文章目录

  • Preface
  • 1 Linear Spaces
    • 1.1 linear space
      • Examples
    • 1.2 Subsets of a linear space
      • Notation
    • 1.3 Subspaces and Convex Sets
      • Subspaces
      • linear hull
        • proposition
        • Other Definition
      • Convex Sets
        • Convex hull
          • proposition
        • Remark
    • 1.4 Quotient Space
      • equivalence relation
      • Definition
      • Proposition
      • Remark
    • 1.5 Direct Sums and Projections
      • Direct Sums
      • projection
    • 1.6 The Holder and Minkowski Inequalities
      • conjugate exponents and some Inequalities
      • Holder Inequalities
      • Minkowski Inequalities

Preface

参考摘录于FUNCTIONAL ANALYSIS NOTES——Mr. Andrew Pinchuck

1 Linear Spaces

1.1 linear space

A linear space over a field F\mathbb{F}F is a nonempty set XXX with two operations,F\mathbb{F}F denote either R\mathbb{R}R or C\mathbb{C}C
+:X×X→X(+: X \times X \rightarrow X \quad(+:X×X→X( called addition ),),), and

⋅\Large \cdot⋅   :F×X→X: \mathbb{F} \times X \rightarrow X \quad:F×X→X (called multiplication)
satisfying the following properties:

[1]x+y∈X[1] x+y \in X[1]x+y∈X whenever x,y∈Xx, y \in Xx,y∈X
[2] x+y=y+xx+y=y+xx+y=y+x for all x,y∈Xx, y \in Xx,y∈X
[3] There exists a unique element in X,X,X, denoted by 0 , such that x+0=0+x=xx+0=0+x=xx+0=0+x=x for all x∈Xx \in Xx∈X;
[4] Associated with each x∈Xx \in Xx∈X is a unique element in X,X,X, denoted by −x,-x,−x, such that x+(−x)=x+(-x)=x+(−x)= −x+x=0-x+x=0−x+x=0
[5] (x+y)+z=x+(y+z)(x+y)+z=x+(y+z)(x+y)+z=x+(y+z) for all x,y,z∈Xx, y, z \in Xx,y,z∈X

[6] α⋅x∈X\alpha \cdot x \in Xα⋅x∈X for all x∈Xx \in Xx∈X and for all α∈F\alpha \in \mathbb{F}α∈F
[7]α⋅(x+y)=α⋅x+α⋅y[7] \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y[7]α⋅(x+y)=α⋅x+α⋅y for all x,y∈Xx, y \in Xx,y∈X and all α∈F\alpha \in \mathbb{F}α∈F
[8](α+β)⋅x=α⋅x+β⋅x[8](\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x[8](α+β)⋅x=α⋅x+β⋅x for all x∈Xx \in Xx∈X and all α,β∈F\alpha, \beta \in \mathbb{F}α,β∈F
[9](αβ)⋅x=α⋅(β⋅x)[9](\alpha \beta) \cdot x=\alpha \cdot(\beta \cdot x)[9](αβ)⋅x=α⋅(β⋅x) for all x∈Xx \in Xx∈X and all α,β∈F\alpha, \beta \in \mathbb{F}α,β∈F
[10]1⋅x=x[10] 1 \cdot x=x[10]1⋅x=x for all x∈Xx \in Xx∈X
representation:(X,F,+,⋅)(X, \mathbb{F},+, \cdot)(X,F,+,⋅)

then a linear space is also called a vector space and its elements are called vectors

Examples

[1] Let X=C[a,b]={x:[a,b]→F∣xX=\mathcal{C}[a, b]=\{x:[a, b] \rightarrow \mathbb{F} \mid xX=C[a,b]={x:[a,b]→F∣x is continuous }. Define the operations of addition and scalar multiplication pointwise: For all x,y∈Xx, y \in Xx,y∈X and all α∈R,\alpha \in \mathbb{R},α∈R, define
(x+y)(t)=x(t)+y(t)and (α⋅x)(t)=αx(t)}for all t∈[a,b]\left.\begin{array}{ll} (x+y)(t) & =x(t)+y(t) \text { and } \\ (\alpha \cdot x)(t) & =\alpha x(t) \end{array}\right\} \text { for all } t \in[a, b] (x+y)(t)(α⋅x)(t)​=x(t)+y(t) and =αx(t)​} for all t∈[a,b]
Then C[a,b]\mathcal{C}[a, b]C[a,b] is a real vector space.

Sequence: Informally, a sequence in XXX is a list of numbers indexed by N.\mathbb{N} .N. Equivalently, a sequence in XXX is a function x:N→Xx: \mathbb{N} \rightarrow Xx:N→X given by n↦x(n)=xn.n \mapsto x(n)=x_{n} .n↦x(n)=xn​. We shall denote a sequence x1,x2,…x_{1}, x_{2}, \ldotsx1​,x2​,… by
x=(x1,x2,…)=(xn)1∞x=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{n}\right)_{1}^{\infty} x=(x1​,x2​,…)=(xn​)1∞​
[2] The sequence space s. Let s denote the set of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ of real or complex numbers. Define the operations of addition and scalar multiplication pointwise: For all x=x=x= (x1,x2,…),y=(y1,y2,…)∈s\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbf{s}(x1​,x2​,…),y=(y1​,y2​,…)∈s and all α∈F,\alpha \in \mathbb{F},α∈F, define
x+y=(x1+y1,x2+y2,…)α⋅x=(αx1,αx2,…)\begin{aligned} x+y &=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \\ \alpha \cdot x &=\left(\alpha x_{1}, \alpha x_{2}, \ldots\right) \end{aligned} x+yα⋅x​=(x1​+y1​,x2​+y2​,…)=(αx1​,αx2​,…)​
Then s\mathbf{s}s is a linear space over F\mathbb{F}F.

[3] The sequence space ℓ∞.\ell_{\infty} .ℓ∞​. Let ℓ∞=ℓ∞(N)\ell_{\infty}=\ell_{\infty}(\mathbb{N})ℓ∞​=ℓ∞​(N) denote the set of all bounded sequences of real or complex numbers. That is, all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ such that
sup⁡i∈N∣xi∣<∞\sup _{i \in \mathbb{N}}\left|x_{i}\right|<\infty i∈Nsup​∣xi​∣<∞
Define the operations of addition and scalar multiplication pointwise as in [2]. Then ℓ∞\ell_{\infty}ℓ∞​ is a linear space over F\mathbb{F}F.

[4] The sequence space ℓp=ℓp(N),1≤p<∞\ell_{p}=\ell_{p}(\mathbb{N}), \quad 1 \leq p<\inftyℓp​=ℓp​(N),1≤p<∞. Let ℓp\ell_{p}ℓp​ denote the set of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ of real or complex numbers satisfying the condition
∑i=1∞∣xi∣p<∞\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty i=1∑∞​∣xi​∣p<∞
Define the operations of addition and scalar multiplication pointwise: For all x=(xn),y=x=\left(x_{n}\right), y=x=(xn​),y= (yn)\left(y_{n}\right)(yn​) in ℓp\ell_{p}ℓp​ and all α∈F,\alpha \in \mathbb{F},α∈F, define
x+y=(x1+y1,x2+y2,…)α⋅x=(αx1,αx2,…)\begin{aligned} x+y &=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \\ \alpha \cdot x &=\left(\alpha x_{1}, \alpha x_{2}, \ldots\right) \end{aligned} x+yα⋅x​=(x1​+y1​,x2​+y2​,…)=(αx1​,αx2​,…)​
[5] The sequence space c=c(N)\mathbf{c}=\mathbf{c}(\mathbb{N})c=c(N). Let c\mathbf{c}c denote the set of all convergent sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ of real or complex numbers. That is, c\mathbf{c}c is the set of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ such that lim⁡n→∞xn\lim _{n \rightarrow \infty} x_{n}limn→∞​xn​ exists. Define the operations of addition and scalar multiplication pointwise as in [2]. Then c\mathbf{c}c is a linear space over F\mathbb{F}F.

[6] The sequence space c0=c0(N).\mathbf{c}_{0}=\mathbf{c}_{0}(\mathbb{N}) .c0​=c0​(N). Let c0\mathbf{c}_{0}c0​ denote the set of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ of real or complex numbers which converge to zero. That is, c0\mathbf{c}_{0}c0​ is the space of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ such that lim⁡n→∞xn=0.\lim _{n \rightarrow \infty} x_{n}=0 .limn→∞​xn​=0. Define the operations of addition and scalar multiplication pointwise as in example (3). Then c0\mathbf{c}_{0}c0​ is a linear space over F\mathbb{F}F.

[7] The sequence space ℓ0=ℓ0(N).\ell_{0}=\ell_{0}(\mathbb{N}) .ℓ0​=ℓ0​(N). Let ℓ0\ell_{0}ℓ0​ denote the set of all sequences x=(xn)1∞x=\left(x_{n}\right)_{1}^{\infty}x=(xn​)1∞​ of real or complex numbers such that xi=0x_{i}=0xi​=0 for all but finitely many indices iii. Define the operations of addition and scalar multiplication pointwise as in example (3). Then ℓ0\ell_{0}ℓ0​ is a linear space over F\mathbb{F}F.

1.2 Subsets of a linear space

Notation

Let XXX be a linear space over F,x∈X\mathbb{F}, x \in XF,x∈X and AAA and BBB subsets of XXX and λ∈F\lambda \in \mathbb{F}λ∈F. We shall denote by
x+A:={x+a:a∈A}A+B:={a+b:a∈A,b∈B}λA:={λa:a∈A}\begin{aligned} x+A &:=\{x+a: a \in A\} \\ A+B &:=\{a+b: a \in A, b \in B\} \\ \lambda A &:=\{\lambda a: a \in A\} \end{aligned} x+AA+BλA​:={x+a:a∈A}:={a+b:a∈A,b∈B}:={λa:a∈A}​

1.3 Subspaces and Convex Sets

Subspaces

A subset MMM of a linear space XXX is called a linear subspace of XXX if
(a) x+y∈Mx+y \in Mx+y∈M for all x,y∈M,x, y \in M,x,y∈M, and
(b) λx∈M\lambda x \in Mλx∈M for all x∈Mx \in Mx∈M and for all λ∈F\lambda \in \mathbb{F}λ∈F.
    Clearly, a subset MMM of a linear space XXX is a linear subspace if and only if M+M⊂MM+M \subset MM+M⊂M and λM⊂M\lambda M \subset MλM⊂M for all λ∈F\lambda \in \mathbb{F}λ∈F.

Then Every linear space XXX has at least two distinguished subspaces: M={0}M=\{0\}M={0} and M=XM=XM=X. These are called the improper subspaces of X.X .X. All other subspaces of XXX are called the proper subspaces.

linear hull

Let KKK be a subset of a linear space X.X .X. The linear hull of K,K,K, denoted by lin⁡(K)\operatorname{lin}(K)lin(K) or span⁡(K),\operatorname{span}(K),span(K), is the intersection of all linear subspaces of XXX that contain KKK.
    The linear hull of KKK is also called the linear subspace of XXX spanned (or generated) by KKK.
    It is easy to check that the intersection of a collection of linear subspaces of XXX is a linear subspace ofX.X .X. It therefore follows that the linear hull of a subset KKK of a linear space XXX is again a linear subspace of X.X .X.
     In fact, the linear hull of a subset KKK of a linear space XXX is the smallest linear subspace of XXX which contains KKK
(实际上,X的子集K的线性包是线性空间X的包含K的最小线性子空间)

proposition

Let KKK be a subset of a linear space X.X .X. Then the linear hull of KKK is the set of all finite linear combinations of elements of K.K .K. That is,
lin⁡(K)={∑j=1nλjxj∣x1,x2,…,xn∈K,λ1,λ2,…,λn∈F,n∈N}\operatorname{lin}(K)=\left\{\sum_{j=1}^{n} \lambda_{j} x_{j} \mid x_{1}, x_{2}, \ldots, x_{n} \in K, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{F}, n \in \mathbb{N}\right\} lin(K)={j=1∑n​λj​xj​∣x1​,x2​,…,xn​∈K,λ1​,λ2​,…,λn​∈F,n∈N}

Other Definition

[1]A subset KKK of a linear space XXX is said to be linearly independent if every finite subset {x1,x2,…,xn}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}{x1​,x2​,…,xn​} of KKK is linearly independent.

[2]If {x1,x2,…,xn}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}{x1​,x2​,…,xn​} is a linearly independent subset of XXX and X=lin⁡{x1,x2,…,xn},\bold {X=\operatorname{lin}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},}X=lin{x1​,x2​,…,xn​}, then XXX is said to have dimension n.n .n. In this case we say that {x1,x2,…,xn}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}{x1​,x2​,…,xn​} is a basis for the linear space X.X .X. If a linear space XXX does not have a finite basis, we say that it is infinitedimensional.

Convex Sets

Let KKK be a subset of a linear space X.X .X. We say that
(a) KKK is convex if λx+(1−λ)y∈K\lambda x+(1-\lambda) y \in Kλx+(1−λ)y∈K whenever x,y∈Kx, y \in Kx,y∈K and λ∈[0,1]\lambda \in[0,1]λ∈[0,1]
(b) KKK is balanced if λx∈K\lambda x \in Kλx∈K whenever x∈Kx \in Kx∈K and ∣λ∣≤1|\lambda| \leq 1∣λ∣≤1;
(c)KKK is absolutely convex if KKK is convex and balanced.

Convex hull

Let SSS be a subset of the linear space X.X .X. The convex hull of S,S,S, denoted co⁡(S),\operatorname{co}(S),co(S), is the intersection of all convex sets in XXX which contain SSS.

Since the intersection of convex sets is convex, it follows that co⁡(S)\operatorname{co}(S)co(S) is the smallest convex set which contains SSS.
(实际上,X子集S的凸包是X中包含S最小的凸包)

proposition

Let SSS be a nonempty subset of a linear space X.X .X. Then co⁡(S)\operatorname{co}(S)co(S) is the set of all convex combinations of elements of S.S .S. That is,
co⁡(S)={∑j=1nλjxj∣x1,x2,…,xn∈S,λj≥0∀j=1,2,…,n,∑j=1nλj=1,n∈N}\operatorname{co}(S)=\left\{\sum_{j=1}^{n} \lambda_{j} x_{j} \mid x_{1}, x_{2}, \ldots, x_{n} \in S, \lambda_{j} \geq 0 \forall j=1,2, \ldots, n, \sum_{j=1}^{n} \lambda_{j}=1, n \in \mathbb{N}\right\} co(S)={j=1∑n​λj​xj​∣x1​,x2​,…,xn​∈S,λj​≥0∀j=1,2,…,n,j=1∑n​λj​=1,n∈N}

Remark

[1] KKK is absolutely convex if and only if λx+μy∈K\lambda x+\mu y \in Kλx+μy∈K whenever x,y∈Kx, y \in Kx,y∈K and ∣λ∣+∣μ∣≤1|\lambda|+|\mu| \leq 1∣λ∣+∣μ∣≤1
[2] Every linear subspace is absolutely convex.
(每个线性子空间都是绝对凸的)

1.4 Quotient Space

equivalence relation

  1. A relation R\mathcal{R}R on a set XXX is any subset R\mathcal{R}R of the product X×X,X \times X,X×X, i.e., R\mathcal{R}R consists of specific ordered pairs (x,y),(x, y),(x,y), with x∈Xx \in Xx∈X and y∈Xy \in Xy∈X

  2. An equivalence relation on XXX is a relation R\mathcal{R}R that satisfies the following properties, where the notation x∼yx \sim yx∼y means that (x,y)∈R(x, y) \in \mathcal{R}(x,y)∈R :
    reflexivity : x∼x\quad x \sim xx∼x for all x∈Xx \in Xx∈X

    symmetry : x∼y\quad x \sim yx∼y implies y∼xy \sim xy∼x

    transitivity : x∼yx \sim yx∼y and y∼zy \sim zy∼z implies x∼zx \sim zx∼z
    Equivalently, (x,x)∈R(x, x) \in \mathcal{R}(x,x)∈R for all x∈X;x \in X ;x∈X; if (x,y)∈R,(x, y) \in \mathcal{R},(x,y)∈R, then (y,x)∈R;(y, x) \in \mathcal{R} ;(y,x)∈R; if (x,y)∈R(x, y) \in \mathcal{R}(x,y)∈R and (y,z)∈R,(y, z) \in \mathcal{R},(y,z)∈R, then (x,z)∈R(x, z) \in \mathcal{R}(x,z)∈R
    (等价关系就是满足上面三个状态的有序状态对(x,y))

Definition

Let MMM be a linear subspace of a linear space XXX over F\mathbb{F}F. For all x,y∈X,x, y \in X,x,y∈X, define
x≡y(modM)⟺x−y∈Mx \equiv y(\bmod M) \Longleftrightarrow x-y \in M x≡y(modM)⟺x−y∈M
≡\equiv≡ defines an equivalence relation on XXX
    then For x∈X,x \in X,x∈X, denote by
[x]:={y∈X:x≡y(modM)}={y∈X:x−y∈M}=x+M[x]:=\{y \in X: x \equiv y(\bmod M)\}=\{y \in X: x-y \in M\}=x+M [x]:={y∈X:x≡y(modM)}={y∈X:x−y∈M}=x+M
the coset of xxx with respect to MMM.
    [商空间定义在介里]The quotient space X/MX / MX/M consists of all the equivalence classes [x][x][x], x∈X.x \in X .x∈X. The quotient space is also called a factor space. moreover,quotient space is also a linear space.
(商空间包含了所有的等价类[x],[x]其实是满足mod规则的一个集合,集合元素属于X。而且mod运算是X作用于它的一个线性空间上的)详情点击介里~

[商空间的维度定义在介里]The codimension of MMM in XXX is defined as the dimension of the quotient space X/M.X / M .X/M. It is denoted by codim⁡(M)=dim⁡(X/M)\operatorname{codim}(M)=\operatorname{dim}(X / M)codim(M)=dim(X/M).
Clearly, if X=M,X=M,X=M, then X/M={0}X / M=\{0\}X/M={0} and so codim⁡(X)=0\operatorname{codim}(X)=0codim(X)=0

Proposition

Let MMM be a linear subspace of a linear space XXX over F.\mathbb{F} .F. For x,y∈Xx, y \in Xx,y∈X and λ∈F,\lambda \in \mathbb{F},λ∈F, define the operations
[x]+[y]=[x+y]and λ⋅[x]=[λ⋅x][x]+[y]=[x+y] \text { and } \lambda \cdot[x]=[\lambda \cdot x] [x]+[y]=[x+y] and λ⋅[x]=[λ⋅x]
Then X/MX / MX/M is a linear space with respect to these operations.

Remark

zero element in the quotient space is the M.

1.5 Direct Sums and Projections

Direct Sums

Let MMM and NNN be linear subspaces of a linear space XXX over F\mathbb{F}F. We say that XXX is a direct sum of MMM and NNN if
X=M+Nand M∩N={0}X=M+N \text { and } M \cap N=\{0\} X=M+N and M∩N={0}
If XXX is a direct sum of MMM and N,N,N, we write X=M⊕N.X=M \oplus N .X=M⊕N. In this case, we say that MMM (resp. NNN ) is an algebraic complement of NNN (resp. MMM ). moreover,for each x,the representation is unique.

projection

Let MMM and NNN be linear subspaces of a linear space XXX over F\mathbb{F}F such that X=M⊕N.X=M \oplus N .X=M⊕N. Define P:X→XP: X \rightarrow XP:X→X by P(x)=m,P(x)=m,P(x)=m, where x=m+n,x=m+n,x=m+n, with m∈Mm \in Mm∈M and n∈N.n \in N .n∈N. Then PPP is an algebraic projection of XXX onto MMM along N.N .N. Moreover M=P(X)M=P(X)M=P(X) and N=(I−P)(X)=ker⁡(P)N=(I-P)(X)=\operatorname{ker}(P)N=(I−P)(X)=ker(P)

Linearity of P\mathbf{P}P : Let x=m1+n1x=m_{1}+n_{1}x=m1​+n1​ and y=m2+n2,y=m_{2}+n_{2},y=m2​+n2​, where m1,m2∈Mm_{1}, m_{2} \in Mm1​,m2​∈M and n1,n2∈N.n_{1}, n_{2} \in N .n1​,n2​∈N. For α∈F\alpha \in \mathbb{F}α∈F
P(αx+y)=P((αm1+m2)+(αn1+n2))=αm1+m2=αPx+PyP(\alpha x+y)=P\left(\left(\alpha m_{1}+m_{2}\right)+\left(\alpha n_{1}+n_{2}\right)\right)=\alpha m_{1}+m_{2}=\alpha P x+P y P(αx+y)=P((αm1​+m2​)+(αn1​+n2​))=αm1​+m2​=αPx+Py
Idempotency of P:\mathbf{P}:P: Since m=m+0,m=m+0,m=m+0, with m∈Mm \in Mm∈M and 0∈N,0 \in N,0∈N, we have that Pm=mP m=mPm=m and hence P2x=Pm=m‾=Px.\overline{P^{2} x=P m=m}=P x .P2x=Pm=m=Px. That is, P2=PP^{2}=PP2=P
Finally, n=x−m=(I−P)x.n=x-m=(I-P) x .n=x−m=(I−P)x. Hence N=(I−P)(X).N=(I-P)(X) .N=(I−P)(X). Also, Px=0P x=0Px=0 if and only if x∈N,x \in N,x∈N, i.e., ker⁡(P)=N\operatorname{ker}(P)=Nker(P)=N

1.6 The Holder and Minkowski Inequalities

conjugate exponents and some Inequalities

Let ppp and qqq be positive real numbers. If 1<p<∞1<p<\infty1<p<∞ and 1p+1q=1,\frac{1}{p}+\frac{1}{q}=1,p1​+q1​=1, or if p=1p=1p=1 and q=∞,q=\infty,q=∞, or if p=∞p=\inftyp=∞ and q=1,q=1,q=1, then we say that ppp and qqq are conjugate exponents.

Lemma (Young’s Inequality). Let ppp and qqq be conjugate exponents, with 1<p,q<∞1<p, q<\infty1<p,q<∞ and α,β≥0.\alpha, \beta \geq 0 .α,β≥0. Then
αβ≤αpp+βqq\alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q} αβ≤pαp​+qβq​

Holder Inequalities

(Hölder’s Inequality for sequences). Let (xn)∈ℓp\left(x_{n}\right) \in \ell_{p}(xn​)∈ℓp​ and (yn)∈ℓq,\left(y_{n}\right) \in \ell_{q},(yn​)∈ℓq​, where p>1p>1p>1 and 1/p+1/q=11 / p+1 / q=11/p+1/q=1. Then
∑k=1∞∣xkyk∣≤(∑k=1∞∣xk∣p)1p(∑k=1∞∣yk∣q)1q\sum_{k=1}^{\infty}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}} k=1∑∞​∣xk​yk​∣≤(k=1∑∞​∣xk​∣p)p1​(k=1∑∞​∣yk​∣q)q1​

Minkowski Inequalities

Theorem (Minkowski’s Inequality for sequences). Let p>1p>1p>1 and (xn)\left(x_{n}\right)(xn​) and (yn)\left(y_{n}\right)(yn​) sequences in ℓp\ell_{p}ℓp​. Then
(∑k=1∞∣xk+yk∣p)1p≤(∑k=1∞∣xk∣p)1p+(∑k=1∞∣yk∣p)1p\left(\sum_{k=1}^{\infty}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}} (k=1∑∞​∣xk​+yk​∣p)p1​≤(k=1∑∞​∣xk​∣p)p1​+(k=1∑∞​∣yk​∣p)p1​

泛函分析1-线性空间相关推荐

  1. 泛函分析——赋范线性空间定义的概念

    赋范线性空间定义的概念 开集: A subset SSS of a normed linear space (X,∥⋅∥)(X,\|\cdot\|)(X,∥⋅∥) is open if for eac ...

  2. 泛函分析3——线性空间和赋范线性空间总结

    文章目录 线性空间的10条特性 线性空间的子集 子空间和凸集 商空间 直和 赋范线性空间 商空间的范数和商映射 赋范线性空间的完备性 线性空间的10条特性 [1]x+y∈X[1] x+y \in X[ ...

  3. 【泛函分析】 3 赋范线性空间上的有界线性算子

    1  有界线性算子 1.1  定义与性质 设X,Y是(统一数域上)赋范线性空间,为X的线性子空间, 线性算子(齐次可加): 有界算子:存在常数M,使得 几个等价命题: 1.T一致连续:2.T连续:3. ...

  4. 【泛函分析】 2 赋范线性空间

    1  线性空间 满足加法数乘的线性运算 线性包spanA: 凸包coA: 即有限凸组合组成的集合 同构:是双射且 线性流形:线性子空间对某个向量的平移, 2  赋范线性空间 2.1  定义 1.准范数 ...

  5. Part1. 泛函分析讲义I-度量空间概述

    泛函分析的三大空间自然是:度量空间.线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的 度量空间是Frechet有意识地去引入一种抽象理 ...

  6. 实变函数与泛函分析课本pdf_实变函数与泛函分析

    内容概要 本书第1章至第6章为实变函数与泛函分析的基本内容,包括集合与测度.可测函数.Ledcsgue积分.线性赋范空间.内积空间.有界线性算子与有界线性泛函等,第7章介绍了Banach空间上算子的微 ...

  7. matlab泛函分析,Matlab数字图像处理的学习建议 – MATLAB中文论坛

    如果是软实力,学好数学才是王道! 和机器学习和计算机视觉相关的数学(转载) (以下转自一位MIT牛人的空间文章,写得很实际:) 作者:Dahua 感觉数学似乎总是不够的.这些日子为了解决researc ...

  8. 泛函分析笔记3:内积空间

    我们前面讲了距离空间.赋范空间,距离空间赋予了两个点之间的距离度量,范数赋予了每个点自身的长度度量,而范数则可以导出距离.本章要讲的内积可以看成是更加统一的定义,因为从内积我们可以导出范数,进而导出距 ...

  9. 泛函分析和他的基础概念

    泛函分析和他的基础概念 泛函分析属于一个半老不新的概念,出现将近百年,因为脱身于理论物理,多多少少带点高冷范儿,不过在日常分析中,具有非常广阔的应用. 泛函分析牛逼在哪? 给予了函数这一概念更为一般的 ...

  10. 线性泛函分析之对偶基

    现在在学线性泛函分析,对于对偶基我一直理解不了,所以就尝试着将前后的概念顺起来,对对偶基进行理解. 先来个变量提醒 Φ \varPhi Φ代表 R \boldsymbol{R} R或者 C \bold ...

最新文章

  1. 机器学习算法加强——XGBoost实践
  2. python123作业怎么提交_python分析作业提交情况
  3. mac屏幕截图_如何在Mac上拍摄屏幕截图
  4. python安装后cmd找不到_关于Python3.6环境中,virtualenv找不到命令的解决方法
  5. html页面授权码,spring boot 2.0 整合 oauth2 authorization code授权码模式
  6. confer安装与连接度的计算
  7. validform 一行代码完成所有验证
  8. oracle数据库导入gson包
  9. 【转】Mac下升级python2.7到python3.6
  10. XNA 三维入门讲解
  11. IPTV在线服务器地址,德芯IPTV网关服务器,德芯直播点播服务器
  12. C语言的5种简单排序算法
  13. RTD-Net:Relaxed Transformer Decoders for Direct Action Proposal Generation 论文阅读笔记
  14. 根据经纬度计算指定范围内或者附近的人(java)
  15. 你知道怎么在solidworks工程图中插入表格吗?
  16. jquery实现按钮倒数7秒后才可以点击
  17. 南昌大专计算机学校有哪些,江西南昌单招大专学校有哪些学校
  18. 关于VS2013/VS2019使用scanf函数等报错的解决方案
  19. Linux 应用编程之fseek()、ftell()函数
  20. RISC-V 嵌入式 Rust 快速入门,基于 Renode 模拟器和 HiFive1 开发板

热门文章

  1. 今天网易云有大事发生?!
  2. 我们在大学图书馆发现了三本有毒的书
  3. FIR调用DSP48E_05
  4. 一场由过滤器Filter引发的血案
  5. Javaweb中利用kaptcha生成验证码
  6. 解决开机自检D盘问题
  7. Html.ActionLink
  8. SharePoint 2010 新体验7 - Managed Metadata (托管元数据)
  9. 机器学习中矩阵向量求导
  10. 【网络】解决‘ipconfig不是内部或外部命令,也不是可运行的程序