文章目录

  • 一、生成函数性质总结
  • 二、生成函数与序列的对应

参考博客 :

  • 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关 )
  • 【组合数学】生成函数 ( 线性性质 | 乘积性质 )
  • 【组合数学】生成函数 ( 移位性质 )
  • 【组合数学】生成函数 ( 求和性质 )
  • 【组合数学】生成函数 ( 换元性质 | 求导性质 | 积分性质 )

一、生成函数性质总结


1 . 生成函数 线性性质 :

乘法 : bn=αanb_n = \alpha a_nbn​=αan​ , 则 B(x)=αA(x)B(x) = \alpha A(x)B(x)=αA(x)

加法 : cn=an+bnc_n = a_n + b_ncn​=an​+bn​ , 则 C(x)=A(x)+B(x)C(x) = A(x) + B(x)C(x)=A(x)+B(x)

2 . 生成函数移位性质 :

向后移位 : b(n)={0,n<lan−l,n≥lb(n) = \begin{cases} 0, & n < l \\\\ a_{n-l}, & n \geq l \end{cases}b(n)=⎩⎪⎨⎪⎧​0,an−l​,​n<ln≥l​ , 则 B(x)=xlA(x)B(x) = x^l A(x)B(x)=xlA(x)

向前移位 : bn=an+1b_n = a_{n+1}bn​=an+1​ , 则 B(x)=A(x)−∑n=0l−1anxnxlB(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}B(x)=xlA(x)−n=0∑l−1​an​xn​

3 . 生成函数 乘积性质 : cn=∑i=0naibn−ic_n = \sum\limits_{i=0}^n a_i b_{n-i}cn​=i=0∑n​ai​bn−i​ , 则有 C(x)=A(x)⋅B(x)C(x) = A(x) \cdot B(x)C(x)=A(x)⋅B(x)

生成函数求和性质 :

向前求和 : bn=∑i=0naib_n = \sum\limits_{i=0}^{n}a_ibn​=i=0∑n​ai​ , 则 B(x)=A(x)1−xB(x) = \cfrac{A(x)}{1-x}B(x)=1−xA(x)​

向后求和 : bn=∑i=n∞aib_n = \sum\limits_{i=n}^{\infty}a_ibn​=i=n∑∞​ai​ , 并且 A(1)=∑i=n∞aiA(1) =\sum\limits_{i=n}^{\infty}a_iA(1)=i=n∑∞​ai​ 收敛 , 则 B(x)=A(1)−xA(x)1−xB(x) = \cfrac{A(1) - xA(x)}{1-x}B(x)=1−xA(1)−xA(x)​

4 . 生成函数换元性质 : bn=αnanb_n = \alpha^n a_nbn​=αnan​ , 则 B(x)=A(αx)B(x) =A( \alpha x)B(x)=A(αx)

5 . 生成函数求导性质 : bn=nanb_n = n a_nbn​=nan​ , 则 B(x)=xA′(x)B(x) =xA'( x)B(x)=xA′(x)

6 . 生成函数积分性质 : bn=ann+1b_n = \cfrac{a_n}{n+1}bn​=n+1an​​ , 则 B(x)=1x∫0xA(x)dxB(x) =\cfrac{1}{x} \int^{x}_{0} A( x)dxB(x)=x1​∫0x​A(x)dx

二、生成函数与序列的对应


给定序列 {an}\{a_n\}{an​} 或 ana_nan​ 的递推方程 , 求生成函数 G(x)G(x)G(x) , 需要使用级数的性质 和 一些重要的级数 ;

常用的生成函数取值 :

111 数列相关 :

{an}\{a_n\}{an​} , an=1na_n = 1^nan​=1n ; A(x)=∑n=0∞xn=11−x\begin{aligned} A(x) & = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}A(x)​=n=0∑∞​xn=1−x1​​

{an}\{a_n\}{an​} , an=(−1)na_n = (-1)^nan​=(−1)n ; A(x)=∑n=0∞(−1)nxn=11+x\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x} \end{aligned}A(x)​=n=0∑∞​(−1)nxn=1+x1​​

{an}\{a_n\}{an​} , an=kna_n = k^nan​=kn , kkk 为正整数 ; A(x)=∑n=0∞knxn=11−kx\begin{aligned} A(x) & = \sum_{n=0}^{\infty} k^n x^n = \frac{1}{1-kx} \end{aligned}A(x)​=n=0∑∞​knxn=1−kx1​​

二项式系数相关 :

{an}\{a_n\}{an​} , an=(mn)a_n = \dbinom{m}{n}an​=(nm​) ; A(x)=∑n=0∞(mn)xn=(1+x)m\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m}{n} x^n = ( 1 + x ) ^m \end{aligned}A(x)​=n=0∑∞​(nm​)xn=(1+x)m​

组合数相关 :

{an}\{a_n\}{an​} , an=(m+n−1n)a_n = \dbinom{m+n-1}{n}an​=(nm+n−1​) , m,nm,nm,n 为正整数 ; A(x)=∑n=0∞(m+n−1n)xn=1(1−x)m\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m+n-1}{n} x^n = \frac{1}{{(1-x)}^m} \end{aligned}A(x)​=n=0∑∞​(nm+n−1​)xn=(1−x)m1​​

{an}\{a_n\}{an​} , an=(−1)n(m+n−1n)a_n = (-1)^n \dbinom{m+n-1}{n}an​=(−1)n(nm+n−1​) , m,nm,nm,n 为正整数 ; A(x)=∑n=0∞(−1)n(m+n−1n)xn=1(1+x)m\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n \dbinom{m+n-1}{n} x^n = \frac{1}{{(1+x)}^m} \end{aligned}A(x)​=n=0∑∞​(−1)n(nm+n−1​)xn=(1+x)m1​​

{an}\{a_n\}{an​} , an=(n+1n)a_n = \dbinom{n+1}{n}an​=(nn+1​) , nnn 为正整数 ;
A(x)=∑n=0∞(n+1n)xn=∑n=0∞(n+1)xn=1(1−x)2\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{n+1}{n} x^n \\ & = \sum_{n=0}^{\infty} (n+1) x^n \\ & = \frac{1}{{(1-x)}^2} \end{aligned}A(x)​=n=0∑∞​(nn+1​)xn=n=0∑∞​(n+1)xn=(1−x)21​​

【组合数学】生成函数 ( 性质总结 | 重要的生成函数 ) ★相关推荐

  1. 【组合数学】指数生成函数 ( 指数生成函数性质 | 指数生成函数求解多重集排列 )

    文章目录 一.指数生成函数性质 二.指数生成函数求解多重集排列 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | ...

  2. 【组合数学】生成函数 ( 生成函数示例 | 给定通项公式求生成函数 | 给定生成函数求通项公式 )

    文章目录 一.给定级数求生成函数 二.给定生成函数求级数 参考博客 : [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 ...

  3. 【组合数学】指数生成函数 ( 指数生成函数概念 | 排列数指数生成函数 = 组合数普通生成函数 | 指数生成函数示例 )

    文章目录 一.指数生成函数 二.排列数指数生成函数 = 组合数普通生成函数 三.指数生成函数示例 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常 ...

  4. 离散数学/组合数学:序列与其对应的生成函数;多项式函数的系数与序列的联系;重复组合数的理解方法即----全1序列对应的生成函数做n重卷积(不严谨说法)之后得到的序列的x的k次方项的系数;莫比乌斯反演。

    继我所写的文章 "迭代.递归.栈.差分方程之间的本质联系以及由推广的迭代法解决"变态青蛙跳台阶"问题" 结束之后,自然的引出一个问题,就是关于如果真的给定k项之 ...

  5. 【组合数学】指数生成函数 ( 指数生成函数求解多重集排列示例 2 )

    文章目录 一.指数生成函数求解多重集排列示例 2 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相 ...

  6. 【组合数学】指数生成函数 ( 指数生成函数求解多重集排列示例 )

    文章目录 一.指数生成函数求解多重集排列示例 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 ...

  7. 【组合数学】指数生成函数 ( 证明指数生成函数求解多重集排列 )

    文章目录 一.证明指数生成函数求解多重集排列 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 ...

  8. 【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )

    文章目录 一.重复有序拆分 二.不重复有序拆分 1.无序拆分基本模型 2.全排列 三.重复有序拆分方案数证明 参考博客 : 按照顺序看 [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式 ...

  9. 【组合数学】生成函数 ( 正整数拆分 | 正整数拆分基本模型 | 有限制条件的无序拆分 )

    文章目录 一.正整数拆分基本模型 二.有限制条件的无序拆分 参考博客 : [组合数学]生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 ...

最新文章

  1. 求职者提问的问题面试官不会_如何通过三个简单的问题就不会陷入求职困境
  2. C++实现 找出10000以内的完数
  3. python3 导入上级目录中的模块
  4. CentOS下面service mysqld start出现[failed]情况
  5. 操作系统之内存管理:6、页面分配策略、抖动、工作集
  6. CCF201403-2 窗口
  7. RAC环境数据库重启实例
  8. numpy 加速 矩阵相加_图解入门 NumPy !
  9. 如何在10亿个数中找到前1000大的数?
  10. AS3文本框的操作,为密码框添加按钮
  11. 如何使用monitor(DDMS)抓取traceview文件
  12. 计算机导论第二版清华大学答案,计算机导论(第2版)课后习题答案【清华大学出版社】(13页)-原创力文档...
  13. java horizontalbarchart_DOC-03-36 柱状图(Bar Chart)
  14. CSS+DIV 网页重构技术
  15. 利用ettercap进行简单的arp欺骗和mitm攻击
  16. ahocorasick库的简单使用
  17. matlab狄利克雷函数,数论入门1——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛...
  18. 2019:自我觉醒的一年
  19. C++的get()函数与getline()函数使用详解
  20. Spring Boot、Spring Cloud 自定义配置文件(如何整合配置中心)

热门文章

  1. Ajax的用法之JQuery
  2. Android应用程序键盘(Keyboard)消息处理机制分析(17)
  3. 精益与敏捷开发(随笔)
  4. springboot 异步不生效
  5. Dynamics CRM中的操作(action)是否是一个事务(transaction)?
  6. Solr字段类型field type的定义
  7. Java之构造器和构造方法的使用和意义
  8. view是怎么被展示在手机上的?
  9. 关于Hibernate异常:只进 ResultSet 不支持请求的操作
  10. 关于c++深拷贝与浅拷贝