本文为《Linear algebra and its applications》的读书笔记

目录

  • Partitioned matrices
  • Addition and Scalar Multiplication
  • Multiplication of Partitioned Matrices
  • Inverses of Partitioned Matrices

Partitioned matrices

  • A key feature of our work with matrices has been the ability to regard a matrix AAA as a list of column vectors rather than just a rectangular array of numbers. This point of view has been so useful that we wish to consider other partitions of AAA, indicated by horizontal and vertical dividing rules.

EXAMPLE 1

  • The matrix

    can also be written as the 2×32 \times 32×3 partitioned (or block) matrix

    whose entries are the blocks (分块) (or submatrices)

EXAMPLE 2

  • When a matrix AAA appears in a mathematical model of a physical system such as an electrical network, a transportation system, or a large corporation, it may be natural to regard AAA as a partitioned matrix.

    • For instance, if a microcomputer circuit board consists mainly of three VLSI (very large-scale integrated) microchips, then the matrix for the circuit board might have the general form
      The submatrices on the “diagonal” of AAA—namely, A11A_{11}A11​, A22A_{22}A22​, and A33A_{33}A33​—concern the three VLSI chips, while the other submatrices depend on the interconnections among those microchips.

Addition and Scalar Multiplication

  • If matrices AAA and BBB are the same size and are partitioned in exactly the same way, then it is natural to make the same partition of the ordinary matrix sum A+BA + BA+B.
  • In this case, each block of A+BA + BA+B is the (matrix) sum of the corresponding blocks of AAA and BBB. Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices

  • Partitioned matrices can be multiplied by the usual row–column rule as if the block entries were scalars, provided that for a product ABABAB, the column partition of AAA matches the row partition of BBB.

EXAMPLE 3

  • Let
    The 5 columns of AAA are partitioned into a set of 3 columns and then a set of 2 columns. The 5 rows of BBB are partitioned in the same way—into a set of 3 rows and then a set of 2 rows. We say that the partitions of AAA and BBB are conformable for block multiplication. It can be shown that the ordinary product ABABAB can be written as
    It is important for each smaller product in the expression for ABABAB to be written with the submatrix from AAA on the left. For instance,
  • The row–column rule for multiplication of block matrices provides the most general way to regard the product of two matrices.

  • 下面就理解一下为什么像上面这样进行分块矩阵乘法是正确的:

    • 参考:https://zhuanlan.zhihu.com/p/133330692
  • 对于分块矩阵AAA 和 BBB,证明
    [A11A12A21A22][B11B12B21B22]=[A11B11+A12B21A11B12+A12B22A21B11+A22B21A21B12+A22B22](1)\begin{bmatrix} A_{11}&A_{12}\\ A_{21}&A_{22}\end{bmatrix} \begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\end{bmatrix}=\begin{bmatrix} A_{11}B_{11}+A_{12}B_{21}&A_{11}B_{12}+A_{12}B_{22}\\ A_{21}B_{11}+A_{22}B_{21}&A_{21}B_{12}+A_{22}B_{22}\end{bmatrix}\ \ \ \ \ \ \ (1)[A11​A21​​A12​A22​​][B11​B21​​B12​B22​​]=[A11​B11​+A12​B21​A21​B11​+A22​B21​​A11​B12​+A12​B22​A21​B12​+A22​B22​​]       (1)

    • 首先考虑 AAA 不分块,将BBB 按列分为两块
      AB=A[B11B12]AB=A\begin{bmatrix} B_{11}&B_{12}\end{bmatrix}AB=A[B11​​B12​​]回忆矩阵乘法的定义,AB=[Ab1Ab2...Abp]AB=\begin{bmatrix} A\boldsymbol b_{1}&A\boldsymbol b_{2}&...&A\boldsymbol b_p\end{bmatrix}AB=[Ab1​​Ab2​​...​Abp​​]。也就是说,BBB 的每一列都作为权重,对AAA 的列向量进行线性组合,每一列都是单独工作的。因此,就可以很自然地得到
      AB=A[B11B12]=[AB11AB12]AB=A\begin{bmatrix} B_{11}&B_{12}\end{bmatrix}=\begin{bmatrix} AB_{11}&AB_{12}\end{bmatrix}AB=A[B11​​B12​​]=[AB11​​AB12​​]

      • 由于每一列都是单独工作的,从中还可以总结出一条规则:当对 BBB 的列进行划分时,只要找到 ABABAB 的第一列的形式,结果中的每一列都保持相同形式,只不过将 BBB 的列标替换为相应的列标

        • 例如在 (1)(1)(1) 式中,第二列就是第一列将 B11→B12,B21→B22B_{11}\rightarrow B_{12},B_{21}\rightarrow B_{22}B11​→B12​,B21​→B22​
    • 再考虑 BBB 不分块,将AAA 按行分为两块
      AB=[A11A21]BAB=\begin{bmatrix} A_{11}\\A_{21}\end{bmatrix}BAB=[A11​A21​​]B而 AB=[row1A⋅Brow2A⋅B...rowpA⋅B]AB=\begin{bmatrix} row_{1}A\cdot B\\row_{2}A\cdot B\\...\\row_{p}A\cdot B\end{bmatrix}AB=⎣⎢⎢⎡​row1​A⋅Brow2​A⋅B...rowp​A⋅B​⎦⎥⎥⎤​。因此
      AB=[A11A21]B=[A11BA21B]AB=\begin{bmatrix} A_{11}\\A_{21}\end{bmatrix}B=\begin{bmatrix} A_{11}B\\A_{21}B\end{bmatrix}AB=[A11​A21​​]B=[A11​BA21​B​]

      • 类似得,也可以总结出一条规则:当对 AAA 的行进行划分时,只要找到 ABABAB 的第一行的形式,结果中的每一行都保持相同形式,只不过将 AAA 的行标替换为相应的行标

        • 例如在 (1)(1)(1) 式中,第二行就是第一行将 A11→A21,A12→A22A_{11}\rightarrow A_{21},A_{12}\rightarrow A_{22}A11​→A21​,A12​→A22​
    • 同时对 AAA 按行进行水平划分,对 BBB 按列进行垂直划分
      AB=[A11A21][B11B12]=[[A11A21]B11[A11A21]B12]=[A11B11A11B12A21B11A21B12]AB=\begin{bmatrix} A_{11}\\A_{21}\end{bmatrix}\begin{bmatrix} B_{11}&B_{12}\end{bmatrix}=\begin{bmatrix} \begin{bmatrix}A_{11}\\A_{21}\end{bmatrix}B_{11}&\begin{bmatrix}A_{11}\\A_{21}\end{bmatrix}B_{12}\end{bmatrix}=\begin{bmatrix} A_{11}B_{11}&A_{11}B_{12}\\A_{21}B_{11}&A_{21}B_{12}\end{bmatrix}AB=[A11​A21​​][B11​​B12​​]=[[A11​A21​​]B11​​[A11​A21​​]B12​​]=[A11​B11​A21​B11​​A11​B12​A21​B12​​]
    • 按照上面总结的两条规则,
      [A11A12A21A22][B11B12B21B22]=[[A11A12A21A22][B11B21][A11A12A21A22][B12B22]]=[[A11A12][B11B21][A11A12][B12B22][A21A22][B11B21][A21A22][B12B22]](1)\begin{aligned}\begin{bmatrix} A_{11}&A_{12}\\ A_{21}&A_{22}\end{bmatrix} \begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\end{bmatrix}&= \begin{bmatrix}\begin{bmatrix} A_{11}&A_{12}\\ A_{21}&A_{22}\end{bmatrix}\begin{bmatrix} B_{11}\\B_{21}\end{bmatrix}&\begin{bmatrix} A_{11}&A_{12}\\ A_{21}&A_{22}\end{bmatrix}\begin{bmatrix} B_{12}\\B_{22}\end{bmatrix}\end{bmatrix} \\&=\begin{bmatrix}\begin{bmatrix} A_{11}&A_{12}\end{bmatrix}\begin{bmatrix} B_{11}\\B_{21}\end{bmatrix}&\begin{bmatrix} A_{11}&A_{12}\end{bmatrix}\begin{bmatrix} B_{12}\\B_{22}\end{bmatrix}\\ \begin{bmatrix} A_{21}&A_{22}\end{bmatrix}\begin{bmatrix} B_{11}\\B_{21}\end{bmatrix}&\begin{bmatrix} A_{21}&A_{22}\end{bmatrix}\begin{bmatrix} B_{12}\\B_{22}\end{bmatrix}\end{bmatrix}\ \ \ \ \ \ \ (1) \end{aligned}[A11​A21​​A12​A22​​][B11​B21​​B12​B22​​]​=[[A11​A21​​A12​A22​​][B11​B21​​]​[A11​A21​​A12​A22​​][B12​B22​​]​]=⎣⎢⎢⎡​[A11​​A12​​][B11​B21​​][A21​​A22​​][B11​B21​​]​[A11​​A12​​][B12​B22​​][A21​​A22​​][B12​B22​​]​⎦⎥⎥⎤​       (1)​ 要证明 (1)(1)(1) 式,其实就只要证明 [A11A12][B11B21]=[A11B11+A12B21]\begin{bmatrix} A_{11}&A_{12}\end{bmatrix}\begin{bmatrix} B_{11}\\B_{21}\end{bmatrix}=\begin{bmatrix}A_{11}B_{11}+A_{12}B_{21}\end{bmatrix}[A11​​A12​​][B11​B21​​]=[A11​B11​+A12​B21​​]。(1)(1)(1) 式的其余部分可以用两条规则中的替换的方法得到。这部分可以由列的观点说明:本来我们是用 BBB 的每一列对 AAA 的列向量线性组合,现在把这个工作分成两截,用 BBB 的前几行对 AAA 的前几列线性组合,用 BBB 的后几行对 AAA 的后几列线性组合,然后再把它们加到一起,这和用 BBB 对整个 AAA 的列线性组合效果是一样的


EXAMPLE 4

Compute XTXX^TXXTX, where XXX is partitioned as [X1X2]\begin{bmatrix} X_1&X_2\end{bmatrix}[X1​​X2​​].

SOLUTION
XTX=[X1TX2T][X1X2]=[X1TX1X1TX2X2TX1X2TX2]X^TX=\begin{bmatrix} X_1^T\\X_2^T\end{bmatrix}\begin{bmatrix} X_1&X_2\end{bmatrix}=\begin{bmatrix} X_1^TX_1&X_1^TX_2\\X_2^TX_1&X_2^TX_2\end{bmatrix}XTX=[X1T​X2T​​][X1​​X2​​]=[X1T​X1​X2T​X1​​X1T​X2​X2T​X2​​]

  • The partitions of XTX^TXT and XXX are automatically conformable for block multiplication because the columns of XTX^TXT are the rows of XXX.
  • This partition of XTXX^TXXTX is used in several computer algorithms for matrix computations.

EXAMPLE 5

Use partitioned matrices to prove by induction (数学归纳法) that the product of two lower triangular matrices (下三角矩阵) is also lower triangular.

SOLUTION

  • [Hint: A (k+1)×(k+1)(k + 1)\times (k + 1)(k+1)×(k+1) matrix A1A_1A1​ can be written in the form below, where aaa is a scalar, v\boldsymbol vv is in Rk\mathbb R_kRk​, and AAA is a k×kk \times kk×k lower triangular matrix. ]
    A1=[a0TvA]A_1=\begin{bmatrix} a&\boldsymbol 0^T\\\boldsymbol v&A\end{bmatrix}A1​=[av​0TA​]
  • Prove: The product of two n×nn\times nn×n lower triangular matrices is lower triangular. (*)
    • The statement is true for n=1n = 1n=1.
    • The “induction step” is next. Suppose that (*) is true when nnn is some positive integer kkk, and consider any (k+1)×(k+1)(k+1)\times(k+1)(k+1)×(k+1) lower-triangular matrices A1A_1A1​ and B1B_1B1​. Partition these matrices as
      A1=[a0TvA],B1=[b0TwB]A_1=\begin{bmatrix} a&\boldsymbol 0^T\\\boldsymbol v&A\end{bmatrix},B_1=\begin{bmatrix} b&\boldsymbol 0^T\\\boldsymbol w&B\end{bmatrix}A1​=[av​0TA​],B1​=[bw​0TB​]where AAA and BBB are k×kk×kk×k matrices, v\boldsymbol vv and w\boldsymbol ww are in Rk\mathbb R^kRk, and aaa and bbb are scalars. Since A1A_1A1​ and B1B_1B1​ are lower triangular, so are AAA and BBB. NowAssuming (*) is true for n=kn = kn=k, ABABAB must be lower triangular. The form of A1B1A_1B_1A1​B1​ shows that it, too, is lower triangular. Thus the statement (*) about lower triangular matrices is true for n=k+1n = k +1n=k+1 if it is true for n=kn = kn=k. By the principle of induction, (*) is true for all n≥1n \geq 1n≥1.

Inverses of Partitioned Matrices

EXAMPLE 6

A matrix of the form
A=[A11A120A22]A=\begin{bmatrix} A_{11}& A_{12}\\0& A_{22}\end{bmatrix}A=[A11​0​A12​A22​​]is said to be blockuppertriangular(分块上三角矩阵)block\ upper\ triangular (分块上三角矩阵)block upper triangular(分块上三角矩阵). Assume that A11A_{11}A11​ is p×pp \times pp×p, A22A_{22}A22​ is q×qq \times qq×q, and AAA is invertible. Find a formula for A−1A^{-1}A−1.

SOLUTION

  • Denote A−1A^{-1}A−1 by BBB and partition BBB so that
    [A11A120A22][B11B12B21B22]=[Ip00Iq]\begin{bmatrix} A_{11}& A_{12}\\0& A_{22}\end{bmatrix}\begin{bmatrix} B_{11}& B_{12}\\B_{21}& B_{22}\end{bmatrix}=\begin{bmatrix} I_p& 0\\0& I_q\end{bmatrix}[A11​0​A12​A22​​][B11​B21​​B12​B22​​]=[Ip​0​0Iq​​]
  • This matrix equation provides four equations:
    Since A22A_{22}A22​ is square, equation (6) shows that A22A_{22}A22​ is invertible and B22=A22−1B_{22}=A_{22}^{-1}B22​=A22−1​. Next, left-multiply both sides of (5) by A22−1A_{22}^{-1}A22−1​ and obtain
    B21=0B_{21}=0B21​=0so that (3) simplifies to
    A11B11=IpA_{11}B_{11} = I_pA11​B11​=Ip​Since A11A_{11}A11​ is square, this shows that A11A_{11}A11​ is invertible and B11=A11−1B_{11}=A_{11}^{-1}B11​=A11−1​. Finally, use these results with (4) to find that
    B12=−A11−1A12A22−1B_{12}=-A_{11}^{-1}A_{12}A_{22}^{-1}B12​=−A11−1​A12​A22−1​Thus
    A−1=[A11A120A22]−1=[A11−1−A11−1A12A22−10A22−1]A^{-1}=\begin{bmatrix} A_{11}& A_{12}\\0& A_{22}\end{bmatrix}^{-1}=\begin{bmatrix} A_{11}^{-1}& -A_{11}^{-1}A_{12}A_{22}^{-1}\\0& A_{22}^{-1}\end{bmatrix}A−1=[A11​0​A12​A22​​]−1=[A11−1​0​−A11−1​A12​A22−1​A22−1​​]

  • A block diagonal matrix (分块对角矩阵) is a partitioned matrix with zero blocks off the main diagonal (of blocks).
  • Such a matrix is invertible if and only if each block on the diagonal is invertible, and the inverse is the block diagonal matrix formed from the inverses of the diagonal blocks.

EXAMPLE 7

Without using row reduction, find the inverse of
A=[1200035000002000007800056]A=\left[\begin{array}{lllll} 1 & 2 & 0 & 0 & 0 \\ 3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 5 & 6 \end{array}\right]A=⎣⎢⎢⎢⎢⎡​13000​25000​00200​00075​00086​⎦⎥⎥⎥⎥⎤​

SOLUTION

  • View the 5×55\times55×5 matrix in this example as a 3×33\times33×3 block matrix:
    Finish by inverting each of the diagonal blocks and use the results to assemble A–1A^{–1}A–1,

Chapter 2 (Matrix Algebra): Partitioned matrices (分块矩阵)相关推荐

  1. Chapter 2 (Matrix Algebra): The leontief input-output model (列昂惕夫投入产出模型)

    本文为<Linear algebra and its applications>的读书笔记 目录 The leontief input-output model A Formula for ...

  2. 线性代数学习笔记——第七讲——分块矩阵(干货满满的感觉)

    1. 分块矩阵的基本概念 2. 分块法之一--分出特殊矩阵 (分块对角矩阵的概念) 3.  分块法之二--按列分块 (矩阵各元素为列向量) 4. 分块法之三--按行分块 (矩阵各元素为行向量) 5. ...

  3. php随机数字不重复使等式成立_Schur补与矩阵打洞,SMW求逆公式,分块矩阵与行列式(不)等式...

    矩阵论记号约定​zhuanlan.zhihu.com Schur补与矩阵打洞 考虑正态随机向量 ,求 条件分布的一个类似于线性回归的常用技巧是--寻找常值矩阵 适合 :对于正态变量而言独立等价于不相关 ...

  4. 分块矩阵乘法+乒乓操作

    本文用system verilog实现了分块矩阵乘法中计算输出矩阵的某一块,并且进行了pingpang操作,以掩盖数据传输时间. 这是顶层模块的代码: `timescale 1ns / 1ps // ...

  5. poj 3233 矩阵乘法(分块矩阵)

    POJ 3233 题解:Sn为所求矩阵, 则 这样, 此题就变成了求矩阵幂和矩阵乘法, 分块矩阵乘法和普通矩阵一样的. code: /* adrui's submission Language : C ...

  6. 线性代数:第二章 矩阵及其运算:逆矩阵、分块矩阵

    第一节 矩阵及其运算 一.数学概念 定义1.1 由  个数  排成m行n列的数表 称为m行n列的矩阵,简称  矩阵,记作 二.原理,公式和法则 1.矩阵的加法 (1) 公式 (2) 运算律 2.数乘矩 ...

  7. 分块矩阵在秩不等式中的应用

    1. $$r(A+B)\leq r(A)+r(B);\, r(A-B)\leq r(A)+r(B)$$ 2. $(A-aE)(A-bE)=0$.其中$b-a\neq 0$则$r(A-aE)+r(A-b ...

  8. 1 数列分块入门_线性代数入门——利用分块矩阵简化矩阵乘法运算

    系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养.线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释.在内 ...

  9. 1 数列分块入门_线性代数入门——关于分块矩阵的典型证明题与综合题

    系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养.线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释.在内 ...

  10. LaTeX中绘制分块矩阵(矩阵中绘制横竖线)

    目前绘制分块矩阵有多种方法,比如利用pmat宏包.利用arydshln宏包等,但感觉后者更简便,故把使用方法记录在文章里. 目录 绘制竖实.虚线 绘制横实.虚线 调整虚线宽和虚线间距 出现的两类报错 ...

最新文章

  1. linux怎样自动检查link文件_自动共享和上传文件到兼容的托管站点 | Linux 中国
  2. 医药信息化:GMP/GSP之后
  3. Windows 技术篇-Edge浏览器升级方法实例演示,微软官方应用商店访问下载edge慢解决方法,edge安装包获取
  4. 牛客题霸 NC23 划分链表
  5. 崩坏三x86架构闪退_不给X86留活路?苹果下一代M系列芯片竟然这么强
  6. oracle 判断是否位汉字,js判断字符是否是汉字的两种方法小结
  7. 图解算法学习笔记(四):快速排序
  8. php移动端url,什么是PC和移动端URL路径规范化
  9. 瞧!公务员的工作还可以这样干
  10. 开源Granados介绍 - SSH连接远程Linux服务器(C#)
  11. laravel mysql 视图_视图入门:Laravel 支持的视图格式以及在路由中的基本使用
  12. 50岁开始学python_再过两年C语言就50岁了,这么老的编程语言怎么还没有过时?...
  13. 设计模式--工厂模式(c++)
  14. MIPS 通用寄存器 + 指令
  15. printer: PJL
  16. java 1.5.0 gcj_Ubuntu下GCJ的使用
  17. TM4C123-JTAG
  18. VScode开发PHP的必要插件
  19. SpringCloud Gateway网关为认证中心和用户微服务构建统一的认证授权入口
  20. 我常去逛的iOS干货文章、blog等【持续更新】 --转

热门文章

  1. Springboot自定义注解+AOP实现日志管理
  2. 【传感器学习】光电反射传感器
  3. 不懂技术怎么让服务器更安全,几个插件让你的服务器更安全(防攻击防注入)
  4. 寒风里的凌厉香气,令人沉醉的男士魅力
  5. 用c语言解题的程序,C语言实现的数独解题程序
  6. 小程序—九宫格心形拼图
  7. [ManjaroLinux]-虚拟机安装
  8. 研究生可以不用学英语?只要考研英语或六级分数高!
  9. android studio怎么后退,Android Studio:上一个活动的后退按钮
  10. h5课件制作_湘潭H5课件制作