上一节,我通过一个斐波那契数列的案例,带你学习了内存泄漏的分析。如果在程序中直接或间接地分配了动态内存,你一定要记得释放掉它们,否则就会导致内存泄漏,严重时甚至会耗尽系统内存。
不过,反过来讲,当发生了内存泄漏时,或者运行了大内存的应用程序,导致系统的内存资源紧张时,系统又会如何应对呢?
在内存基础篇我们已经学过,这其实会导致两种可能结果,内存回收和 OOM 杀死进程。
我们先来看后一个可能结果,内存资源紧张导致的 OOM(Out Of Memory),相对容易理解,指的是系统杀死占用大量内存的进程,释放这些内存,再分配给其他更需要的进程。
这一点我们前面详细讲过,这里就不再重复了。
接下来再看第一个可能的结果,内存回收,也就是系统释放掉可以回收的内存,比如我前面讲过的缓存和缓冲区,就属于可回收内存。它们在内存管理中,通常被叫做文件页(File-backed Page)
大部分文件页,都可以直接回收,以后有需要时,再从磁盘重新读取就可以了。而那些被应用程序修改过,并且暂时还没写入磁盘的数据(也就是脏页),就得先写入磁盘,然后才能进行内存释放。
这些脏页,一般可以通过两种方式写入磁盘。
  • 可以在应用程序中,通过系统调用 fsync ,把脏页同步到磁盘中;
  • 也可以交给系统,由内核线程 pdflush 负责这些脏页的刷新。

文件页

除了缓存和缓冲区,通过内存映射获取的文件映射页,也是一种常见的文件页。它也可以被释放掉,下次再访问的时候,从文件重新读取。

匿名页

除了文件页外,还有没有其他的内存可以回收呢?比如,应用程序动态分配的堆内存,也就是我们在内存管理中说到的匿名页(Anonymous Page),是不是也可以回收呢?
我想,你肯定会说,它们很可能还要再次被访问啊,当然不能直接回收了。非常正确,这些内存自然不能直接释放。
但是,如果这些内存在分配后很少被访问,似乎也是一种资源浪费。是不是可以把它们暂时先存在磁盘里,释放内存给其他更需要的进程?
其实,这正是 Linux 的 Swap 机制。Swap 把这些不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用。再次访问这些内存时,重新从磁盘读入内存就可以了。
在前几节的案例中,我们已经分别学过缓存和 OOM 的原理和分析。那 Swap 又是怎么工作的呢?因为内容比较多,接下来,我将用两节课的内容,带你探索 Swap 的工作原理,以及 Swap 升高后的分析方法。
今天我们先来看看,Swap 究竟是怎么工作的。

Swap 原理

前面提到,Swap 说白了就是把一块磁盘空间或者一个本地文件(以下讲解以磁盘为例),当成内存来使用。它包括换出和换入两个过程。
  • 所谓换出,就是把进程暂时不用的内存数据存储到磁盘中,并释放这些数据占用的内存。
  • 而换入,则是在进程再次访问这些内存的时候,把它们从磁盘读到内存中来。
所以你看,Swap 其实是把系统的可用内存变大了。这样,即使服务器的内存不足,也可以运行大内存的应用程序。
还记得我最早学习 Linux 操作系统时,内存实在太贵了,一个普通学生根本就用不起大的内存,那会儿我就是开启了 Swap 来运行 Linux 桌面。当然,现在的内存便宜多了,服务器一般也会配置很大的内存,那是不是说 Swap 就没有用武之地了呢?
当然不是。事实上,内存再大,对应用程序来说,也有不够用的时候。
一个很典型的场景就是,即使内存不足时,有些应用程序也并不想被 OOM 杀死,而是希望能缓一段时间,等待人工介入,或者等系统自动释放其他进程的内存,再分配给它。
除此之外,我们常见的笔记本电脑的休眠和快速开机的功能,也基于 Swap 。休眠时,把系统的内存存入磁盘,这样等到再次开机时,只要从磁盘中加载内存就可以。这样就省去了很多应用程序的初始化过程,加快了开机速度。
话说回来,既然 Swap 是为了回收内存,那么 Linux 到底在什么时候需要回收内存呢?前面一直在说内存资源紧张,又该怎么来衡量内存是不是紧张呢?
一个最容易想到的场景就是,有新的大块内存分配请求,但是剩余内存不足。这个时候系统就需要回收一部分内存(比如前面提到的缓存),进而尽可能地满足新内存请求。这个过程通常被称为直接内存回收。
除了直接内存回收,还有一个专门的内核线程用来定期回收内存,也就是kswapd0。为了衡量内存的使用情况,kswapd0 定义了三个内存阈值(watermark,也称为水位),分别是
页最小阈值(pages_min)、页低阈值(pages_low)和页高阈值(pages_high)。剩余内存,则使用 pages_free 表示。
这里,我画了一张图表示它们的关系。
kswapd0 定期扫描内存的使用情况,并根据剩余内存落在这三个阈值的空间位置,进行内存的回收操作。
  • 剩余内存小于页最小阈值,说明进程可用内存都耗尽了,只有内核才可以分配内存。
  • 剩余内存落在页最小阈值和页低阈值中间,说明内存压力比较大,剩余内存不多了。这时 kswapd0 会执行内存回收,直到剩余内存大于高阈值为止。
  • 剩余内存落在页低阈值和页高阈值中间,说明内存有一定压力,但还可以满足新内存请求。
  • 剩余内存大于页高阈值,说明剩余内存比较多,没有内存压力。
我们可以看到,一旦剩余内存小于页低阈值,就会触发内存的回收。这个页低阈值,其实可以通过内核选项 /proc/sys/vm/min_free_kbytes 来间接设置。min_free_kbytes 设置了页最小阈值,而其他两个阈值,都是根据页最小阈值计算生成的,计算方法如下 :
pages_low = pages_min*5/4
pages_high = pages_min*3/2

NUMA 与 Swap

很多情况下,你明明发现了 Swap 升高,可是在分析系统的内存使用时,却很可能发现,系统剩余内存还多着呢。为什么剩余内存很多的情况下,也会发生 Swap 呢?
看到上面的标题,你应该已经想到了,这正是处理器的 NUMA (Non-Uniform Memory Access)架构导致的。
关于 NUMA,我在 CPU 模块中曾简单提到过。在 NUMA 架构下,多个处理器被划分到不同 Node 上,且每个 Node 都拥有自己的本地内存空间。
而同一个 Node 内部的内存空间,实际上又可以进一步分为不同的内存域(Zone),比如直接内存访问区(DMA)、普通内存区(NORMAL)、伪内存区(MOVABLE)等,如下图所示:
先不用特别关注这些内存域的具体含义,我们只要会查看阈值的配置,以及缓存、匿名页的实际使用情况就够了。
既然 NUMA 架构下的每个 Node 都有自己的本地内存空间,那么,在分析内存的使用时,我们也应该针对每个 Node 单独分析。
你可以通过 numactl 命令,来查看处理器在 Node 的分布情况,以及每个 Node 的内存使用情况。比如,下面就是一个 numactl 输出的示例:
$ numactl --hardware
available: 1 nodes (0)
node 0 cpus: 0 1
node 0 size: 7977 MB
node 0 free: 4416 MB
...

这个界面显示,我的系统中只有一个 Node,也就是 Node 0 ,而且编号为 0 和 1 的两个 CPU, 都位于 Node 0 上。另外,Node 0 的内存大小为 7977 MB,剩余内存为 4416 MB。
了解了 NUNA 的架构和 NUMA 内存的查看方法后,你可能就要问了这跟 Swap 有什么关系呢?
实际上,前面提到的三个内存阈值(页最小阈值、页低阈值和页高阈值),都可以通过内存域在 proc 文件系统中的接口 /proc/zoneinfo 来查看。
比如,下面就是一个 /proc/zoneinfo 文件的内容示例:
$ cat /proc/zoneinfo
...
Node 0, zone   Normalpages free     227894min      14896low      18620high     22344
...nr_free_pages 227894nr_zone_inactive_anon 11082nr_zone_active_anon 14024nr_zone_inactive_file 539024nr_zone_active_file 923986
...

这个输出中有大量指标,我来解释一下比较重要的几个。
  • pages 处的 min、low、high,就是上面提到的三个内存阈值,而 free 是剩余内存页数,它跟后面的 nr_free_pages 相同。
  • nr_zone_active_anon 和 nr_zone_inactive_anon,分别是活跃和非活跃的匿名页数。
  • nr_zone_active_file 和 nr_zone_inactive_file,分别是活跃和非活跃的文件页数。
从这个输出结果可以发现,剩余内存远大于页高阈值,所以此时的 kswapd0 不会回收内存。
当然,某个 Node 内存不足时,系统可以从其他 Node 寻找空闲内存,也可以从本地内存中回收内存。具体选哪种模式,你可以通过 /proc/sys/vm/zone_reclaim_mode 来调整。它支持以下几个选项:
  • 默认的 0 ,也就是刚刚提到的模式,表示既可以从其他 Node 寻找空闲内存,也可以从本地回收内存。
  • 1、2、4 都表示只回收本地内存,2 表示可以回写脏数据回收内存,4 表示可以用 Swap 方式回收内存。

swappiness

到这里,我们就可以理解内存回收的机制了。这些回收的内存既包括了文件页,又包括了匿名页。
  • 对文件页的回收,当然就是直接回收缓存,或者把脏页写回磁盘后再回收。
  • 而对匿名页的回收,其实就是通过 Swap 机制,把它们写入磁盘后再释放内存。
不过,你可能还有一个问题。既然有两种不同的内存回收机制,那么在实际回收内存时,到底该先回收哪一种呢?
其实,Linux 提供了一个 /proc/sys/vm/swappiness 选项,用来调整使用 Swap 的积极程度。
swappiness 的范围是 0-100,数值越大,越积极使用 Swap,也就是更倾向于回收匿名页;数值越小,越消极使用 Swap,也就是更倾向于回收文件页。
虽然 swappiness 的范围是 0-100,不过要注意,这并不是内存的百分比,而是调整 Swap 积极程度的权重,即使你把它设置成 0,当剩余内存 + 文件页小于页高阈值时,还是会发生 Swap。
清楚了 Swap 原理后,当遇到 Swap 使用变高时,又该怎么定位、分析呢?别急,下一节,我们将用一个案例来探索实践。

小结

在内存资源紧张时,Linux 通过直接内存回收和定期扫描的方式,来释放文件页和匿名页,以便把内存分配给更需要的进程使用。
  • 文件页的回收比较容易理解,直接清空,或者把脏数据写回磁盘后再释放。
  • 而对匿名页的回收,需要通过 Swap 换出到磁盘中,下次访问时,再从磁盘换入到内存中。
你可以设置 /proc/sys/vm/min_free_kbytes,来调整系统定期回收内存的阈值(也就是页低阈值),还可以设置 /proc/sys/vm/swappiness,来调整文件页和匿名页的回收倾向。
在 NUMA 架构下,每个 Node 都有自己的本地内存空间,而当本地内存不足时,默认既可以从其他 Node 寻找空闲内存,也可以从本地内存回收。
你可以设置 /proc/sys/vm/zone_reclaim_mode ,来调整 NUMA 本地内存的回收策略。
老师,在工作中经常会遇到这种情况,系统中的剩余内存较小、缓存内存较大的,也就是整体可用内存较高的情况下,就开始使用swap了,而查看swappiness的配置为10,理论上不应该使用swap的;具体看下面的free命令,麻烦老师看下是什么原因?
[root@shvsolman ~]# free -m
total used free shared buffers cached
Mem: 32107 31356 750 0 15 12514
-/+ buffers/cache: 18825 13281
Swap: 3071 1581 1490
[root@shvsolman ~]# sysctl -a | grep swappiness
vm.swappiness = 10
展开
作者回复: 这是容易误解的地方,其实,即使把swappiness设置成0也不会禁止swap。想要禁止,就不要开启swap。
我们公司处理嵌入式系统都是关闭swap分区,具体不知道什么原因?
作者回复: 一般是为了减少写的次数,延长Flash存储的寿命
倪老师,请教一下,Linux下怎么关闭SWAP功能?直接不分配SWAP卷(或者分区、文件),还是通过某个关闭SWAP功能的系统选项?
展开
作者回复: swapoff命令可以动态关闭,持久化还要从fstab里面删除

19 | 案例篇:为什么系统的Swap变高了(上)相关推荐

  1. linux性能优化实战 倪朋飞,Linux性能优化实战:系统的swap变高(09)

    一.实验环境 1.操作系统 root@openstack:~# lsb_release -a No LSB modules are available. Distributor ID:Ubuntu D ...

  2. 【linux性能优化】系统Swap变高原因分析

    一.内存处理 1.1 内存资源紧张的应对 当发生了内存泄漏或者运行大内存的应用程序,导致系统的内存资源紧张时,系统又会如何应对呢? 这其实会导致两种可能结果,内存回收和OOM杀死进程 OOM杀死进程 ...

  3. 10 | 案例篇:系统的软中断CPU使用率升高,我该怎么办?

    上一期我给你讲了软中断的基本原理,我们先来简单复习下. 中断是一种异步的事件处理机制,用来提高系统的并发处理能力.中断事件发生,会触发执行中断处理程序,而中断处理程序被分为上半部和下半部这两个部分. ...

  4. 07 | 案例篇:系统中出现大量不可中断进程和僵尸进程怎么办?(上)

    上一节,我用一个 Nginx+PHP 的案例,给你讲了服务器 CPU 使用率高的分析和应对方法.这里你一定要记得,当碰到无法解释的 CPU 使用率问题时,先要检查一下是不是短时应用在捣鬼. 短时应用的 ...

  5. 06 | 案例篇:系统的 CPU 使用率很高,但为啥却找不到高 CPU 的应用?

    上一节我讲了 CPU 使用率是什么,并通过一个案例教你使用 top.vmstat.pidstat 等工具,排查高 CPU 使用率的进程,然后再使用 perf top 工具,定位应用内部函数的问题.不过 ...

  6. 08 | 案例篇:系统中出现大量不可中断进程和僵尸进程怎么办?(下)

    上一节,我给你讲了 Linux 进程状态的含义,以及不可中断进程和僵尸进程产生的原因,我们先来简单复习下. 使用 ps 或者 top 可以查看进程的状态,这些状态包括运行.空闲.不可中断睡眠.可中断睡 ...

  7. 40 | 案例篇:网络请求延迟变大了,我该怎么办?

    上一节,学习了碰到分布式拒绝服务(DDoS)的缓解方法.简单回顾一下,DDoS 利用大量的伪造请求,导致目标服务要耗费大量资源,来处理这些无效请求,进而无法正常响应正常用户的请求. 由于 DDoS 的 ...

  8. 41 | 案例篇:如何优化 NAT 性能?(上)

    上一节,探究了网络延迟增大问题的分析方法,并通过一个案例,掌握了如何用 hping3.tcpdump.Wireshark.strace 等工具,来排查和定位问题的根源. 简单回顾一下,网络延迟是最核心 ...

  9. MUI框架:栅格系统 + grid宫格布局 - 案例篇

    MUI框架 · 自定义宫格布局 · 应用案例: 通过使用MUI框架的 栅格系统 + grid宫格布局 ,覆盖源码样式,以达到完美的页面效果. 效果图: 点击动画效果不再演示,具体效果参考源码效果! 全 ...

最新文章

  1. 125万奖金!“中国GPT-3”赛事来了
  2. 内核在哪个文件夹_Apache Kafka内核深度剖析
  3. StarlingMVC Framework 原理。。。
  4. 球面三角基本名称及性质、基本定理和公式、解法
  5. DL之CNN:卷积神经网络算法应用之卷积神经网络实践技巧(DA/DP/WI/BN/H/O/R)、优化技术经验之详细攻略
  6. (原创) 对饱和状态NPN晶体管内部机制的理解分析
  7. java基础----数字签名算法的介绍
  8. java符号引用 直接引用_java虚拟机的符号引用和直接引用
  9. 关于Image创建的内存管理
  10. Redis入门之Redis安装、配置及常用指令
  11. Spring + Ibatis + MySql实例详解
  12. vue.js 添加 fastclick的支持
  13. 浅谈Oracle执行计划
  14. hadoop启动_hadoop服务快速部署
  15. python二元一次方程组用鸡兔同笼的思路来写编程_应用二元一次方程组——鸡兔同笼教学设计...
  16. win7升级win10正式版_如何在win7系统中升级win10
  17. U盘快捷方式文件病毒解决方法
  18. photoshop使用“选择并遮住”功能快速扣头发
  19. folium基础内容介绍
  20. RNA-seq——快速下载SRA数据、解决fq文件中测序质量全为 ‘?‘ 的问题

热门文章

  1. 华为云welink考试试题_华为内部开启WeLink项目,华为云是这样考虑的-通信/网络-与非网...
  2. keil4如何设置自动缩进_如何设置私聊自动回复?
  3. java ftp复制文件_如何使用Java将FTP服务器上的文件复制到同一服务器上的目录中?...
  4. 五大地形等高线特征_高考复习地形特征描述专题
  5. 计算机组装课的评课记录,听课反思信息技术课堂教学心得体会
  6. php 能处理死循环吗,详解PHP死循环写法和作用
  7. sublime text3 添加到右键菜单
  8. mongodb 安装启动
  9. 用 Python 将微信热文转换成Word文档 | 神级操作
  10. Chrome现在也能编辑pdf文件了!64位安卓版上线