高等数学(第七版)同济大学 习题9-5

1.设siny+ex−xy2=0,求dydx.\begin{aligned}&1. \ 设sin\ y+e^x-xy^2=0,求\frac{dy}{dx}.&\end{aligned}​1. 设sin y+ex−xy2=0,求dxdy​.​​

解:

设F(x,y)=siny+ex−xy2,则Fx=ex−y2,Fy=cosy−2xy,当Fy≠0时,有dydx=−FxFy=−ex−y2cosy−2xy=y2−excosy−2xy\begin{aligned} &\ \ 设F(x,\ y)=sin\ y+e^x-xy^2,则F_x=e^x-y^2,F_y=cos\ y-2xy,当F_y \neq 0时,\\\\ &\ \ 有\frac{dy}{dx}=-\frac{F_x}{F_y}=-\frac{e^x-y^2}{cos\ y-2xy}=\frac{y^2-e^x}{cos\ y-2xy} & \end{aligned}​  设F(x, y)=sin y+ex−xy2,则Fx​=ex−y2,Fy​=cos y−2xy,当Fy​=0时,  有dxdy​=−Fy​Fx​​=−cos y−2xyex−y2​=cos y−2xyy2−ex​​​


2.设lnx2+y2=arctanyx,求dydx.\begin{aligned}&2. \ 设ln\sqrt{x^2+y^2}=arctan\frac{y}{x},求\frac{dy}{dx}.&\end{aligned}​2. 设lnx2+y2​=arctanxy​,求dxdy​.​​

解:

设F(x,y)=lnx2+y2−arctanyx,则一阶偏导数分别为Fx=1x2+y2⋅2x2x2+y2−11+(yx)2⋅(−yx2)=x+yx2+y2,Fy=1x2+y2⋅2y2x2+y2−11+(yx)2⋅1x=y−xx2+y2,当Fy≠0时,有dydx=−FxFy=−x+yx2+y2y−xx2+y2=x+yx−y.\begin{aligned} &\ \ 设F(x, \ y)=ln\sqrt{x^2+y^2}-arctan\frac{y}{x},则一阶偏导数分别为\\\\ &\ \ F_x=\frac{1}{\sqrt{x^2+y^2}}\cdot \frac{2x}{2\sqrt{x^2+y^2}}-\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \left(-\frac{y}{x^2}\right)=\frac{x+y}{x^2+y^2},\\\\ &\ \ F_y=\frac{1}{\sqrt{x^2+y^2}}\cdot \frac{2y}{2\sqrt{x^2+y^2}}-\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \frac{1}{x}=\frac{y-x}{x^2+y^2},\\\\ &\ \ 当F_y \neq 0时,有\frac{dy}{dx}=-\frac{F_x}{F_y}=-\frac{\frac{x+y}{x^2+y^2}}{\frac{y-x}{x^2+y^2}}=\frac{x+y}{x-y}. & \end{aligned}​  设F(x, y)=lnx2+y2​−arctanxy​,则一阶偏导数分别为  Fx​=x2+y2​1​⋅2x2+y2​2x​−1+(xy​)21​⋅(−x2y​)=x2+y2x+y​,  Fy​=x2+y2​1​⋅2x2+y2​2y​−1+(xy​)21​⋅x1​=x2+y2y−x​,  当Fy​=0时,有dxdy​=−Fy​Fx​​=−x2+y2y−x​x2+y2x+y​​=x−yx+y​.​​


3.设x+2y+z−2xyz=0,求∂z∂x及∂z∂y.\begin{aligned}&3. \ 设x+2y+z-2\sqrt{xyz}=0,求\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}.&\end{aligned}​3. 设x+2y+z−2xyz​=0,求∂x∂z​及∂y∂z​.​​

解:

设F(x,y,z)=x+2y+z−2xyz,则Fx=1−yzxyz,Fy=2−xzxyz,Fz=1−xyxyz,当Fz≠0时,有∂z∂x=−FxFz=yz−xyzxyz−xy,∂z∂y=−FyFz=xz−2xyzxyz−xy.\begin{aligned} &\ \ 设F(x, \ y, \ z)=x+2y+z-2\sqrt{xyz},则F_x=1-\frac{yz}{\sqrt{xyz}},F_y=2-\frac{xz}{\sqrt{xyz}},F_z=1-\frac{xy}{\sqrt{xyz}},\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz-\sqrt{xyz}}{\sqrt{xyz}-xy},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{xz-2\sqrt{xyz}}{\sqrt{xyz}-xy}. & \end{aligned}​  设F(x, y, z)=x+2y+z−2xyz​,则Fx​=1−xyz​yz​,Fy​=2−xyz​xz​,Fz​=1−xyz​xy​,  当Fz​=0时,有∂x∂z​=−Fz​Fx​​=xyz​−xyyz−xyz​​,∂y∂z​=−Fz​Fy​​=xyz​−xyxz−2xyz​​.​​


4.设xz=lnzy,求∂z∂x及∂z∂y.\begin{aligned}&4. \ 设\frac{x}{z}=ln\frac{z}{y},求\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}.&\end{aligned}​4. 设zx​=lnyz​,求∂x∂z​及∂y∂z​.​​

解:

设F(x,y,z)=xz−lnzy,则Fx=1z,Fy=−1zy⋅(−zy2)=1y,Fz=−xz2−1zy⋅1y=−x+zz2,当Fz≠0时,有∂z∂x=−FxFz=−1z−x+zz2=zx+z,∂z∂y=−FyFz=−1y−x+zz2=z2y(x+z).\begin{aligned} &\ \ 设F(x, \ y, \ z)=\frac{x}{z}-ln\frac{z}{y},则F_x=\frac{1}{z},F_y=-\frac{1}{\frac{z}{y}}\cdot \left(-\frac{z}{y^2}\right)=\frac{1}{y},F_z=-\frac{x}{z^2}-\frac{1}{\frac{z}{y}}\cdot \frac{1}{y}=-\frac{x+z}{z^2},\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{-\frac{1}{z}}{-\frac{x+z}{z^2}}=\frac{z}{x+z},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{-\frac{1}{y}}{-\frac{x+z}{z^2}}=\frac{z^2}{y(x+z)}. & \end{aligned}​  设F(x, y, z)=zx​−lnyz​,则Fx​=z1​,Fy​=−yz​1​⋅(−y2z​)=y1​,Fz​=−z2x​−yz​1​⋅y1​=−z2x+z​,  当Fz​=0时,有∂x∂z​=−Fz​Fx​​=−z2x+z​−z1​​=x+zz​,∂y∂z​=−Fz​Fy​​=−z2x+z​−y1​​=y(x+z)z2​.​​


5.设2sin(x+2y−3z)=x+2y−3z,证明∂z∂x+∂z∂y=1.\begin{aligned}&5. \ 设2sin(x+2y-3z)=x+2y-3z,证明\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1.&\end{aligned}​5. 设2sin(x+2y−3z)=x+2y−3z,证明∂x∂z​+∂y∂z​=1.​​

解:

设F(x,y,z)=2sin(x+2y−3z)−x−2y+3z,则Fx=2cos(x+2y−3z)−1,Fy=2cos(x+2y−3z)⋅2−2=2Fx,Fz=2cos(x+2y−3z)⋅(−3)+3=−3Fx,当Fz≠0时,有∂z∂x+∂z∂y=−FxFz−FyFz=13+23=1.\begin{aligned} &\ \ 设F(x, \ y, \ z)=2sin(x+2y-3z)-x-2y+3z,则F_x=2cos(x+2y-3z)-1,\\\\ &\ \ F_y=2cos(x+2y-3z)\cdot 2-2=2F_x,F_z=2cos(x+2y-3z)\cdot (-3)+3=-3F_x,\\\\ &\ \ 当F_z \neq 0时,有\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=-\frac{F_x}{F_z}-\frac{F_y}{F_z}=\frac{1}{3}+\frac{2}{3}=1. & \end{aligned}​  设F(x, y, z)=2sin(x+2y−3z)−x−2y+3z,则Fx​=2cos(x+2y−3z)−1,  Fy​=2cos(x+2y−3z)⋅2−2=2Fx​,Fz​=2cos(x+2y−3z)⋅(−3)+3=−3Fx​,  当Fz​=0时,有∂x∂z​+∂y∂z​=−Fz​Fx​​−Fz​Fy​​=31​+32​=1.​​


6.设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,证明∂x∂y⋅∂y∂z⋅∂z∂x=−1.\begin{aligned}&6. \ 设x=x(y, \ z),y=y(x, \ z),z=z(x, \ y)都是由方程F(x, \ y, \ z)=0所确定的具有连续偏导数的函数,\\\\&\ \ \ \ 证明\frac{\partial x}{\partial y}\cdot \frac{\partial y}{\partial z}\cdot \frac{\partial z}{\partial x}=-1.&\end{aligned}​6. 设x=x(y, z),y=y(x, z),z=z(x, y)都是由方程F(x, y, z)=0所确定的具有连续偏导数的函数,    证明∂y∂x​⋅∂z∂y​⋅∂x∂z​=−1.​​

解:

因为∂x∂y=−FyFx,∂y∂z=−FzFy,∂z∂x=−FxFz,所以∂x∂y⋅∂y∂z⋅∂z∂x=(−FyFx)⋅(−FzFy)⋅(−FxFz)=−1\begin{aligned} &\ \ 因为\frac{\partial x}{\partial y}=-\frac{F_y}{F_x},\frac{\partial y}{\partial z}=-\frac{F_z}{F_y},\frac{\partial z}{\partial x}=-\frac{F_x}{F_z},所以\frac{\partial x}{\partial y}\cdot \frac{\partial y}{\partial z}\cdot \frac{\partial z}{\partial x}=\left(-\frac{F_y}{F_x}\right)\cdot \left(-\frac{F_z}{F_y}\right)\cdot \left(-\frac{F_x}{F_z}\right)=-1 & \end{aligned}​  因为∂y∂x​=−Fx​Fy​​,∂z∂y​=−Fy​Fz​​,∂x∂z​=−Fz​Fx​​,所以∂y∂x​⋅∂z∂y​⋅∂x∂z​=(−Fx​Fy​​)⋅(−Fy​Fz​​)⋅(−Fz​Fx​​)=−1​​


7.设Φ(u,v)具有连续偏导数,证明由方程Φ(cx−az,cy−bz)=0所确定的函数z=f(x,y)满足a∂z∂x+b∂z∂y=c.\begin{aligned}&7. \ 设\varPhi(u, \ v)具有连续偏导数,证明由方程\varPhi(cx-az, \ cy-bz)=0所确定的函数z=f(x, \ y)满足\\\\&\ \ \ \ a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=c.&\end{aligned}​7. 设Φ(u, v)具有连续偏导数,证明由方程Φ(cx−az, cy−bz)=0所确定的函数z=f(x, y)满足    a∂x∂z​+b∂y∂z​=c.​​

解:

令u=cx−az,v=cy−bz,则Φx=Φu⋅∂u∂x=cΦu,Φy=Φv⋅∂v∂y=cΦv,Φz=Φu⋅∂u∂z+Φv⋅∂v∂z=−aΦu−bΦv,当Φz≠0时,有∂z∂x=−ΦxΦz=cΦuaΦu+bΦv,∂z∂y=−ΦyΦz=cΦvaΦu+bΦv,得a∂z∂x+b∂z∂y=a⋅cΦuaΦu+bΦv+b⋅cΦvaΦu+bΦv=c.\begin{aligned} &\ \ 令u=cx-az,v=cy-bz,则\varPhi_x=\varPhi_u\cdot \frac{\partial u}{\partial x}=c\varPhi_u,\varPhi_y=\varPhi_v\cdot \frac{\partial v}{\partial y}=c\varPhi_v,\\\\ &\ \ \varPhi_z=\varPhi_u\cdot \frac{\partial u}{\partial z}+\varPhi_v\cdot \frac{\partial v}{\partial z}=-a\varPhi_u-b\varPhi_v,\\\\ &\ \ 当\varPhi_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{\varPhi_x}{\varPhi_z}=\frac{c\varPhi_u}{a\varPhi_u+b\varPhi_v},\frac{\partial z}{\partial y}=-\frac{\varPhi_y}{\varPhi_z}=\frac{c\varPhi_v}{a\varPhi_u+b\varPhi_v},\\\\ &\ \ 得a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=a\cdot \frac{c\varPhi_u}{a\varPhi_u+b\varPhi_v}+b\cdot \frac{c\varPhi_v}{a\varPhi_u+b\varPhi_v}=c. & \end{aligned}​  令u=cx−az,v=cy−bz,则Φx​=Φu​⋅∂x∂u​=cΦu​,Φy​=Φv​⋅∂y∂v​=cΦv​,  Φz​=Φu​⋅∂z∂u​+Φv​⋅∂z∂v​=−aΦu​−bΦv​,  当Φz​=0时,有∂x∂z​=−Φz​Φx​​=aΦu​+bΦv​cΦu​​,∂y∂z​=−Φz​Φy​​=aΦu​+bΦv​cΦv​​,  得a∂x∂z​+b∂y∂z​=a⋅aΦu​+bΦv​cΦu​​+b⋅aΦu​+bΦv​cΦv​​=c.​​


8.设ez−xyz=0,求∂2z∂x2.\begin{aligned}&8. \ 设e^z-xyz=0,求\frac{\partial^2 z}{\partial x^2}.&\end{aligned}​8. 设ez−xyz=0,求∂x2∂2z​.​​

解:

设F(x,y,z)=ez−xyz,则Fx=−yz,Fz=ez−xy,当Fz≠0时,有∂z∂x=−FxFz=yzez−xy,∂2z∂x2=∂∂x(∂z∂x)=y∂z∂x(ez−xy)−yz(ez∂z∂x−y)(ez−xy)2=y2z−yz(ez⋅yzez−xy−y)(ez−xy)2=2y2zez−2xy3z−y2z2ez(ez−xy)3.\begin{aligned} &\ \ 设F(x, \ y, \ z)=e^z-xyz,则F_x=-yz,F_z=e^z-xy,当F_z \neq 0时,有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz}{e^z-xy},\\\\ &\ \ \frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{y\frac{\partial z}{\partial x}(e^z-xy)-yz\left(e^z\frac{\partial z}{\partial x}-y\right)}{(e^z-xy)^2}=\frac{y^2z-yz\left(e^z\cdot \frac{yz}{e^z-xy}-y\right)}{(e^z-xy)^2}=\frac{2y^2ze^z-2xy^3z-y^2z^2e^z}{(e^z-xy)^3}. & \end{aligned}​  设F(x, y, z)=ez−xyz,则Fx​=−yz,Fz​=ez−xy,当Fz​=0时,有∂x∂z​=−Fz​Fx​​=ez−xyyz​,  ∂x2∂2z​=∂x∂​(∂x∂z​)=(ez−xy)2y∂x∂z​(ez−xy)−yz(ez∂x∂z​−y)​=(ez−xy)2y2z−yz(ez⋅ez−xyyz​−y)​=(ez−xy)32y2zez−2xy3z−y2z2ez​.​​


9.设z3−3xyz=a3,求∂2z∂x∂y.\begin{aligned}&9. \ 设z^3-3xyz=a^3,求\frac{\partial^2 z}{\partial x\partial y}.&\end{aligned}​9. 设z3−3xyz=a3,求∂x∂y∂2z​.​​

解:

设F(x,y,z)=z3−3xyz−a3,则Fx=−3yz,Fy=−3xz,Fz=3z2−3xy,当Fz≠0时,有∂z∂x=−FxFz=yzz2−xy,∂z∂y=−FyFz=xzz2−xy,∂2z∂x∂y=∂∂y(∂z∂x)=∂∂y(yzz2−xy)=(z+y∂z∂y)(z2−xy)−yz(2z∂z∂y−x)(z2−xy)2=(z+xyzz2−xy)⋅(z2−xy)−yz(2xz2z2−xy−x)(z2−xy)2=z(z4−2xyz2−x2y2)(z2−xy)3\begin{aligned} &\ \ 设F(x, \ y, \ z)=z^3-3xyz-a^3,则F_x=-3yz,F_y=-3xz,F_z=3z^2-3xy,当F_z \neq 0时,\\\\ &\ \ 有\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=\frac{yz}{z^2-xy},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}=\frac{xz}{z^2-xy},\\\\ &\ \ \frac{\partial^2 z}{\partial x\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{yz}{z^2-xy}\right)=\frac{\left(z+y\frac{\partial z}{\partial y}\right)(z^2-xy)-yz\left(2z\frac{\partial z}{\partial y}-x\right)}{(z^2-xy)^2}=\\\\ &\ \ \frac{\left(z+\frac{xyz}{z^2-xy}\right)\cdot(z^2-xy)-yz\left(\frac{2xz^2}{z^2-xy}-x\right)}{(z^2-xy)^2}=\frac{z(z^4-2xyz^2-x^2y^2)}{(z^2-xy)^3} & \end{aligned}​  设F(x, y, z)=z3−3xyz−a3,则Fx​=−3yz,Fy​=−3xz,Fz​=3z2−3xy,当Fz​=0时,  有∂x∂z​=−Fz​Fx​​=z2−xyyz​,∂y∂z​=−Fz​Fy​​=z2−xyxz​,  ∂x∂y∂2z​=∂y∂​(∂x∂z​)=∂y∂​(z2−xyyz​)=(z2−xy)2(z+y∂y∂z​)(z2−xy)−yz(2z∂y∂z​−x)​=  (z2−xy)2(z+z2−xyxyz​)⋅(z2−xy)−yz(z2−xy2xz2​−x)​=(z2−xy)3z(z4−2xyz2−x2y2)​​​


10.求由下列方程组所确定的函数的导数或偏导数:\begin{aligned}&10. \ 求由下列方程组所确定的函数的导数或偏导数:&\end{aligned}​10. 求由下列方程组所确定的函数的导数或偏导数:​​

(1)设{z=x2+y2,x2+2y2+3z2=20,求dydx,dzdx;(2)设{x+y+z=0,x2+y2+z2=1,求dxdz,dydz;(3)设{u=f(ux,v+y),v=g(u−x,v2y),其中f,g具有一阶连续偏导数,求∂u∂x,∂v∂x;(4)设{x=eu+usinv,y=eu−ucosv,求∂u∂x,∂u∂y,∂v∂x,∂v∂y.\begin{aligned} &\ \ (1)\ \ 设\begin{cases}z=x^2+y^2,\\\\x^2+2y^2+3z^2=20,\end{cases}求\frac{dy}{dx},\frac{dz}{dx};\\\\ &\ \ (2)\ \ 设\begin{cases}x+y+z=0,\\\\x^2+y^2+z^2=1,\end{cases}求\frac{dx}{dz},\frac{dy}{dz};\\\\ &\ \ (3)\ \ 设\begin{cases}u=f(ux, \ v+y),\\\\v=g(u-x, \ v^2y),\end{cases}其中f,g具有一阶连续偏导数,求\frac{\partial u}{\partial x},\frac{\partial v}{\partial x};\\\\ &\ \ (4)\ \ 设\begin{cases}x=e^u+usin\ v,\\\\y=e^u-ucos\ v,\end{cases}求\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}. & \end{aligned}​  (1)  设⎩⎨⎧​z=x2+y2,x2+2y2+3z2=20,​求dxdy​,dxdz​;  (2)  设⎩⎨⎧​x+y+z=0,x2+y2+z2=1,​求dzdx​,dzdy​;  (3)  设⎩⎨⎧​u=f(ux, v+y),v=g(u−x, v2y),​其中f,g具有一阶连续偏导数,求∂x∂u​,∂x∂v​;  (4)  设⎩⎨⎧​x=eu+usin v,y=eu−ucos v,​求∂x∂u​,∂y∂u​,∂x∂v​,∂y∂v​.​​

解:

(1)对两方程两端对x求导,得{dzdx=2x+2ydydx,2x+4ydydx+6zdzdx=0.,整理得{2ydydx−dzdx=−2x,2ydydx+3zdzdx=−x.,当D=∣2y−12y3z∣=6yz+2y≠0时,解方程组得dydx=∣−2x−1−x3z∣D=−6xz−x6yz+2y=−x(6z+1)2y(3z+1),dzdx=∣2y−2x2y−x∣D=2xy6yz+2y=x3z+1.(2)方程组确定两个一元隐函数:x=x(z)和y=y(z),对方程两端对z求导,整理得{dxdz+dydz=−1,2xdxdz+2ydydz=−2z.,当D=∣112x2y∣=2(y−x)≠0时,解方程组得dxdz=∣−11−2z2y∣D=−2y+2z2(y−x)=y−zx−y,dydz=∣1−12x−2z∣D=−2z+2x2(y−x)=z−xx−y.(3)方程组确定两个二元隐函数:u=u(x,y),v=v(x,y),分别对方程两端对x求偏导数,得{∂u∂x=f1′⋅(u+x∂u∂x)+f2′⋅∂v∂x,∂v∂x=g1′⋅(∂u∂x−1)+2g2′yv⋅∂v∂x.,整理得{(xf1′−1)∂u∂x+f2′∂v∂x=−uf1′,g1′∂u∂x+(2yvg2′−1)∂v∂x=g1′.,当D=∣xf1′−1f2′g1′2yvg2′−1∣=(xf1′−1)(2yvg2′−1)−f2′g1′≠0时,解方程组得∂u∂x=∣−uf1′f2′g1′2yvg2′−1∣D=−uf1′(2yvg2′−1)−f2′g1′(xf1′−1)(2yvg2′−1)−f2′g1′,∂v∂x=∣xf1′−1−uf1′g1′g1′∣D=g1′(xf1′+uf1′−1)(xf1′−1)(2yvg2′−1)−f2′g1′.(4)方程组确定的两个二元隐函数u=u(x,y),v=v(x,y)是已知函数的反函数,令F(x,y,u,v)=x−eu−usinv,G(x,y,u,v)=y−eu+ucosv,则Fx=1,Fy=0,Fu=−eu−sinv,Fv=−ucosv,Gx=0,Gy=1,Gu=−eu+cosv,Gv=−usinv,当J=∂(F,G)∂(u,v)=∣−eu−sinv−ucosv−eu+cosv−usinv∣=ueu(sinv−cosv)+u≠0时,由隐函数求导公式得∂u∂x=−∂(F,G)∂(x,v)J=−∣1−ucosv0−usinv∣J=sinveu(sinv−cosv)+1,∂u∂y=−∂(F,G)∂(y,v)J=−∣0−ucosv1−usinv∣J=−cosveu(sinv−cosv)+1,∂v∂x=−∂(F,G)∂(u,x)J=−∣−eu−sinv1−eu+cosv0∣J=cosv−euu[eu(sinv−cosv)+1],∂v∂y=−∂(F,G)∂(u,y)J=−∣−eu−sinv0−eu+cosv1∣J=sinv+euu[eu(sinv−cosv)+1].\begin{aligned} &\ \ (1)\ 对两方程两端对x求导,得\begin{cases}\frac{dz}{dx}=2x+2y\frac{dy}{dx},\\\\2x+4y\frac{dy}{dx}+6z\frac{dz}{dx}=0.\end{cases},整理得\begin{cases}2y\frac{dy}{dx}-\frac{dz}{dx}=-2x,\\\\2y\frac{dy}{dx}+3z\frac{dz}{dx}=-x.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}2y &-1\\2y &3z\end{array}\right|=6yz+2y \neq 0时,解方程组得\frac{dy}{dx}=\frac{\left|\begin{array}{cccc}-2x &-1\\-x &3z\end{array}\right|}{D}=\frac{-6xz-x}{6yz+2y}=\frac{-x(6z+1)}{2y(3z+1)},\\\\ &\ \ \ \ \ \ \ \ \frac{dz}{dx}=\frac{\left|\begin{array}{cccc}2y &-2x\\2y &-x\end{array}\right|}{D}=\frac{2xy}{6yz+2y}=\frac{x}{3z+1}.\\\\ &\ \ (2)\ 方程组确定两个一元隐函数:x=x(z)和y=y(z),对方程两端对z求导,整理得\begin{cases}\frac{dx}{dz}+\frac{dy}{dz}=-1,\\\\2x\frac{dx}{dz}+2y\frac{dy}{dz}=-2z.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}1 &1\\2x &2y\end{array}\right|=2(y-x) \neq 0时,解方程组得\frac{dx}{dz}=\frac{\left|\begin{array}{cccc}-1 &1\\-2z &2y\end{array}\right|}{D}=\frac{-2y+2z}{2(y-x)}=\frac{y-z}{x-y},\\\\ &\ \ \ \ \ \ \ \ \frac{dy}{dz}=\frac{\left|\begin{array}{cccc}1 &-1\\2x &-2z\end{array}\right|}{D}=\frac{-2z+2x}{2(y-x)}=\frac{z-x}{x-y}.\\\\ &\ \ (3)\ 方程组确定两个二元隐函数:u=u(x,\ y),v=v(x, \ y),分别对方程两端对x求偏导数,\\\\ &\ \ \ \ \ \ \ \ 得\begin{cases}\frac{\partial u}{\partial x}=f'_1\cdot \left(u+x\frac{\partial u}{\partial x}\right)+f'_2\cdot \frac{\partial v}{\partial x},\\\\\frac{\partial v}{\partial x}=g'_1\cdot \left(\frac{\partial u}{\partial x}-1\right)+2g'_2yv\cdot \frac{\partial v}{\partial x}.\end{cases},整理得\begin{cases}(xf'_1-1)\frac{\partial u}{\partial x}+f'_2\frac{\partial v}{\partial x}=-uf'_1,\\\\g'_1\frac{\partial u}{\partial x}+(2yvg'_2-1)\frac{\partial v}{\partial x}=g'_1.\end{cases},\\\\ &\ \ \ \ \ \ \ \ 当D=\left|\begin{array}{cccc}xf'_1-1 &f'_2\\g'_1 &2yvg'_2-1\end{array}\right|=(xf'_1-1)(2yvg'_2-1)-f'_2g'_1 \neq 0时,解方程组得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial x}=\frac{\left|\begin{array}{cccc}-uf'_1 &f'_2\\g'_1 &2yvg'_2-1\end{array}\right|}{D}=\frac{-uf'_1(2yvg'_2-1)-f'_2g'_1}{(xf'_1-1)(2yvg'_2-1)-f'_2g'_1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial x}=\frac{\left|\begin{array}{cccc}xf'_1-1 &-uf'_1\\g'_1 &g'_1\end{array}\right|}{D}=\frac{g'_1(xf'_1+uf'_1-1)}{(xf'_1-1)(2yvg'_2-1)-f'_2g'_1}.\\\\ &\ \ (4)\ 方程组确定的两个二元隐函数u=u(x, \ y),v=v(x, \ y)是已知函数的反函数,\\\\ &\ \ \ \ \ \ \ \ 令F(x, \ y, \ u, \ v)=x-e^u-usin\ v,G(x, \ y, \ u, \ v)=y-e^u+ucos\ v,\\\\ &\ \ \ \ \ \ \ \ 则F_x=1,F_y=0,F_u=-e^u-sin\ v,F_v=-ucos\ v,G_x=0,G_y=1,G_u=-e^u+cos\ v,G_v=-usin\ v,\\\\ &\ \ \ \ \ \ \ \ 当J=\frac{\partial(F, \ G)}{\partial(u, \ v)}=\left|\begin{array}{cccc}-e^u-sin\ v &-ucos\ v\\-e^u+cos\ v &-usin\ v\end{array}\right|=ue^u(sin\ v-cos\ v)+u \neq 0时,由隐函数求导公式得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial x}=-\frac{\frac{\partial(F, \ G)}{\partial(x, \ v)}}{J}=-\frac{\left|\begin{array}{cccc}1 &-ucos\ v\\0 &-usin\ v\end{array}\right|}{J}=\frac{sin\ v}{e^u(sin\ v-cos\ v)+1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial u}{\partial y}=-\frac{\frac{\partial(F, \ G)}{\partial(y, \ v)}}{J}=-\frac{\left|\begin{array}{cccc}0 &-ucos\ v\\1 &-usin\ v\end{array}\right|}{J}=\frac{-cos\ v}{e^u(sin\ v-cos\ v)+1},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial x}=-\frac{\frac{\partial(F, \ G)}{\partial(u, \ x)}}{J}=-\frac{\left|\begin{array}{cccc}-e^u-sin\ v &1\\-e^u+cos\ v &0\end{array}\right|}{J}=\frac{cos\ v-e^u}{u[e^u(sin\ v-cos\ v)+1]},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial v}{\partial y}=-\frac{\frac{\partial(F, \ G)}{\partial(u, \ y)}}{J}=-\frac{\left|\begin{array}{cccc}-e^u-sin\ v &0\\-e^u+cos\ v &1\end{array}\right|}{J}=\frac{sin\ v+e^u}{u[e^u(sin\ v-cos\ v)+1]}. & \end{aligned}​  (1) 对两方程两端对x求导,得⎩⎨⎧​dxdz​=2x+2ydxdy​,2x+4ydxdy​+6zdxdz​=0.​,整理得⎩⎨⎧​2ydxdy​−dxdz​=−2x,2ydxdy​+3zdxdz​=−x.​,        当D=∣∣​2y2y​−13z​∣∣​=6yz+2y=0时,解方程组得dxdy​=D∣∣​−2x−x​−13z​∣∣​​=6yz+2y−6xz−x​=2y(3z+1)−x(6z+1)​,        dxdz​=D∣∣​2y2y​−2x−x​∣∣​​=6yz+2y2xy​=3z+1x​.  (2) 方程组确定两个一元隐函数:x=x(z)和y=y(z),对方程两端对z求导,整理得⎩⎨⎧​dzdx​+dzdy​=−1,2xdzdx​+2ydzdy​=−2z.​,        当D=∣∣​12x​12y​∣∣​=2(y−x)=0时,解方程组得dzdx​=D∣∣​−1−2z​12y​∣∣​​=2(y−x)−2y+2z​=x−yy−z​,        dzdy​=D∣∣​12x​−1−2z​∣∣​​=2(y−x)−2z+2x​=x−yz−x​.  (3) 方程组确定两个二元隐函数:u=u(x, y),v=v(x, y),分别对方程两端对x求偏导数,        得⎩⎨⎧​∂x∂u​=f1′​⋅(u+x∂x∂u​)+f2′​⋅∂x∂v​,∂x∂v​=g1′​⋅(∂x∂u​−1)+2g2′​yv⋅∂x∂v​.​,整理得⎩⎨⎧​(xf1′​−1)∂x∂u​+f2′​∂x∂v​=−uf1′​,g1′​∂x∂u​+(2yvg2′​−1)∂x∂v​=g1′​.​,        当D=∣∣​xf1′​−1g1′​​f2′​2yvg2′​−1​∣∣​=(xf1′​−1)(2yvg2′​−1)−f2′​g1′​=0时,解方程组得        ∂x∂u​=D∣∣​−uf1′​g1′​​f2′​2yvg2′​−1​∣∣​​=(xf1′​−1)(2yvg2′​−1)−f2′​g1′​−uf1′​(2yvg2′​−1)−f2′​g1′​​,        ∂x∂v​=D∣∣​xf1′​−1g1′​​−uf1′​g1′​​∣∣​​=(xf1′​−1)(2yvg2′​−1)−f2′​g1′​g1′​(xf1′​+uf1′​−1)​.  (4) 方程组确定的两个二元隐函数u=u(x, y),v=v(x, y)是已知函数的反函数,        令F(x, y, u, v)=x−eu−usin v,G(x, y, u, v)=y−eu+ucos v,        则Fx​=1,Fy​=0,Fu​=−eu−sin v,Fv​=−ucos v,Gx​=0,Gy​=1,Gu​=−eu+cos v,Gv​=−usin v,        当J=∂(u, v)∂(F, G)​=∣∣​−eu−sin v−eu+cos v​−ucos v−usin v​∣∣​=ueu(sin v−cos v)+u=0时,由隐函数求导公式得        ∂x∂u​=−J∂(x, v)∂(F, G)​​=−J∣∣​10​−ucos v−usin v​∣∣​​=eu(sin v−cos v)+1sin v​,        ∂y∂u​=−J∂(y, v)∂(F, G)​​=−J∣∣​01​−ucos v−usin v​∣∣​​=eu(sin v−cos v)+1−cos v​,        ∂x∂v​=−J∂(u, x)∂(F, G)​​=−J∣∣​−eu−sin v−eu+cos v​10​∣∣​​=u[eu(sin v−cos v)+1]cos v−eu​,        ∂y∂v​=−J∂(u, y)∂(F, G)​​=−J∣∣​−eu−sin v−eu+cos v​01​∣∣​​=u[eu(sin v−cos v)+1]sin v+eu​.​​


11.设y=f(x,t),而t=t(x,y)是由方程F(x,y,t)=0所确定的函数,其中f,F都具有一阶连续偏导数,试证明dydx=∂f∂x∂F∂t−∂f∂t∂F∂x∂f∂t∂F∂y+∂F∂t.\begin{aligned}&11. \ 设y=f(x, \ t),而t=t(x, \ y)是由方程F(x, \ y, \ t)=0所确定的函数,其中f,F都具有一阶连续偏导数,\\\\&\ \ \ \ \ \ 试证明\frac{dy}{dx}=\frac{\frac{\partial f}{\partial x}\frac{\partial F}{\partial t}-\frac{\partial f}{\partial t}\frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t}\frac{\partial F}{\partial y}+\frac{\partial F}{\partial t}}.&\end{aligned}​11. 设y=f(x, t),而t=t(x, y)是由方程F(x, y, t)=0所确定的函数,其中f,F都具有一阶连续偏导数,      试证明dxdy​=∂t∂f​∂y∂F​+∂t∂F​∂x∂f​∂t∂F​−∂t∂f​∂x∂F​​.​​

解:

由方程组{y=f(x,t),F(x,y,t)=0可确定两个一元隐函数y=y(x),t=t(x),分别对两个方程两端对x求导,得{dydx=∂f∂x+∂f∂t⋅dtdx,∂F∂x+∂F∂y⋅dydx+∂F∂t⋅dtdx=0.,整理得{dydx−∂f∂t⋅dtdx=∂f∂x,∂F∂y⋅dydx+∂F∂t⋅dtdx=−∂F∂x.,当D=∣1−∂f∂t∂F∂y∂F∂t∣=∂F∂t+∂f∂t⋅∂F∂y≠0时,解方程组得dydx=∣∂f∂x−∂f∂t−∂F∂x∂F∂t∣D=∂f∂x⋅∂F∂t−∂f∂t⋅∂F∂x∂F∂t+∂f∂t⋅∂F∂y\begin{aligned} &\ \ 由方程组\begin{cases}y=f(x, \ t),\\\\F(x, \ y, \ t)=0\end{cases}可确定两个一元隐函数y=y(x),t=t(x),分别对两个方程两端对x求导,\\\\ &\ \ 得\begin{cases}\frac{dy}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial t}\cdot \frac{dt}{dx},\\\\\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\cdot \frac{dy}{dx}+\frac{\partial F}{\partial t}\cdot \frac{dt}{dx}=0.\end{cases},整理得\begin{cases}\frac{dy}{dx}-\frac{\partial f}{\partial t}\cdot \frac{dt}{dx}=\frac{\partial f}{\partial x},\\\\\frac{\partial F}{\partial y}\cdot \frac{dy}{dx}+\frac{\partial F}{\partial t}\cdot \frac{dt}{dx}=-\frac{\partial F}{\partial x}.\end{cases},\\\\ &\ \ 当D=\left|\begin{array}{cccc}1 &-\frac{\partial f}{\partial t}\\ \\\frac{\partial F}{\partial y} &\frac{\partial F}{\partial t}\end{array}\right|=\frac{\partial F}{\partial t}+\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial y} \neq 0时,解方程组得\\\\ &\ \ \frac{dy}{dx}=\frac{\left|\begin{array}{cccc}\frac{\partial f}{\partial x} &-\frac{\partial f}{\partial t}\\ \\-\frac{\partial F}{\partial x} &\frac{\partial F}{\partial t}\end{array}\right|}{D}=\frac{\frac{\partial f}{\partial x}\cdot \frac{\partial F}{\partial t}-\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial x}}{\frac{\partial F}{\partial t}+\frac{\partial f}{\partial t}\cdot \frac{\partial F}{\partial y}} & \end{aligned}​  由方程组⎩⎨⎧​y=f(x, t),F(x, y, t)=0​可确定两个一元隐函数y=y(x),t=t(x),分别对两个方程两端对x求导,  得⎩⎨⎧​dxdy​=∂x∂f​+∂t∂f​⋅dxdt​,∂x∂F​+∂y∂F​⋅dxdy​+∂t∂F​⋅dxdt​=0.​,整理得⎩⎨⎧​dxdy​−∂t∂f​⋅dxdt​=∂x∂f​,∂y∂F​⋅dxdy​+∂t∂F​⋅dxdt​=−∂x∂F​.​,  当D=∣∣​1∂y∂F​​−∂t∂f​∂t∂F​​∣∣​=∂t∂F​+∂t∂f​⋅∂y∂F​=0时,解方程组得  dxdy​=D∣∣​∂x∂f​−∂x∂F​​−∂t∂f​∂t∂F​​∣∣​​=∂t∂F​+∂t∂f​⋅∂y∂F​∂x∂f​⋅∂t∂F​−∂t∂f​⋅∂x∂F​​​​

高等数学(第七版)同济大学 习题9-5 个人解答相关推荐

  1. 《高等数学》 第七版 同济大学

    <高等数学> 第七版 同济大学 上册 第一章 函数与极限 第一节 映射与函数 一 映射 映射概念 法则 像 原像 定义域 值域 构成映射的三要素 满射[映射] 单射 双射[一一映射] 逆映 ...

  2. 高等数学第七版-习题解答:总复习3

    习题解答:总复习3 18*. 已知f′′(x)f''(x)f′′(x)存在,证明 lim⁡x→x0f(x0+h)+f(x0−h)−2f(x0)h2=f′′(x0)\lim_{x \rightarrow ...

  3. 【课后习题】高等数学第七版下第十二章 无穷级数 第二节 常数项级数的审敛法

    习题12-2 1. 用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 1+13+15+⋯+1(2n−1)+⋯1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac ...

  4. 【课后习题】高等数学第七版上第三章 微分中值定理与导数的应用 第二节 洛必达法则

    习题3-2 1. 用洛必达法则求下列极限: (1) lim⁡x→0ln⁡(1+x)x\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}limx→0​xln(1+x) ...

  5. 【课后习题】高等数学第七版上第一章 函数与极限 第六节 极限存在准则 两个重要极限

    习题1-6 1. 计算下列极限: (1) lim⁡x→0sin⁡ωxx\lim _{x \rightarrow 0} \frac{\sin \omega x}{x}limx→0​xsinωx​; (2 ...

  6. 【课后习题】高等数学第七版下第九章 多元函数微分法及其应用 第九节 二元函数的泰勒公式

    习题9-9 1. 求函数 f(x,y)=2x2−xy−y2−6x−3y+5f(x, y)=2 x^2-x y-y^2-6 x-3 y+5f(x,y)=2x2−xy−y2−6x−3y+5 在点 (1,− ...

  7. 高等数学(上)(第七版 同济大学) 笔记 :函数

    第一章     函数与极限 第一节  映射与函数 二.函数 (1)函数是特殊的映射,只不过把X集合换成了实数R的子集,把集合Y换成了实数集合R. (2)分段函数是常见的函数. (3)函数的特性 有界性 ...

  8. 高等数学(上)(第七版 同济大学) 笔记 :映射

    第一章     函数与极限 第一节  映射与函数 一.映射 1.定义:两个非空集合X,Y,存在法则 f,使X中每个元素 x 按照法则 f 都有唯一确定的 y 与之对应,那么 f 称为从X到Y的映射, ...

  9. 计算机网络谢希仁第七版课后习题答案(第四章)

    4-1 网络层向上提供的服务有哪两种?是比较其优缺点. 网络层向运输层提供 "面向连接"虚电路(Virtual Circuit)服务或"无连接"数据报服务前者预 ...

  10. 《计算机网络》学习笔记----第七版课后习题参考答案 第四章

    1.网络层向上提供的服务有哪两种?是比较其优缺点.网络层向运输层提供 "面向连接"虚电路(Virtual Circuit)服务或"无连接"数据报服务前者预约了双 ...

最新文章

  1. wxWidgets:wxCollapsiblePane 示例
  2. 横流式冷却塔计算风量_研讨丨卓展标准高效制冷机房技术之影响冷却塔效率的几个因素...
  3. TPT:中科院等提出用于VideoQA的跨模态交互时间金字塔Transformer
  4. 面向 Android 软件开发套件(SDK)的 x86 Android* 系统映像许可协议
  5. idea中spark项目Scala语言读取properties文件
  6. Always On 集群监听创建失败问题
  7. openssl学习笔记--CA及https网站证书配置
  8. AppCan开发者资料分享(定期更新)
  9. 【语音分离】基于matlab FastICA语音信号采集+混合+分离【含Matlab源码 008期】
  10. 洛谷试炼场 普及常见模板
  11. 【村长的刷题手册-1】LeetCode刷题笔记,不断总结继续出发
  12. (32)【文件下载漏洞专题】Filedownload原理、漏洞出现、危害、漏洞利用……
  13. 浏览器汇总、可信浏览器
  14. 英语六级试卷软件测试,背单词软件_2018年12月英语六级考试真题测试(11)含答案_沪江英语...
  15. 网络编程(基于socket接口技术的进程间通信)接上一篇文章补充
  16. JPEG图像压缩和解压缩操作
  17. MATLAB积分方法
  18. SpringBoot企业级开发
  19. python 写的一些ctf脚本
  20. ZZULIOJ1095: 时间间隔(函数专题)

热门文章

  1. 各种法则,各种效应,哪怕你是程序员,你也应该需要知道
  2. 一个空格引发的销售订单中“物料未对*销售组织语言定义”问题
  3. html h1 不自动加粗,HTML中页面编辑打印,字体不统一打印无法加粗的解决方法
  4. bem什么意思_BEM是什么意思中文翻译
  5. 10进制转换为其他进制(初学)
  6. 第21关 计算自然数的和
  7. 利用Nginx架设Http代理服务器
  8. 全面禁售?这是最后通牒,苹果已无力挣扎
  9. Simotion应用与组网十八 增量编码器
  10. pyinstaller连同ico图标打包exe