原文来自: http://dev.mysql.com/tech-resources/articles/using-new-query-profiler.html
One of the great things about MySQL is the superior innovation model that’s used to deliver database server software. Rather than relying solely on internal engineers who create and maintain a piece of software (as in a traditional software company), MySQL partners with the millions of active users across the world who take advantage of the open source model and daily extend the MySQL server to do new and pioneering things. These innovations can then be submitted to MySQL AB, tested, validated, and rolled into the database server so everyone can benefit from the creativity of the very active MySQL community.
An example of this model in action is the recent release of a new SQL diagnostic facility that assists in the debugging and analysis of running SQL - the SQL Profiler. The new profiler became available in the 5.0.37 version of the MySQL Community Server and was created and submitted by Jeremy Cole of Proven Scaling (http://www.provenscaling.com/).
Let's take a look at this new diagnostic utility Jeremy developed and see how it can help you create high-performing SQL code as well as assist in troubleshooting existing queries that aren't providing the response times you'd like.

The Best Way to Diagnose Performance Problems

When it comes to overall performance, it's important to remember that the #1 contributor is always a good database design. The second highest contributor to performance is well-tuned SQL code. Some try and switch the two in priority, but this is a mistake because a bad design has the potential to simply drown even the best-tuned SQL code (e.g. you can't get index access in your SQL queries if the physical index design is poorly done). But make no mistake - bad SQL code that's introduced into an otherwise well-running database can make a real train wreck of things.
So how do you go about analyzing database performance? There are three forms of performance analysis that are used to troubleshoot and tune database systems:
  1. Bottleneck analysis - focuses on answering the questions: What is my database server waiting on; what is a user connection waiting on; what is a piece of SQL code waiting on?
  2. Workload analysis - examines the server and who is logged on to determine the resource usage and activity of each.
  3. Ratio-based analysis - utilizes a number of rule-of-thumb ratios to gauge performance of a database, user connection, or piece of code.
Of the three, bottleneck analysis is the most efficient approach in terms of fast problem resolution. By determining where the server, a user connection, or set of SQL code is spending its time, you can then work to eliminate the discovered blockages, increase throughput, and reduce overall response times. Unfortunately, this hasn't always been easy in MySQL because the server hasn't traditionally exposed the type of wait-based and resource statistics to quickly uncover bottlenecks.
But a better day has come along in MySQL 5.0.37 with the inclusion of the SQL Profiling utility. This interactive diagnostic aid allows a developer or DBA to gain insight into where a set of SQL code spends its time and the resources it is using. The best way to see the power of this new utility is to walk through some examples of how it's used and see the clear benefits it supplies, so let's do just that.

Getting started with the SQL Profiler

The SQL Profiler is built into the database server and can be dynamically enabled/disabled via the MySQL client utility. To begin profiling one or more SQL queries, simply issue the following command:
mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
Two things happen once you issue this command. First, any query you issue from this point on will be traced by the server with various performance diagnostics being created and attached to each distinct query. Second, a memory table named profiling is created in the INFORMATION_SCHEMA database for your particular session (not viewable by any other MySQL session) that stores all the SQL diagnostic results. This table remains persistent until you disconnect from MySQL at which point it is destroyed.
Now, simply execute a SQL query:
mysql> select count(*) from client where broker_id=2;
+----------+
| count(*) |
+----------+
|      200 |
+----------+
1 row in set (0.00 sec)
Once the query completes, you can issue the following command to view the SQL profiles that have currently been stored for you:
mysql> show profiles;
+----------+------------+-----------------------------------------------+
| Query_ID | Duration   | Query                                         |
+----------+------------+-----------------------------------------------+
|        0 | 0.00007300 | set profiling=1                               |
|        1 | 0.00044700 | select count(*) from client where broker_id=2 |
+----------+------------+-----------------------------------------------+
2 rows in set (0.00 sec)
You get a quick summary of all your captured SQL plus the total duration that the query took to complete. To get the same diagnostic info, you can also query the memory table that holds your statistical information:
mysql> select sum(duration) from information_schema.profiling where query_id=1;
+---------------+
| sum(duration) |
+---------------+
|      0.000447 |
+---------------+
1 row in set (0.00 sec)
I'll show you why it's good to be able to query the memory-based profiling table later in this article, but for now, let's concentrate on other SHOW commands that you can use to get more detailed diagnostic info about one or more queries that you've profiled. The most basic command is one that lists the steps a profiled query went through to satisfy your SQL request, along with each step's time:
mysql> show profile for query 1;
+--------------------+------------+
| Status             | Duration   |
+--------------------+------------+
| (initialization)   | 0.00006300 |
| Opening tables     | 0.00001400 |
| System lock        | 0.00000600 |
| Table lock         | 0.00001000 |
| init               | 0.00002200 |
| optimizing         | 0.00001100 |
| statistics         | 0.00009300 |
| preparing          | 0.00001700 |
| executing          | 0.00000700 |
| Sending data       | 0.00016800 |
| end                | 0.00000700 |
| query end          | 0.00000500 |
| freeing items      | 0.00001200 |
| closing tables     | 0.00000800 |
| logging slow query | 0.00000400 |
+--------------------+------------+
15 rows in set (0.00 sec)
You can also just issue SHOW PROFILE and exclude the identification of a specific profile number to see the very last profile you created.
Regardless of how you obtain the output, you can see this data is extremely valuable in that it allows you to see where your query spends its time during execution. This is done for all types of queries, and not just SELECT statements as this example shows:
mysql> alter table t engine=myisam;
Query OK, 112050 rows affected (0.64 sec)
Records: 112050  Duplicates: 0  Warnings: 0
mysql> show profiles;
+----------+------------+-----------------------------------------------+
| Query_ID | Duration   | Query                                         |
+----------+------------+-----------------------------------------------+
|        0 | 0.00007300 | set profiling=1                               |
|        1 | 0.00044700 | select count(*) from client where broker_id=2 |
|        2 | 0.00003400 | set profiling=0                               |
|        3 | 0.00007400 | set profiling=1                               |
|        4 | 0.63789700 | alter table t engine=myisam                   |
|        5 | 0.00004000 | set profiling=0                               |
+----------+------------+-----------------------------------------------+
6 rows in set (0.00 sec)
mysql> show profile for query 4;
+----------------------+------------+
| Status               | Duration   |
+----------------------+------------+
| (initialization)     | 0.00002900 |
| checking permissions | 0.00000800 |
| init                 | 0.00004000 |
| Opening table        | 0.00009400 |
| System lock          | 0.00000500 |
| Table lock           | 0.00000700 |
| setup                | 0.00004200 |
| creating table       | 0.00195800 |
| After create         | 0.00010900 |
| copy to tmp table    | 0.52264500 |
| rename result table  | 0.11289400 |
| end                  | 0.00004600 |
| query end            | 0.00000700 |
| freeing items        | 0.00001300 |
+----------------------+------------+
14 rows in set (0.00 sec)
So as you can see in the above profile, the ALTER TABLE statement spends the bulk of its time in the temporary table copy step. Armed with this type of information, you have more insight into the hoops your query is jumping through from start to finish, and therefore, you can then work to tune your queries to help eliminate any identified bottlenecks.
There's more information than just duration that you can get from your profiles - for example, CPU usage (which, unfortunately, is not available on all platforms; the below comes from Linux):
mysql> show profile cpu for query 4;
+----------------------+------------+------------+------------+
| Status               | Duration   | CPU_user   | CPU_system |
+----------------------+------------+------------+------------+
| (initialization)     | 0.00002900 | 0.00000000 | 0.00000000 |
| checking permissions | 0.00000800 | 0.00000000 | 0.00000000 |
| init                 | 0.00004000 | 0.00000000 | 0.00000000 |
| Opening table        | 0.00009400 | 0.00100000 | 0.00000000 |
| System lock          | 0.00000500 | 0.00000000 | 0.00000000 |
| Table lock           | 0.00000700 | 0.00000000 | 0.00000000 |
| setup                | 0.00004200 | 0.00000000 | 0.00000000 |
| creating table       | 0.00195800 | 0.00000000 | 0.00100000 |
| After create         | 0.00010900 | 0.00000000 | 0.00000000 |
| copy to tmp table    | 0.52264500 | 0.55591600 | 0.04199300 |
| rename result table  | 0.11289400 | 0.00199900 | 0.00000000 |
| end                  | 0.00004600 | 0.00000000 | 0.00000000 |
| query end            | 0.00000700 | 0.00000000 | 0.00000000 |
| freeing items        | 0.00001300 | 0.00000000 | 0.00000000 |
+----------------------+------------+------------+------------+
14 rows in set (0.00 sec)
Other parameters that can be passed to the SHOW PROFILE command include:
  • ALL - displays all information
  • BLOCK IO - displays counts for block input and output operations
  • CONTEXT SWITCHES - displays counts for voluntary and involuntary context switches
  • IPC - displays counts for messages sent and received
  • MEMORY - is not currently implemented
  • PAGE FAULTS - displays counts for major and minor page faults
  • SOURCE - displays the names of functions from the source code, together with the name and line number of the file in which the function occurs
  • SWAPS - displays swap counts

Using the Profiler for Tuning Queries

Let's take a look at a quick example of how the new profiler can be a help to tune an inefficient query. I don't know about you, but I've always been just so-so at being able to really use EXPLAIN's to troubleshoot queries. But the new profiler makes things pretty nice and easy.
I have a MySQL database that's used to track investment activity for a small brokerage house. There's a view in the database that's used to get a quick report of client accounts over a million dollars:
mysql> select * from v_client_portfolio_high;
+-----------+-------------------+------------------+-----------------+
| client_id | client_first_name | client_last_name | portfolio_value |
+-----------+-------------------+------------------+-----------------+
|         5 | ABNER             | ROSSELLETT       |      1252115.50 |
|       500 | CANDICE           | BARTLETT         |      1384877.50 |
+-----------+-------------------+------------------+-----------------+
2 rows in set (3.73 sec)
Now a query running under four seconds isn't necessarily a bad thing, but I wonder if things could be made a little bit better. So let's profile the view and see what we can discover:
mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from v_client_portfolio_high;
+-----------+-------------------+------------------+-----------------+
| client_id | client_first_name | client_last_name | portfolio_value |
+-----------+-------------------+------------------+-----------------+
|         5 | ABNER             | ROSSELLETT       |      1252115.50 |
|       500 | CANDICE           | BARTLETT         |      1384877.50 |
+-----------+-------------------+------------------+-----------------+
2 rows in set (4.01 sec)
mysql> set profiling=0;
Query OK, 0 rows affected (0.00 sec)
mysql> show profiles;
+----------+------------+-----------------------------------------------+
| Query_ID | Duration   | Query                                         |
+----------+------------+-----------------------------------------------+
|        0 | 0.00007300 | set profiling=1                               |
|        1 | 0.00044700 | select count(*) from client where broker_id=2 |
|        2 | 0.00003400 | set profiling=0                               |
|        3 | 0.00007400 | set profiling=1                               |
|        4 | 0.63789700 | alter table t engine=myisam                   |
|        5 | 0.00004000 | set profiling=0                               |
|        6 | 0.00007600 | set profiling=1                               |
|        7 | 4.01965600 | select * from v_client_portfolio_high         |
|        8 | 0.00003500 | set profiling=0                               |
+----------+------------+-----------------------------------------------+
Now at first, I'm tempted to issue a SHOW PROFILE for query 7, which is my view query, but instead let's see just how many lines of diagnostic data the profiler has collected for me:
mysql> select count(*) from information_schema.profiling where query_id=7;
+----------+
| count(*) |
+----------+
|    74734 |
+----------+
Hello! The profiler generated over 74,000 lines of output for me, which might be hard to wade through using the normal SHOW PROFILE command (even though a LIMIT option is provided). Instead, let's use a SQL query against the profiling table to see what our query did:
mysql> select min(seq) seq,state,count(*) numb_ops,-> round(sum(duration),5) sum_dur, round(avg(duration),5) avg_dur,-> round(sum(cpu_user),5) sum_cpu, round(avg(cpu_user),5) avg_cpu-> from information_schema.profiling-> where query_id = 7-> group by state-> order by seq;
+-------+----------------------+----------+---------+---------+---------+---------+
| seq   | state                | numb_ops | sum_dur | avg_dur | sum_cpu | avg_cpu |
+-------+----------------------+----------+---------+---------+---------+---------+
|     0 | (initialization)     |        1 | 0.00004 | 0.00004 | 0.00000 | 0.00000 |
|     1 | Opening tables       |        1 | 0.00023 | 0.00023 | 0.00000 | 0.00000 |
|     2 | System lock          |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
|     3 | Table lock           |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
|     4 | checking permissions |        1 | 0.00010 | 0.00010 | 0.00000 | 0.00000 |
|     5 | optimizing           |        4 | 0.00004 | 0.00001 | 0.00000 | 0.00000 |
|     6 | statistics           |        4 | 0.00007 | 0.00002 | 0.00100 | 0.00025 |
|     7 | preparing            |        4 | 0.00005 | 0.00001 | 0.00000 | 0.00000 |
|     8 | Creating tmp table   |        1 | 0.00003 | 0.00003 | 0.00000 | 0.00000 |
|     9 | executing            |    37352 | 0.16631 | 0.00000 | 0.05899 | 0.00000 |
|    10 | Copying to tmp table |        1 | 0.00006 | 0.00006 | 0.00000 | 0.00000 |
|    15 | Sending data         |    37353 | 3.85151 | 0.00010 | 3.72943 | 0.00010 |
| 74717 | Sorting result       |        1 | 0.00112 | 0.00112 | 0.00100 | 0.00100 |
| 74719 | removing tmp table   |        2 | 0.00003 | 0.00001 | 0.00000 | 0.00000 |
| 74721 | init                 |        1 | 0.00002 | 0.00002 | 0.00000 | 0.00000 |
| 74727 | end                  |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
| 74728 | query end            |        1 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| 74729 | freeing items        |        1 | 0.00002 | 0.00002 | 0.00000 | 0.00000 |
| 74730 | closing tables       |        2 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
| 74733 | logging slow query   |        1 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
+-------+----------------------+----------+---------+---------+---------+---------+
Looking at the diagnostics above, I can see that my view query spends the bulk of its time in the Sending data step, with that step and the executing step experiencing over 37,000 operations. Why would this be the case? Let's take a look at the underlying view definition and see what the actual query looks like:
create view v_client_portfolio_high
(client_id,client_first_name,client_last_name,portfolio_value
)
as
select  b.client_id,b.client_first_name,b.client_last_name,(select sum(number_of_units * price)
from client_transaction c
where c.action = 'buy' and
c.client_id = b.client_id) -
(select sum(number_of_units * price)
from client_transaction d
where d.action = 'sell' and
d.client_id = b.client_id) portfolio_value
from    client_transaction a,client b
where   a.client_id = b.client_id
group by b.client_id,b.client_first_name,b.client_last_name
having portfolio_value > 1000000
The view does some normal column grabs from the underlying base tables, but then uses some inline views to calculate a client's overall portfolio value. The inline views/subselects are obviously what's causing the large number of data sends and executions. Let's eliminate just one of the subselects by pulling it up into the main query and if that makes a difference. We'll drop and recreate the view (with a little clean up on NULL values that may affect the computed outcome), profile the new view's performance, and then examine the diagnostic output:
mysql> drop view v_client_portfolio_high;
Query OK, 0 rows affected (0.00 sec)
mysql> create view v_client_portfolio_high-> (->     client_id,->     client_first_name,->     client_last_name,->     portfolio_value-> )-> as-> select  b.client_id,->  b.client_first_name,->  b.client_last_name,->  sum(number_of_units * price)  -->  case->          (select sum(number_of_units * price)->          from client_transaction d->          where d.action = 'sell' and->          d.client_id = b.client_id)->  when NULL then 0->  else->          (select sum(number_of_units * price)->          from client_transaction d->          where d.action = 'sell' and->          d.client_id = b.client_id)->  end portfolio_value-> from    client_transaction a,->  client b-> where   a.client_id = b.client_id and->  action = 'buy'-> group    by b.client_id,->  b.client_first_name,->  b.client_last_name-> having   portfolio_value > 1000000;
Query OK, 0 rows affected (0.00 sec)
mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from v_client_portfolio_high;
+-----------+-------------------+------------------+-----------------+
| client_id | client_first_name | client_last_name | portfolio_value |
+-----------+-------------------+------------------+-----------------+
|         5 | ABNER             | ROSSELLETT       |      1252115.50 |
|       500 | CANDICE           | BARTLETT         |      1384877.50 |
+-----------+-------------------+------------------+-----------------+
2 rows in set (0.47 sec)
mysql> set profiling=0;
Query OK, 0 rows affected (0.00 sec)
mysql> show profiles;
+----------+------------+-----------------------------------------------+
| Query_ID | Duration   | Query                                         |
+----------+------------+-----------------------------------------------+
|        0 | 0.00007300 | set profiling=1                               |
|        1 | 0.00044700 | select count(*) from client where broker_id=2 |
|        2 | 0.00003400 | set profiling=0                               |
|        3 | 0.00007400 | set profiling=1                               |
|        4 | 0.63789700 | alter table t engine=myisam                   |
|        5 | 0.00004000 | set profiling=0                               |
|        6 | 0.00007600 | set profiling=1                               |
|        7 | 4.01965600 | select * from v_client_portfolio_high         |
|        8 | 0.00003500 | set profiling=0                               |
|        9 | 0.00007500 | set profiling=1                               |
|       10 | 0.45292700 | select * from v_client_portfolio_high         |
|       11 | 0.00003800 | set profiling=0                               |
+----------+------------+-----------------------------------------------+
12 rows in set (0.00 sec)
mysql> select min(seq) seq,state,count(*) numb_ops,-> round(sum(duration),5) sum_dur, round(avg(duration),5) avg_dur,-> round(sum(cpu_user),5) sum_cpu, round(avg(cpu_user),5) avg_cpu-> from information_schema.profiling-> where query_id = 10-> group by state-> order by seq;
+-------+----------------------+----------+---------+---------+---------+---------+
| seq   | state                | numb_ops | sum_dur | avg_dur | sum_cpu | avg_cpu |
+-------+----------------------+----------+---------+---------+---------+---------+
|     0 | (initialization)     |        1 | 0.00004 | 0.00004 | 0.00000 | 0.00000 |
|     1 | Opening tables       |        1 | 0.00024 | 0.00024 | 0.00000 | 0.00000 |
|     2 | System lock          |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
|     3 | Table lock           |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
|     4 | checking permissions |        1 | 0.00012 | 0.00012 | 0.00100 | 0.00100 |
|     5 | optimizing           |        4 | 0.00005 | 0.00001 | 0.00000 | 0.00000 |
|     6 | statistics           |        4 | 0.00007 | 0.00002 | 0.00000 | 0.00000 |
|     7 | preparing            |        4 | 0.00005 | 0.00001 | 0.00000 | 0.00000 |
|     8 | Creating tmp table   |        1 | 0.00003 | 0.00003 | 0.00000 | 0.00000 |
|     9 | executing            |    11194 | 0.04983 | 0.00000 | 0.01800 | 0.00000 |
|    10 | Copying to tmp table |        1 | 0.00008 | 0.00008 | 0.00000 | 0.00000 |
|    15 | Sending data         |    11195 | 0.39853 | 0.00004 | 0.36794 | 0.00003 |
| 22401 | Sorting result       |        1 | 0.00375 | 0.00375 | 0.00400 | 0.00400 |
| 22403 | removing tmp table   |        2 | 0.00005 | 0.00002 | 0.00000 | 0.00000 |
| 22405 | init                 |        1 | 0.00002 | 0.00002 | 0.00000 | 0.00000 |
| 22411 | end                  |        1 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
| 22412 | query end            |        1 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| 22413 | freeing items        |        1 | 0.00002 | 0.00002 | 0.00000 | 0.00000 |
| 22414 | closing tables       |        2 | 0.00001 | 0.00001 | 0.00000 | 0.00000 |
| 22417 | logging slow query   |        1 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
+-------+----------------------+----------+---------+---------+---------+---------+
20 rows in set (0.44 sec)
Much better! Although more tuning on the view can likely be done, this simple change has knocked the Sending data and the executing step counts down by over two-thirds, with the end result being an 88% reduction in overall response time. The profiler was very useful in this case as this particular query shows that even though an individual step in the SQL execution process may be handled very quickly (the average duration column in the above query), having that same step executed over and over again can put a major dent in total query performance.

Some Last Thoughts on the Profiler

Here are some other things to keep in mind when using the new SQL profiler:
Profiling is initially turned off for each session.
By default, you can store 15 different query profiles for your session. You can increase this up to 100 by setting the profiling_history_size session variable.
Certain diagnostics rely on operating system support for the getrusage() system call, so you may see NULL values for some statistics if you're on a platform that doesn't support this function.
There were a few bugs in the initial release of the profiler. The first centered around a problem that developed if you issued a SHOW PROFILES command before enabling profiling. Another concerned duration statistics that were not accurately paired up for each SQL execution step. All these have been fixed now and will be in the next Community server source drop and binary.
For more information on the SQL profiler, you can review the documentation found in the MySQL 5.0 manual at: http://dev.mysql.com/doc/refman/5.0/en/show-profiles.html.
The new SQL profiler is a nice addition to the DBA's and developer's toolbelt and is a great example of the vibrant MySQL Community (in this case, Jeremy Cole) in action. I can't wait to see what they come up with next!
本文出自 “MySQL中文网”博客 http://www.imysql.cn/

转载于:https://blog.51cto.com/imysql/308291

Using the New MySQL Query Profiler相关推荐

  1. mysql query profiler_MySQL Query Profiler

    查看MySQL语法详细执行时间与CPU/记忆体使用量: MySQL Query Profiler MySQL的SQL语法调整主要都是使用EXPLAIN,但是这个并没办法知道详细的Ram(Memory) ...

  2. mysql query profile_MySQL Query Profile

    MySQL Query Profile MySQL 5.0.37 以上开始支持 MySQL Query Profiler, 可以查询到此 SQL 会执行多少时间, 并看出 CPU/Memory 使用量 ...

  3. mysql自带的监控报告_MYSQL监控-自带工具Query Profiler的使用

    Query Profiler是MYSQL自带的一种query诊断分析工具,通过它可以分析出一条SQL语句的性能瓶颈在什么地方.通常我们是使用的explain,以及slow query log都无法做到 ...

  4. MYSQL监控-自带工具Query Profiler的使用

    2019独角兽企业重金招聘Python工程师标准>>> Query Profiler是MYSQL自带的一种query诊断分析工具,通过它可以分析出一条SQL语句的性能瓶颈在什么地方. ...

  5. 比explain更加详细的分析计划:Query Profiler

    一.前言 这篇博客是之前总结的一个知识点,也是偶然看别人博客的时候发现的这个东东,,也算是解析sql语句性能的利器吧,记录一哈.       Query Profiler是MYSQL自带的一种quer ...

  6. mysql query 优化_第 8 章 MySQL 数据库 Query 的优化

    前言: 在之前"影响 MySQL 应用系统性能的相关因素"一章中我们就已经分析过了Query语句对数据库性能的影响非常大,所以本章将专门针对 MySQL 的 Query 语句的优化 ...

  7. mysql query browswer_MySQL数据库新特性之存储过程入门教程

    MySQL数据库新特性之存储过程入门教程 在MySQL 5中,终于引入了存储过程这一新特性,这将大大增强MYSQL的数据库处理能力.在本文中将指导读者快速掌握MySQL 5的存储过程的基本知识,带领用 ...

  8. mysql query cache

    1.概述: MySQL Query Cache 缓存客户端提交给MySQL的SELECT(注意只是select)语句以及该语句的结果集. 注意:query_cache是mysql server端的查询 ...

  9. mysql 查询分析器_mysql查询分析工具|mysql查询分析器(MySQL Query Browser)下载v1.1.20 官方版_ IT猫扑网...

    mysql查询分析器又名为mysqlquerybrowser,是一款可以帮助用户快捷进行sql语句查询的工具,让你在编程的过程中更加方便的进行工作.有需要的朋友就来IT猫扑下载吧! MySQL Que ...

最新文章

  1. vuex是什么?怎么用,例子
  2. 几经沉浮,自乱前程——硬盘巨头启示录之迈拓篇
  3. [kuangbin] M - Find a way(简单广搜)
  4. 前端网页 — 初始化文件
  5. 用hundred造句子_2020朋友圈感恩节祝福语大全:微信感恩节鞠躬的图片文案句子说说[多图]...
  6. 安卓航班Android开发经典教程大总结1----基础编程及源码推送
  7. AjaxControltoolkit学习笔记—ListSearch 使用详解
  8. fedora 23 vlc 以root运行的方法
  9. 重构kz-admin
  10. 搜索引擎的一些简单命令-防止自己忘记系列
  11. 独立键盘检测,矩阵键盘检测
  12. 管理者的50堂课之创始人篇 读书笔记
  13. 《算法帝国》第一章第二章读书笔记
  14. 博客项目——登录功能实现
  15. 传奇私服服务器怎么增加npc,在自己的传奇服务器中如何添加NPC
  16. 车牌检测与识别:License plate detection and recognition (LPDR)
  17. Value Use User
  18. 【经典面试题】strcmp 函数的实现
  19. 企业信息化不可缺少之方正OA
  20. [Python]学习笔记5——For循环

热门文章

  1. CES2018:英特尔披露量子计算和神经拟态计算研究最新进展
  2. DeepMind推出「控制套件」:为「强化学习智能体」提供性能基准
  3. 为什么你那么努力,却很难突破技术瓶颈?
  4. 漫画 | 辞职前与老板的最后一次谈话有哪些禁忌?
  5. 秒抢红包的背后,是复杂的即时付款系统
  6. 微软转向,鸿蒙拥抱,炒房团都来了,Linux 为何引各方英雄竞折腰?
  7. 使用云祺虚拟机备份软件恢复Citrix XenServer 虚拟机
  8. Python 设计模式: 单例模式(singleton pattern)
  9. SGI STL 内存分配方式及malloc底层实现分析
  10. Linux的chattr与lsattr命令详解