一阶微分公式的存在性

若:
n∈N,n≥1,n \in \mathbb N, n \ge 1,
x=(x1,⋯xn)⊺ \mathbf{x} = (x_1, \cdots x _n)^\intercal
f(x),g(x)f( \mathbf{x} ), g( \mathbf{x}) 可微,
则: kf,f+g,f⋅g,fg(g(x)≠0)kf, f + g, f \cdot g, \frac {f} {g} (g( \mathbf{x}) \ne 0) 都可微。

证明:

定义内积: ∀x=(x1,⋯xn)⊺,∀y=(y1,⋯yn)⊺,\forall {\mathbf{x}} = (x_1, \cdots x _n)^\intercal, \forall {\mathbf{y}} = (y_1, \cdots y _n)^\intercal,
⟨x,y⟩=∑ni=1xiyi \langle {\mathbf{x}}, {\mathbf{y}} \rangle = \sum _{i = 1}^{n} x_i y_i
令 a=(∂f(x)∂x1,⋯,∂f(x)∂xn),b=(∂g(x)∂x1,⋯,∂g(x)∂xn),\mathbf{a} = \left (\dfrac{\partial f(\mathbf{x})}{\partial x_1}, \cdots, \dfrac{\partial f(\mathbf{x})}{\partial x_n} \right ), \mathbf{b} = \left (\dfrac{\partial g(\mathbf{x})}{\partial x_1}, \cdots, \dfrac{\partial g(\mathbf{x})}{\partial x_n} \right ),
Δx=(Δx1,⋯,Δxn)⊺,\mathbf{\Delta x} = (\mathbf{\Delta x}_1, \cdots, \mathbf{\Delta x}_n)^\intercal,
r=⟨Δx,Δx⟩−−−−−−−−√,r = \sqrt {\langle \mathbf{\Delta x}, \mathbf{\Delta x} \rangle} ,
则:
f(x+Δx)−f(x)=⟨a,Δx⟩+rα,limΔx→0α=0,f(\mathbf{x} + \mathbf{\Delta x}) - f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{\Delta x} \rangle + r \alpha, \lim _{\mathbf{\Delta x} \rightarrow \mathbf{0}} \alpha = 0,
g(x+Δx)−g(x)=⟨b,Δx⟩+rβ,limΔx→0β=0,g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x}) = \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \beta, \lim _{\mathbf{\Delta x} \rightarrow \mathbf{0}} \beta = 0,
于是:

  1. kf(x+Δx)−kf(x)=k[f(x+Δx)−f(x)]k f(\mathbf{x} + \mathbf{\Delta x}) - k f(x) = k \left [ f(\mathbf{x} + \mathbf{\Delta x}) - f(x) \right ]
    =k(⟨a,Δx⟩+rα) = k ( \langle \mathbf{a}, \mathbf{\Delta x} \rangle + r \alpha )
    =⟨ka,Δx⟩+r⋅kα = \langle k \mathbf{a}, \mathbf{\Delta x} \rangle + r \cdot k \alpha
    =⟨ka,Δx⟩+r⋅o(1)= \langle k \mathbf{a}, \mathbf{\Delta x} \rangle + r \cdot o(1)
  2. [f(x+Δx)+g(x+Δx)]−[f(x)+g(x)]\left [f(\mathbf{x} + \mathbf{\Delta x}) + g(\mathbf{x} + \mathbf{\Delta x})\right ] - \left [f(\mathbf{x}) + g(\mathbf{x})\right ]
    =(f(x+Δx)−f(x))+(g(x+Δx)−g(x))= (f(\mathbf{x} + \mathbf{\Delta x}) - f(\mathbf{x}) ) + (g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x}))
    =⟨a,Δx⟩+rα+⟨b,Δx⟩+rβ= \langle \mathbf{a}, \mathbf{\Delta x} \rangle + r \alpha + \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \beta
    =⟨a+b,Δx⟩+r(α+β)= \langle \mathbf{a + b}, \mathbf{\Delta x} \rangle + r (\alpha + \beta)
    =⟨a+b,Δx⟩+r⋅o(1)= \langle \mathbf{a + b}, \mathbf{\Delta x} \rangle + r \cdot o(1)
  3. f(x+Δx)⋅g(x+Δx)−f(x)⋅g(x)f(\mathbf{x} + \mathbf{\Delta x}) \cdot g(\mathbf{x} + \mathbf{\Delta x}) - f(\mathbf{x}) \cdot g(\mathbf{x})
    =[f(x+Δx)−f(x)]⋅g(x+Δx)+f(x)⋅[g(x+Δx)−g(x)]= \left [f(\mathbf{x} + \mathbf{\Delta x}) - f(\mathbf {x})\right ] \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot \left [g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x})\right ]
    =(⟨a,Δx⟩+rα)⋅g(x+Δx)+f(x)⋅(⟨b,Δx⟩+rβ)= (\langle \mathbf{a}, \mathbf{\Delta x} \rangle + r \alpha) \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot ( \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \beta)
    =⟨a,Δx⟩⋅g(x+Δx)+f(x)⋅⟨b,Δx⟩+rα⋅g(x+Δx)+rβf(x)= \langle \mathbf{a}, \mathbf{\Delta x} \rangle \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \alpha \cdot g(\mathbf{x} + \mathbf{\Delta x}) + r \beta f(\mathbf{x})
    =⟨a,Δx⟩⋅g(x+Δx)+f(x)⋅⟨b,Δx⟩+r[α⋅g(x+Δx)+βf(x)]= \langle \mathbf{a}, \mathbf{\Delta x} \rangle \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \left [ \alpha \cdot g(\mathbf{x} + \mathbf{\Delta x}) +\beta f(\mathbf{x}) \right ]
    =⟨a,Δx⟩⋅g(x+Δx)+f(x)⋅⟨b,Δx⟩+r⋅o(1)= \langle \mathbf{a}, \mathbf{\Delta x} \rangle \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot \langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \cdot o(1)
    =⟨a⋅g(x+Δx)+f(x)⋅b,Δx⟩+r⋅o(1)= \langle \mathbf{a} \cdot g(\mathbf{x} + \mathbf{\Delta x}) + f(\mathbf{x}) \cdot \mathbf{b} , \mathbf{\Delta x} \rangle + r \cdot o(1)
    =⟨a⋅g(x)+f(x)⋅b,Δx⟩+r⋅o(1)+⟨a⋅[g(x+Δx)−g(x)],Δx⟩= \langle \mathbf{a} \cdot g(\mathbf{x}) + f(\mathbf{x}) \cdot \mathbf{b} , \mathbf{\Delta x} \rangle + r \cdot o(1) + \langle \mathbf{a} \cdot \left [ g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x}) \right ], \mathbf{\Delta x} \rangle

    ⟨a⋅[g(x+Δx)−g(x)],Δx⟩ \langle \mathbf{a} \cdot \left [ g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x}) \right ], \mathbf{\Delta x} \rangle
    =[g(x+Δx)−g(x)]⋅⟨a,Δx⟩= \left [ g(\mathbf{x} + \mathbf{\Delta x}) - g(\mathbf{x}) \right ] \cdot \langle \mathbf{a} , \mathbf{\Delta x} \rangle
    =⟨a,Δx⟩⋅o(1)= \langle \mathbf{a} , \mathbf{\Delta x} \rangle \cdot o(1)
    =1r⋅⟨a,Δx⟩⋅r⋅o(1)= \frac {1 }{ r} \cdot \langle \mathbf{a} , \mathbf{\Delta x} \rangle \cdot r \cdot o(1)
    (注: |⟨a,Δx⟩|≤⟨a,a⟩⟨Δx,Δx⟩−−−−−−−−−−−−√=r⋅⟨a,a⟩−−−−−√| \langle \mathbf{a}, \mathbf{\Delta x} \rangle | \le \sqrt {\langle \mathbf{a}, \mathbf {a} \rangle \langle \mathbf{\Delta x}, \mathbf {\mathbf{\Delta x}} \rangle} = r \cdot \sqrt {\langle \mathbf{a}, \mathbf {a} \rangle } )
    =r⋅o(1)= r \cdot o(1)

  4. f(x+Δx)g(x+Δx)−f(x)g(x)\frac {f \left (\mathbf{x} + \mathbf{\Delta x}\right )}{g \left (\mathbf{x} + \mathbf{\Delta x}\right )} - \frac {f \left (\mathbf{x}\right )}{g \left (\mathbf{x}\right )}
    =f(x+Δx)g(x)−f(x)g(x+Δx)g(x+Δx)g(x)= \frac {f \left (\mathbf{x} + \mathbf{\Delta x}\right )g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right )g \left (\mathbf{x} + \mathbf{\Delta x}\right )}{g \left (\mathbf{x} + \mathbf{\Delta x}\right ) g \left (\mathbf{x}\right )}
    =1[g(x)]2⋅g(x)g(x+Δx)⋅{[f(x+Δx)−f(x)]g(x)−f(x)[g(x+Δx)−g(x)]}= \frac{1}{{ \left [g \left (\mathbf{x}\right )\right ]}^2} \cdot \frac{g \left (\mathbf{x}\right )}{g \left (\mathbf{x} + \mathbf{\Delta x}\right )} \cdot \left \{ \left [f \left (\mathbf{x} + \mathbf{\Delta x}\right ) - f \left (\mathbf{x}\right )\right ] g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \left [g \left (\mathbf{x} + \mathbf{\Delta x}\right ) - g \left (\mathbf{x}\right )\right ] \right \}
    =1[g(x)]2⋅[1+o(1)]⋅[(⟨a,Δx⟩+rα)g(x)−f(x)(⟨b,Δx⟩+rβ)]= \frac{1}{{ \left [g \left (\mathbf{x}\right )\right ]}^2} \cdot \left [ 1 + o \left (1\right )\right ] \cdot \left [ \left ( \langle \mathbf{a}, \mathbf{\Delta x} \rangle + r \alpha \right ) g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \left (\langle \mathbf{b}, \mathbf{\Delta x} \rangle + r \beta\right )\right ]
    =[1[g(x)]2+o(1)]⋅{⟨a⋅g(x)−f(x)⋅b,Δx⟩+r⋅[αg(x)−βf(x)]}= \left [ \frac{1}{{ \left [g \left (\mathbf{x}\right )\right ]}^2} + o \left (1\right )\right ] \cdot \left \{ \langle \mathbf{a} \cdot g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \cdot \mathbf{b}, \mathbf{\Delta x} \rangle + r \cdot \left [ \alpha g \left (\mathbf{x}\right ) - \beta f \left (\mathbf{x}\right )\right ] \right \}
    =⟨1[g(x)]2⋅[a⋅g(x)−f(x)⋅b],Δx⟩+r⋅o(1)+r⋅o(1)⋅[1r⋅⟨a⋅g(x)−f(x)⋅b,Δx⟩+o(1)]= \langle \frac{1}{{ \left [g \left (\mathbf{x}\right )\right ]}^2} \cdot \left [ \mathbf{a} \cdot g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \cdot \mathbf{b}\right ] , \mathbf{\Delta x} \rangle + r \cdot o \left (1\right ) + r \cdot o \left (1\right ) \cdot \left [\frac{1}{r} \cdot \langle \mathbf{a} \cdot g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \cdot \mathbf{b}, \mathbf{\Delta x} \rangle + o \left (1\right )\right ]
    =⟨1[g(x)]2⋅[a⋅g(x)−f(x)⋅b],Δx⟩+r⋅o(1)= \langle \frac{1}{{ \left [g \left (\mathbf{x}\right )\right ]}^2} \cdot \left [ \mathbf{a} \cdot g \left (\mathbf{x}\right ) - f \left (\mathbf{x}\right ) \cdot \mathbf{b}\right ] , \mathbf{\Delta x} \rangle + r \cdot o \left (1\right )

一阶微分公式

  1. d(kf)\mathrm{d} \left (k f \right )
    =∑ni=1∂(kf)∂xidxi = \sum _{i = 1}^ {n} \frac {\partial \left (kf \right )}{\partial x_i} \mathrm{d} x_i
    =∑ni=1k∂(f)∂xidxi = \sum _{i = 1}^ {n} k \frac {\partial \left (f \right )}{\partial x_i} \mathrm{d} x_i
    =k∑ni=1∂(f)∂xidxi = k \sum _{i = 1}^ {n} \frac {\partial \left (f \right )}{\partial x_i} \mathrm{d} x_i
    =kdf = k \mathrm{d} f
  2. d(f+g)\mathrm{d} \left (f + g\right )
    =∑ni=1∂(f+g)∂xidxi= \sum _{i = 1}^ {n} \frac {\partial \left (f + g\right )}{\partial x_i} \mathrm{d} x_i
    =∑ni=1∂f∂xidxi+∑ni=1∂g∂xidxi=df+dg= \sum _{i = 1}^ {n} \frac {\partial f}{\partial x_i} \mathrm{d} x_i + \sum _{i = 1}^ {n} \frac {\partial g}{\partial x_i} \mathrm{d} x_i = \mathrm{d} f + \mathrm{d} g
  3. d(f⋅g)\mathrm{d} \left (f \cdot g\right )
    =∑ni=1∂(f⋅g)∂xidxi= \sum _{i = 1}^ {n} \frac {\partial \left (f \cdot g\right )}{\partial x_i} \mathrm{d} x_i
    =∑ni=1(∂f∂xi⋅g+f⋅∂g∂xi)dxi= \sum _{i = 1}^ {n} \left (\frac {\partial f}{\partial x_i} \cdot g + f \cdot \frac {\partial g}{\partial x_i}\right ) \mathrm{d} x_i
    =∑ni=1(∂f∂xidxi⋅g+f⋅∂g∂xidxi)= \sum _{i = 1}^ {n} \left (\frac {\partial f}{\partial x_i} \mathrm{d} x_i \cdot g + f \cdot \frac {\partial g}{\partial x_i} \mathrm{d} x_i\right )
    =df⋅g+f⋅dg= \mathrm{d} f \cdot g + f \cdot \mathrm{d} g
  4. dfg\mathrm{d} \frac {f}{g}
    =∑ni=1∂fg∂xidxi= \sum _{i = 1}^ {n} \frac {\partial \frac {f}{g}}{\partial x_i} \mathrm{d} x_i
    =∑ni=11g2(∂f∂xi⋅g−f⋅∂g∂xi)dxi= \sum _{i = 1}^ {n} \frac{1}{g^2} \left (\frac {\partial f}{\partial x_i} \cdot g - f \cdot \frac {\partial g}{\partial x_i}\right ) \mathrm{d} x_i
    =1g2∑ni=1(∂f∂xi⋅g−f⋅∂g∂xi)dxi= \frac{1}{g^2} \sum _{i = 1}^ {n} \left (\frac {\partial f}{\partial x_i} \cdot g - f \cdot \frac {\partial g}{\partial x_i}\right ) \mathrm{d} x_i
    =1g2∑ni=1(∂f∂xidxi⋅g−f⋅∂g∂xidxi)= \frac{1}{g^2} \sum _{i = 1}^ {n} \left (\frac {\partial f}{\partial x_i}\mathrm{d} x_i \cdot g - f \cdot \frac {\partial g}{\partial x_i} \mathrm{d} x_i\right )
    =df⋅g−f⋅dgg2 = \frac {\mathrm{d} f \cdot g - f \cdot \mathrm{d} g} {g^2}

推论

定义 f′(x)=(∂f(x)xj)1×n,g′(x)=(∂g(x)xj)1×n,f'(\mathbf{x}) = \left ( \dfrac {\partial f(\mathbf{x})} {x_j} \right )_ { 1 \times n }, g'(\mathbf{x}) = \left ( \dfrac {\partial g(\mathbf{x})} {x_j} \right )_ { 1 \times n }, 则

  1. (kf)′(x)=kf′(x)(kf) '(\mathbf{x}) = k f'(\mathbf{x})
  2. (f+g)′(x)=f′(x)+g′(x)(f + g) '(\mathbf{x}) = f'(\mathbf{x}) + g'(\mathbf{x})
  3. (f⋅g)′(x)=f′(x)g(x)+f(x)g′(x)(f \cdot g) '(\mathbf{x}) = f'(\mathbf{x}) g(\mathbf{x}) + f(\mathbf{x}) g'(\mathbf{x})
  4. (fg)′(x)=f′(x)⋅g(x)−f(x)⋅g′(x)g(x)2\left ( \frac {f}{g} \right) '(\mathbf{x}) = \frac { f' (\mathbf{x}) \cdot g (\mathbf{x}) - f (\mathbf{x})\cdot g ' (\mathbf{x})} {g (\mathbf{x})^2}

多元函数四则运算的一阶微分公式的存在性与性质相关推荐

  1. 图像处理之一阶微分应用

    图像处理之一阶微分应用 一:数学背景 首先看一下一维的微分公式Δf = f(x+1) – f(x), 对于一幅二维的数字图像f(x,y)而言,需要完 成XY两个方向上的微分,所以有如下的公式: 分别对 ...

  2. 第二十三讲 解一阶微分方程组

    例题 {u1′=−u1+2u2u1′=u1−2u2\left\{\begin{matrix}{u_{1}}'=-u_{1}+2u_{2}\\ {u_{1}}'=u_{1}-2u_{2}\end{mat ...

  3. java图像处理之拉普拉斯锐化和一阶微分梯度锐化

    拉普拉斯是使用二阶微分锐化图像,以3*3滤波器中心像素与上下左右像素计算差值,计算公式为: 一阶微分梯度锐化,以3*3滤波器中心像素上方三个像素之和减去下方三个像素之和的绝对值,与左边三个像素减去右边 ...

  4. Matlab中如何对曲线进行微分,Excel 微分(怎么用excel做一阶微分)

    怎么用excel做一阶微分 PH值(设为A列),另数据V值(设为B列),再新建一列数据,先自定算公式 △PH/△V,具体应该是在C列C1输入 =(B2-B1)/(V2-V1),按下右下角" ...

  5. 数字图像处理学习笔记4:图像增强之空间滤波2(一阶微分锐化滤波(梯度),二阶微分锐化(拉普拉斯),非锐化掩蔽)

    文章目录 前言 一.一阶微分和二阶微分的定义 二.一阶微分锐化滤波:梯度 1.梯度 2.sobel算子及MATLAB代码 二.二阶微分锐化滤波:拉普拉斯算子 1.拉普拉斯算子 2.拉普拉斯算子MATL ...

  6. matlab求解一阶微分方程组

    在matlab里运用ode计算一阶微分方程组 可以根据需求选择合适的ode 举个例 程序为:function dy = odefun(t,y) dy = zeros(3,1); % 一个列向量 dy( ...

  7. 二阶偏微分方程组 龙格库塔法_1、经典四阶龙格库塔法解一阶微分方程组

    1.经典四阶龙格库塔法解一阶微分方程组 陕 西 科 技 大 学 数值计算课程设计任务书 理学院信息与计算科学/应用数学专业信息08/数学08 班级 学生: 题目:典型数值算法的C++语言程序设计 课程 ...

  8. 数字图像处理:(2)一阶微分和二阶微分在数字图像处理中的应用

    1.微分定义 2.微分性质 微分是对函数局部变化率的一种表示. 在图像处理中有基于一阶微分和二阶微分的锐化空间滤波器(图像锐化是增强图像的突变部分),其实一阶微分和二阶微分算子都可以得到图像的边缘,只 ...

  9. 莱布尼兹乘积微分公式证明纠错

    莱布尼兹乘积微分公式证明纠错 假定u与v是一元实函数,莱布尼兹微分公式成立: d(uv)= vdu + udv 证明: (u+△u)(v+△v)- uv = udv+ v△u + △u△v等式两边除以 ...

  10. 数字图像的一阶微分和二阶微分

    数字图像的微分也就是数字函数的微分有很多不用的定义,但是任何定义都必须保证一下几点: 一阶微分:(1)在恒定灰度区域的微分值为零: (2)在灰度台阶或斜坡处微分值非零: (3)沿着斜坡的微分值非零: ...

最新文章

  1. 18.2 keepalived介绍
  2. OKR和KPI有什么区别?
  3. 世纪回眸:纪念晶体管的发明和由此引出的启发
  4. 搜狗发布全球首个手语AI合成主播,用技术造福听障人群
  5. 【NOIP】提高组2015 神奇的幻方
  6. gradle build running很慢
  7. PUSH进栈指令和POP出栈指令
  8. 10个节省时间和改善工作流的Git技巧
  9. Podfile grammar
  10. Struts2一对多配置
  11. python安装django模块_python中安装django模块的方法
  12. mysql常驻内存_MySQL的内存和相关问题排查
  13. 工厂模式 java场景_研磨设计模式之简单工厂模式(场景问题)
  14. 原子操作和杀死goroutine两种方法,解决多协程调用同一个函数的问题
  15. Fatal error: Cannot redeclare db_connect() 错误
  16. Sharepoint 2010 解决DFWP - Unable to display this Web Part 的问题
  17. 英文课程名称 c语言程序设计,课程名称C语言程序设计I.doc
  18. mysql函数返回结果集_MySQL自定义函数
  19. [USACO题库]1.2.3 Name That Number命名那个数字
  20. edm邮件直投_EDM邮件直投专家_EDM邮件直投专家官方版下载 - 邮件处理 - 绿软家园...

热门文章

  1. You do not have permission to get URL ‘/’ from this server解决方案
  2. web开发必备的几个软件
  3. 深职院c语言考试试卷,深职院第1章C语言基础与入门教学.ppt
  4. java 异常_23、Java异常分类
  5. kill -9 杀不死的进程处理办法
  6. nyoj461 Fibonacci数列(4)解通项公式
  7. erp服务器性能测试,浪潮PS-ERP压力测试报告--AMD单路服务器
  8. python模拟鼠标点击linux_Python模拟实现Linux系统unix2dos功能
  9. mysql将表按某一列排序更新_mysql根据时间排序,更新某字段值
  10. oracle9.2.0.7,Oracle9.2.0.1升级到9.2.0.7