方面考虑到当初我学习的时候四处查资料的痛苦,就想服务一下学习复变的孩子们,另一方面也想整理一个合集,方便后面课程学习时查找(比如电磁波),还有就是想要鞭策自己啦,别再咕咕咕了。

手打公式难免有些小问题,如果有什么错误欢迎大家指正哈,评论或者私信都可以。

这一篇包含复变函数的主要内容,包括:

  • 复数及其运算,复变函数及其性质
  • 解析函数,导数
  • 柯西积分定理,柯西积分公式
  • 幂级数和泰勒级数
  • 洛朗级数
  • 留数定理

一、复变函数

复数和复变函数

复数及运算

复数的表示:

  • z=x+iyz=x+iyz=x+iy
  • z=ρ(cos⁡φ+isin⁡φ)z=\rho (\cos \varphi +i \sin \varphi)z=ρ(cosφ+isinφ)
  • z=ρeiφ\displaystyle z=\rho e^{i\varphi}z=ρeiφ

ρ\rhoρ是复数的模,φ=Argz=argz+2kπ\varphi=Arg z=arg z+2k\piφ=Argz=argz+2kπ是复数的辐角。

共轭复数:z∗=x−iy=ρe−iφ\displaystyle z^{*}=x-iy=\rho e^{-i\varphi}z∗=x−iy=ρe−iφ

复数的运算:

  1. 加法
    z1+z2=(x1+x2)+i(y1+y2)z_1+z_2=(x_1+x_2)+i(y_1+y_2) z1​+z2​=(x1​+x2​)+i(y1​+y2​)
    有三角不等式:
    ∣z1+z2∣≤∣z1∣+∣z2∣|z_1+z_2| \leq |z_1| +|z_2| ∣z1​+z2​∣≤∣z1​∣+∣z2​∣

  2. 减法
    z1−z2=(x1−x2)+i(y1−y2)z_1-z_2=(x_1-x_2)+i(y_1-y_2) z1​−z2​=(x1​−x2​)+i(y1​−y2​)
    有三角不等式:
    ∣z1−z2∣≥∣z1∣−∣z2∣|z_1-z_2|\geq|z_1|-|z_2| ∣z1​−z2​∣≥∣z1​∣−∣z2​∣

  3. 乘法
    z1z2=(x1x2−y1y2)+i(x1y2+x2y1)z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1) z1​z2​=(x1​x2​−y1​y2​)+i(x1​y2​+x2​y1​)

    z1z2=ρ1ρ2ei(φ1+φ2)z_1z_2=\rho_1 \rho_2 e^{i(\varphi_1+\varphi_2)} z1​z2​=ρ1​ρ2​ei(φ1​+φ2​)

  4. 除法
    z1z2=x1+iy1x2+iy2=x1x2+y1y2x22+y22+ix2y1−x1y2x22+y22\frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2} z2​z1​​=x2​+iy2​x1​+iy1​​=x22​+y22​x1​x2​+y1​y2​​+ix22​+y22​x2​y1​−x1​y2​​

    z1z2=ρ1ρ2ei(φ1−φ2)\frac{z_1}{z_2}=\frac{\rho_1}{\rho_2}e^{i(\varphi_1-\varphi_2)} z2​z1​​=ρ2​ρ1​​ei(φ1​−φ2​)

  5. 乘方
    zn=ρneinφz^n=\rho^n e^{in\varphi} zn=ρneinφ

  6. 开方
    zn=ρneiφn\sqrt[n]{z}=\sqrt[n]{\rho}e^{i\frac{\varphi}{n}} nz​=nρ​einφ​

注:在计算复数的开方时,要注意将辐角φ\varphiφ写成argz+2kπargz+2k\piargz+2kπ的形式,便于确定最终开方后得到的复数的个数。

复变函数及性质

  1. 几个常见的初等复变函数:

ez=ex+iy=ex(cos⁡y+isin⁡y)sin⁡z=12i(eiz−e−iz),cos⁡z=12(eiz+e−iz)shz=12(ez−e−z),chz=12(ez+e−z)ln⁡z=ln⁡(∣z∣eiArgz)=ln⁡∣z∣+iArgzzs=esln⁡z\begin{aligned} & e^z=e^{x+iy}=e^x(\cos y+i \sin y)\\ & \sin z=\frac{1}{2i}(e^{iz}-e^{-iz}), \cos z=\frac{1}{2}(e^{iz}+e^{-iz})\\ & sh z=\frac{1}{2}(e^z-e^{-z}), ch z=\frac{1}{2}(e^z+e^{-z})\\ & \ln z=\ln (|z|e^{i Arg z})=\ln |z|+ iArg z\\ & z^s=e^{s \ln z} \end{aligned} ​ez=ex+iy=ex(cosy+isiny)sinz=2i1​(eiz−e−iz),cosz=21​(eiz+e−iz)shz=21​(ez−e−z),chz=21​(ez+e−z)lnz=ln(∣z∣eiArgz)=ln∣z∣+iArgzzs=eslnz​

  1. 复变函数f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)可以归结为对应于一对二元实变函数。

解析函数

复变函数导数

  1. 复变函数可导的定义:

函数w=f(z)w=f(z)w=f(z)是在区域B上定义的单值函数,在B上某点z,极限
lim⁡Δz→0ΔwΔz=lim⁡Δz→0f(z+Δz)−f(z)Δz\lim_{\Delta z \to 0}{\frac{\Delta w}{\Delta z}}=\lim_{\Delta z \to 0}{\frac{f(z+\Delta z)-f(z)}{\Delta z}} Δz→0lim​ΔzΔw​=Δz→0lim​Δzf(z+Δz)−f(z)​
存在且与Δz→0\Delta z\to 0Δz→0的方式无关,则称函数w=f(z)w=f(z)w=f(z)在z点可导。

复变函数的导数满足实变函数导数中的大多数运算性质,如加法、减法、乘法、除法、求倒、链式法则。

  1. 函数可导的必要条件:Cauchy-Riemann方程/条件

∂u∂x=∂v∂y∂v∂x=−∂u∂y\begin{aligned} \frac{\partial u}{\partial x}& =\frac{\partial v}{\partial y}\\ \frac{\partial v}{\partial x}&=-\frac{\partial u}{\partial y} \end{aligned} ∂x∂u​∂x∂v​​=∂y∂v​=−∂y∂u​​

此时:
f′(z)=∂u∂x+i∂v∂yf'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial y} f′(z)=∂x∂u​+i∂y∂v​

  1. 函数可导的充要条件: u(x,y),v(x,y)都可微,且满足柯西-黎曼条件。

解析函数

  1. 定义

如果f(z)在点z0z_0z0​及其邻域上处处可导,则称f(z)在点z0z_0z0​解析;

如果f(z)在区域B上的每一点解析,则称f(z)是区域B上的解析函数。

  1. **若函数f(z)=u+iv在区域B上解析,则u,v都是区域B上的调和函数。**即:

∂2u∂x2+∂2u∂y2=0,∂2v∂x2+∂2v∂y2=0\frac{\partial^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=0, \frac{\partial ^2 v}{\partial x^2}+\frac{\partial ^2 v}{\partial y^2}=0 ∂x2∂2u​+∂y2∂2u​=0,∂x2∂2v​+∂y2∂2v​=0

  1. 计算v=∫dv\displaystyle v=\int dvv=∫dv的方法:

    • 曲线积分法:选取特殊路径(比如:矩形的两边)作为积分路径;
    • 凑全微分显式法;
    • 不定积分法:对每个变量逐个积分。
  2. 函数解析的充要条件:u,v在区域B上可微,且满足柯西-黎曼条件。

注:

  • 解析函数的实部或虚部必须是调和函数;
  • 求v=∫dv\displaystyle v=\int dvv=∫dv时,可以采用极坐标。

复变函数积分

复变函数积分

对z=x+iy,f=u+ivz=x+iy,f=u+ivz=x+iy,f=u+iv,
∫lf(z)dz=∫l(udx−vdy)+i∫l(vdx+udy)\int_l f(z) dz=\int _l (udx-vdy)+i\int_l(vdx+udy) ∫l​f(z)dz=∫l​(udx−vdy)+i∫l​(vdx+udy)

柯西积分定理

  1. 单连通区域柯西定理

如果函数f(z)在闭单连通区域B‾\overline{B}B上解析,则沿B‾\overline{B}B上任何一段光滑闭合曲线lll(也可以是B‾\overline{B}B的边界),有:
∮lf(z)dz=0\oint_l f(z)dz=0 ∮l​f(z)dz=0

  1. 复连通区域柯西定理

如果函数f(z)是闭复连通区域B‾\overline{B}B中的单值解析函数,则有:
∮lf(z)dz+∑i=1n∮lif(z)dz=0\oint_l{f(z)dz}+\sum_{i=1}^{n}{\oint_{l_i}f(z)dz}=0 ∮l​f(z)dz+i=1∑n​∮li​​f(z)dz=0
其中,lll表示区域外边界线,lil_ili​表示区域内边界线,积分均按照边界线的正方向进行。

复连通区域柯西定理也可以写作下列形式:(更加常用的形式,在边界里面挖洞之后将外边界积分转化为内边界积分之和
∮lf(z)dz=∑i=1n∮lif(z)dz\oint_l f(z)dz=\sum_{i=1}^n \oint_{l_i}{f(z)dz} ∮l​f(z)dz=i=1∑n​∮li​​f(z)dz
积分均按照逆时针方向。

  1. 非常有用的一个环路积分(尤其是在留数定理中应用甚广)

12πi∮ldzz−α={0forl不包围α1forl包围α12πi∮l(z−α)ndz=0,(n≠−1)\begin{aligned} & \frac{1}{2\pi i}\oint_l{\frac{dz}{z-\alpha}}= \left\{ \begin{array}{rcl} & 0 & for & l不包围\alpha\\ &1 & for & l包围\alpha \end{array} \right .\\ & \frac{1}{2\pi i }\oint_l{(z-\alpha)^ndz}=0, (n \neq -1) \end{aligned} ​2πi1​∮l​z−αdz​={​01​forfor​l不包围αl包围α​2πi1​∮l​(z−α)ndz=0,(n​=−1)​

柯西积分公式

  1. 柯西积分公式

f(α)=12πi∮lf(ζ)ζ−zdζf(\alpha)=\frac{1}{2\pi i}\oint_l {\frac{f(\zeta)}{\zeta -z}d\zeta} f(α)=2πi1​∮l​ζ−zf(ζ)​dζ

f(n)(z)=n!2πi∮lf(ζ)(ζ−z)n+1dζf^{(n)}(z)=\frac{n!}{2\pi i}\oint_l{\frac{f(\zeta)}{(\zeta -z)^{n+1}}d\zeta} f(n)(z)=2πin!​∮l​(ζ−z)n+1f(ζ)​dζ

利用柯西积分公式可以将积分转化为某点的函数值。

  1. 刘维尔定理

如果函数f(z)在全平面上解析,并且是有界的,即∣f(z)≤M∣|f(z)\leq M|∣f(z)≤M∣,则函数f(z)一定为常数。

幂级数和泰勒级数

有复数项的无穷级数的收敛问题,可以转化为实部和虚部两个实数项级数的收敛问题。

幂级数

对幂级数∑k=0∞ak(z−z0)k\displaystyle \sum_{k=0}^{\infty}{a_k(z-z_0)^k}k=0∑∞​ak​(z−z0​)k,引入记号
R=lim⁡k→∞∣akak+1∣R=\lim_{k\to\infty}\vert \frac{a_k}{a_{k+1}} \vert R=k→∞lim​∣ak+1​ak​​∣
若∣z−z0∣<R|z-z_0|<R∣z−z0​∣<R,则幂级数收敛。

幂级数在收敛圆的内部(比半径为R的圆稍小一点的闭区域)收敛,在收敛圆外部发散。

幂级数逐项积分和逐项微分都不改变收敛半径。

泰勒级数

  1. 定义

设f(z)在以z0z_0z0​为圆心的圆CRC_RCR​上解析,则对圆内的任意z点,f(z)都可以展成幂级数:
f(z)=∑k=0∞ak(z−z0)k,f(z)=\sum_{k=0}^{\infty}a_k(z-z_0)^k, f(z)=k=0∑∞​ak​(z−z0​)k,
其中,
ak=12πi∮CR1f(ζ)(ζ−z0)k+1dζ=1k!f(k)(z0)a_k=\frac{1}{2\pi i}\oint_{C_{R_1}}\frac{f(\zeta)}{(\zeta-z_0)^{k+1}}d\zeta=\frac{1}{k!}f^{(k)}(z_0) ak​=2πi1​∮CR1​​​(ζ−z0​)k+1f(ζ)​dζ=k!1​f(k)(z0​)
CR1C_{R_1}CR1​​是CRC_RCR​圆内包含z且与CRC_RCR​同心的圆。

  1. 常用的泰勒级数展开

11−z=1+z+z2+…,∣z∣<1ez=∑k=0∞zkk!sin⁡z=∑k=0∞(−1)k(2k+1)!z2k+1cos⁡z=∑k=0∞(−1)k(2k)!z2k\begin{aligned} & \frac{1}{1-z}=1+z+z^2+\dots, |z|<1\\ & e^z=\sum_{k=0}^{\infty}{\frac{z^k}{k!}}\\ & \sin z=\sum _{k=0}^{\infty}{\frac{(-1)^k}{(2k+1)!}z^{2k+1}}\\ & \cos z=\sum_{k=0}^{\infty}{\frac{(-1)^k}{(2k)!}z^{2k}} \end{aligned} ​1−z1​=1+z+z2+…,∣z∣<1ez=k=0∑∞​k!zk​sinz=k=0∑∞​(2k+1)!(−1)k​z2k+1cosz=k=0∑∞​(2k)!(−1)k​z2k​

注:求某个函数的泰勒展开时,可以考虑用一些基本函数的泰勒展开代入、求导、积分等转化。

洛朗级数

洛朗级数

定义

设f(z)在环形区域R2<∣z−z0∣<R1R_2<|z-z_0|<R_1R2​<∣z−z0​∣<R1​内部单值解析,则对于环域上任何一点z,f(z)可以展开为双边幂级数:
f(z)=∑k=−∞∞ak(z−z0)kf(z)=\sum_{k=-\infty}^{\infty}{a_k(z-z_0)^k} f(z)=k=−∞∑∞​ak​(z−z0​)k
其中,
ak=12πi∮lf(ζ)(ζ−z0)k+1dζa_k=\frac{1}{2\pi i}\oint_l{\frac{f(\zeta)}{(\zeta-z_0)^{k+1}}d\zeta} ak​=2πi1​∮l​(ζ−z0​)k+1f(ζ)​dζ
这里,lll是环域内的绕内圆一周的任意闭合曲线。

将一个函数展开为洛朗级数,一般会用到下面的式子:
11−z=∑k=0∞zk,∣z∣<1\displaystyle \frac{1}{1-z}=\sum_{k=0}^{\infty}z^k,|z|<11−z1​=k=0∑∞​zk,∣z∣<1

孤立奇点的分类和判定

  1. 孤立奇点的定义:f(z)在z0z_0z0​点不解析,但在z0z_0z0​的0<∣z−z0∣<δ0<|z-z_0|<\delta0<∣z−z0​∣<δ内解析,即在z0z_0z0​的领域内解析。

  2. 孤立奇点的分类和判定:
    Z=lim⁡z→z0f(z)\Zeta=\lim_{z\to z_0}f(z) Z=z→z0​lim​f(z)

类型 定义 判定 取舍
可去奇点 展开式中不含有z−z0z-z_0z−z0​的负幂项 Z=c0\Zeta=c_0Z=c0​为常数 不作为奇点看待
极点 展开式中含有有限项z−z0z-z_0z−z0​的负幂项 Z=∞\Zeta=\inftyZ=∞ 留数可求且为重点
本性奇点 展开式中含有无限项z−z0z-z_0z−z0​的负幂项 Z\ZetaZ不存在且不为∞\infty∞ 难以刻画

零点和极点的关系:z0z_0z0​是f(z)的m级零点⇔\Leftrightarrow⇔z0z_0z0​是1f(z)\displaystyle \frac{1}{f(z)}f(z)1​的m级极点。

留数定理

  1. 留数的定义

z0z_0z0​是f(z)f(z)f(z)的孤立奇点,即存在R使f(z)f(z)f(z)在圆环0<∣z−z0∣<R0<|z-z_0|<R0<∣z−z0​∣<R内解析,其洛朗展开为:
f(z)=∑k=−∞∞ak(z−z0)kf(z)=\sum_{k=-\infty}^{\infty}{a_k(z-z_0)^k} f(z)=k=−∞∑∞​ak​(z−z0​)k
其中项(z−z0)−1(z-z_0)^{-1}(z−z0​)−1的系数
a−1=12πi∮∣z−z0∣=rf(z)dz,0<r<Ra_{-1}=\frac{1}{2\pi i}\oint_{|z-z_0|=r}f(z)dz,0<r<R a−1​=2πi1​∮∣z−z0​∣=r​f(z)dz,0<r<R
称为f(z)在点z0z_0z0​的留数,记作Resf(z0)Res f(z_0)Resf(z0​)

  1. 留数定理

设函数f(z)在回路lll上所围区域B上除有限个孤立奇点z1,z2,…,znz_1,z_2,\dots,z_nz1​,z2​,…,zn​外解析,在闭区域B‾\overline{B}B上除z1,z2,…,znz_1,z_2,\dots,z_nz1​,z2​,…,zn​外连续,则:
∮lf(z)dz=2πi∑k=1nResf(zk)\oint_l f(z)dz=2\pi i \sum_{k=1}^{n}Res f(z_k) ∮l​f(z)dz=2πik=1∑n​Resf(zk​)

留数定理将积分问题转化为留数求解问题。

  1. 留数求解

    • 单极点

    Resf(z0)=lim⁡z→z0((z−z0)f(z));Resf(z0)=lim⁡z→z0(z−z0)P(z)Q(z)=P(z0)Q′(z0),对于f(z)=P(z)Q(z)且P(z0)≠0,z0是Q(z)的一阶零点。Resf(z0)=(z+1)P(n)(z0)Q(n+1)(z0),对于f(z)=P(z)Q(z)且z0是Q(z)的n+1阶零点,又是P(z)的n阶零点。\begin{aligned} & Res f(z_0)=\lim_{z\to z_0}((z-z_0)f(z));\\ & Res f(z_0)=\lim_{z\to z_0}\frac{(z-z_0)P(z)}{Q(z)}=\frac{P(z_0)}{Q'(z_0)},对于f(z)=\frac{P(z)}{Q(z)}且P(z_0)\neq 0,z_0是Q(z)的一阶零点。\\ & Res f(z_0)=\frac{(z+1)P^{(n)}(z_0)}{Q^{(n+1)}(z_0)},对于f(z)=\frac{P(z)}{Q(z)}且z_0是Q(z)的n+1阶零点,又是P(z)的n阶零点。 \end{aligned} ​Resf(z0​)=z→z0​lim​((z−z0​)f(z));Resf(z0​)=z→z0​lim​Q(z)(z−z0​)P(z)​=Q′(z0​)P(z0​)​,对于f(z)=Q(z)P(z)​且P(z0​)​=0,z0​是Q(z)的一阶零点。Resf(z0​)=Q(n+1)(z0​)(z+1)P(n)(z0​)​,对于f(z)=Q(z)P(z)​且z0​是Q(z)的n+1阶零点,又是P(z)的n阶零点。​

    • n阶极点

    Resf(z0)=lim⁡z→z01(z−1)!(dn−1dzn−1((z−z0)nf(z)))Res f(z_0)=\lim_{z\to z_0}\frac{1}{(z-1)!}(\frac{d^{n-1}}{dz^{n-1}}((z-z_0)^nf(z))) Resf(z0​)=z→z0​lim​(z−1)!1​(dzn−1dn−1​((z−z0​)nf(z)))

  2. ∞的留数

若∞是f(z)的孤立奇点,即存在R>0R>0R>0使得f(z)在圆环R<∣z−z0∣<+∞R<|z-z_0|<+\inftyR<∣z−z0​∣<+∞内解析,其洛朗展开为:
f(z)=∑k=−∞∞akzkf(z)=\sum_{k=-\infty}^{\infty}a_kz^k f(z)=k=−∞∑∞​ak​zk
其中z−1z^{-1}z−1项的系数的相反数被称为∞点的留数,即:
Resf(∞)=−a−1=12πi∮∣z∣=rf(z)dz,r<r<+∞Res f(\infty)=-a_{-1}=\frac{1}{2\pi i}\oint_{|z|=r}f(z)dz, r<r<+\infty Resf(∞)=−a−1​=2πi1​∮∣z∣=r​f(z)dz,r<r<+∞
可以证明:函数f(z)若在扩充复平面上只有有限个孤立奇点,则f(z)在各点的留数之和等于0。即:
Resf(∞)+∑k=1nResf(zk)=0Res f(\infty)+\sum_{k=1}^{n}Res f(z_k)=0 Resf(∞)+k=1∑n​Resf(zk​)=0

  1. 留数定理在积分问题中的应用
  • 类型一
    I=∫02πR(cos⁡x,sin⁡x)dxI=\int_0^{2\pi}R(\cos x,\sin x)dx I=∫02π​R(cosx,sinx)dx
    被积函数是三角函数的有理式,积分区间是[0,2π][0,2\pi][0,2π]。

    方法是变量替换
    z=eix∴cos⁡x=12(z+z−1),sin⁡x=12i(z−z−1),dx=1izdz\begin{aligned} & z=e^{ix}\\ \therefore & \cos x=\frac{1}{2}(z+z^{-1}),\sin x=\frac{1}{2i}(z-z^{-1}),dx=\frac{1}{iz}dz \end{aligned} ∴​z=eixcosx=21​(z+z−1),sinx=2i1​(z−z−1),dx=iz1​dz​
    注意不要用共轭复数z∗z^*z∗,注意积分空间是在单位圆内从而确定在单位圆内的极点个数

  • 类型二
    I=∫−∞∞f(x)dxI=\int_{-\infty}^{\infty}f(x)dx I=∫−∞∞​f(x)dx
    积分空间为(−∞,∞)(-\infty, \infty)(−∞,∞),复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外都是解析的;当z在上半平面及实轴上→∞\to \infty→∞时,zf(z)一致的→∞\to \infty→∞
    I=∫−∞∞f(x)dx=2πi∑z0∈{上半平面内奇点全体}Resf(z0)I=\int_{-\infty}^{\infty}f(x)dx=2\pi i\sum_{z_0\in\{上半平面内奇点全体\}}Res f(z_0) I=∫−∞∞​f(x)dx=2πiz0​∈{上半平面内奇点全体}∑​Resf(z0​)

  • 类型三
    I1=∫0∞f(x)cos⁡mxdxI2=∫0∞g(x)sin⁡mxdx\begin{aligned} & I_1=\int_0^{\infty}f(x)\cos mx dx\\ & I_2=\int_0^{\infty}g(x)\sin mx dx \end{aligned} ​I1​=∫0∞​f(x)cosmxdxI2​=∫0∞​g(x)sinmxdx​
    积分区间[0,+∞)[0,+\infty)[0,+∞),偶函数f(x)和奇函数g(x)在实轴上没有奇点,在上半平面除了有限个奇点外都是解析的;当z在上半平面及实轴上→∞\to \infty→∞时,f(z)和g(z)一致的→∞\to \infty→∞

    当m>0时:
    I1=∫0∞f(x)cos⁡mxdx=12∫−∞∞f(x)eimxdx=πi∑z0∈{上半平面内全体奇点}Res(f(z0)eimz0)I2=∫0∞g(x)sin⁡mxdx=12i∫−∞∞g(x)eimxdx=π∑z0∈{上半平面内全体奇点}Res(g(z0)eimz0)\begin{aligned} & I_1=\int_0^{\infty}f(x)\cos mx dx=\frac{1}{2}\int_{-\infty}^{\infty}f(x)e^{imx}dx=\pi i\sum_{z_0\in\{上半平面内全体奇点\}}Res (f(z_0)e^{imz_0})\\ & I_2=\int_0^{\infty}g(x)\sin mx dx=\frac{1}{2i}\int_{-\infty}^{\infty}g(x)e^{imx}dx=\pi \sum_{z_0\in\{上半平面内全体奇点\}}Res(g(z_0)e^{imz_0}) \end{aligned} ​I1​=∫0∞​f(x)cosmxdx=21​∫−∞∞​f(x)eimxdx=πiz0​∈{上半平面内全体奇点}∑​Res(f(z0​)eimz0​)I2​=∫0∞​g(x)sinmxdx=2i1​∫−∞∞​g(x)eimxdx=πz0​∈{上半平面内全体奇点}∑​Res(g(z0​)eimz0​)​
    当m<0时:
    I1=∫0∞f(x)cos⁡mxdx=−πi∑z0∈{下半平面内全体奇点}Res(f(z0)eimz0)I2=∫0∞g(x)sin⁡mxdx=−π∑z0∈{下半平面内全体奇点}Res(g(z0)eimz0)\begin{aligned} & I_1=\int_0^{\infty}f(x)\cos mx dx=-\pi i\sum_{z_0\in\{下半平面内全体奇点\}}Res (f(z_0)e^{imz_0})\\ & I_2=\int_0^{\infty}g(x)\sin mx dx=-\pi \sum_{z_0\in\{下半平面内全体奇点\}}Res(g(z_0)e^{imz_0}) \end{aligned} ​I1​=∫0∞​f(x)cosmxdx=−πiz0​∈{下半平面内全体奇点}∑​Res(f(z0​)eimz0​)I2​=∫0∞​g(x)sinmxdx=−πz0​∈{下半平面内全体奇点}∑​Res(g(z0​)eimz0​)​

  • 类型四
    I=∫−∞∞f(x)dxI=\int_{-\infty}^{\infty}f(x)dx I=∫−∞∞​f(x)dx
    函数f(z)在实轴上有单极点z=αz=\alphaz=α,除此之外,函数f(z)满足类型二或者类型三。
    ∫−∞∞f(x)dx=2πi∑z0∈{上半平面内全体奇点}Resf(z0)+πi∑α∈{实轴上的全体奇点}Resf(α)\int_{-\infty}^{\infty}f(x)dx=2\pi i\sum_{z_0\in\{上半平面内全体奇点\}}Res f(z_0)+\pi i \sum_{\alpha \in \{实轴上的全体奇点\}}Res f(\alpha) ∫−∞∞​f(x)dx=2πiz0​∈{上半平面内全体奇点}∑​Resf(z0​)+πiα∈{实轴上的全体奇点}∑​Resf(α)
    α只能是单极点,当为二阶及以上极点时,积分为∞,当为本性奇点时,积分不存在。

复变函数总结一:复变函数相关推荐

  1. 复变函数 | 第二部分 复变函数与解析函数

    文章目录 2.1\quad复变函数 2.1.1\quad复变函数的定义 2.1.2\quad复变函数的图像表示 2.1.3\quad复变函数在不同坐标下的形式转换 2.1.4\quad复变函数的反函数 ...

  2. 【数字信号处理】序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 sinωn 的傅里叶变换 | 复变函数欧拉公式 )

    文章目录 一.求 sinωn 傅里叶变换 0.sinωn 序列分析 1.傅里叶变换与反变换公式介绍 2.复变函数欧拉公式介绍 3.求 sinωn 的傅里叶变换推导过程 一.求 sinωn 傅里叶变换 ...

  3. 【数字信号处理】序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 cosωn 的傅里叶变换 | 复变函数欧拉公式 )

    文章目录 一.求 cosωn 傅里叶变换 0.cosωn 序列分析 1.傅里叶变换与反变换公式介绍 2.复变函数欧拉公式介绍 3.求 cosωn 的傅里叶变换推导过程 一.求 cosωn 傅里叶变换 ...

  4. UA MATH524 复变函数3 复变函数的极限与可微性

    UA MATH524 复变函数3 复变函数的极限与可微性 复数域上的集合 复变函数的极限 连续性 复变函数的可微性 Cauchy-Riemann方程 Laplace方程与调和函数 复数域上的集合 概念 ...

  5. 复变函数和积分变换(Complex Function I)

    本站已停止更新,查看最新内容请移至本人博客 Wilen's Blog 数学物理方法 复数与复变函数 复数(Complex Number) 平面点集(Planar Point Set) 复变函数(Com ...

  6. 二元函数对xy同时求导_复变函数(1)——解析与保角,导数的几何意义,柯西-黎曼方程...

    学习阶段:大学数学. 前置知识:复数的三角形式.棣莫弗定理.多元微分学. 1. 复变函数 1.1 复变函数的定义 说地简单点,复变函数就是自变量和应变量都是复数的函数.其定义域和值域均 ,是实函数的扩 ...

  7. 视频教程-MATLAB复变函数-Matlab

    MATLAB复变函数 图书作者,代码从业者,N多年 苏金明 ¥39.00 立即订阅 扫码下载「CSDN程序员学院APP」,1000+技术好课免费看 APP订阅课程,领取优惠,最少立减5元 ↓↓↓ 订阅 ...

  8. 复变函数与积分变换系列(一) - 复变函数与解析函数

    复变函数与解析函数 Author : Benjamin142857 [TOC] 0 .几个基本概念 实虚部 Plural:z=x+iyReal:x=RezImaginary:y=ImzPlural:\ ...

  9. 复变函数——学习笔记4:复变函数的积分

    复变函数的积分 复变函数的积分 柯西积分定理--积分与路径无关 柯西积分定理及其应用 柯西积分定理的证明 柯西积分定理的变式 单连通闭区域情形 多连通区域情形 柯西积分公式 柯西积分公式的证明 解析函 ...

  10. 复变函数总结二:积分变换(傅里叶变换为主)

    这个总结文章本来是学完复变函数之后的复习总结,打印应付考试用的,后来假期里面又添加了一些公式.注意点什么的,稍稍完善了一些. 本文主要整理自我的复变函数老师的课件和作业.相关教材和上课笔记,不做商用, ...

最新文章

  1. ANativeWindow是个什么东西
  2. 更新10_linux,时隔十年,QQ更新了Linux版本
  3. async和await理解代码
  4. ConcurrentProgramming:Atomic 原子类
  5. python中的sys模块和os_python中os和sys模块的区别与常用方法总结
  6. 精心总结了10个matplotlib绘图技巧,短小精悍,威力无穷!
  7. JAVA 他人博客收藏 (To be continue)
  8. 最大子串和 python_5. 最长回文子串(Python)
  9. 聊聊restful和restframework
  10. 2021年第十一届MathorCup高校数学建模挑战赛比赛占坑
  11. python调用vbs脚本_用VBS脚本读英语的Python代码分享
  12. 零成本建立医学数据库之实践
  13. 高尔顿钉板概率模型的实现
  14. 2023年天津天狮学院专升本专业课如何线上考试考前准备的要求
  15. 地税局工资管理系统(论文+设计)新
  16. OSAL多任务资源分配机制
  17. ThreeJS 骨架图显示、骨骼修改颜色
  18. 如何对Windows 2000中出现的“Stop 0x0000007B”错误信息进行故障诊断 1
  19. 机器人课程教师面对的困境有哪些
  20. 什么是长尾关键词986

热门文章

  1. 房间内人群疏散的python简单模拟
  2. 实现消息存档—微信聊天记录组件
  3. java实用工具类——使用java代码实现ftp上传下载工具类
  4. 代写品牌故事怎么写才能打动消费者
  5. 球面坐标系与三角函数 Spherical Coordinates and Trigonometric Functions
  6. 世界坐标系、相机坐标系、图像平面坐标系
  7. Pyinstaller的安装和使用
  8. 苹果描述文件服务器证书无效,22.iOS企业版证书、描述文件过期问题解决
  9. 国内高速下载Google Drive资源
  10. html表单中文字前黑点怎么弄,如何将word文档中标题前的黑点去掉