MA_12.1 12.2 12.3

  • 12.1 Three Dimensional Coordinate
    • Coordinate System
    • Equation of a Sphere(球面方程)
  • 12.2 Vectors
    • Vectors
    • Combining Vectors
    • Components
    • Vectors Addition and Scalar Multiplication
    • Properties of Vectors
    • Vectors
  • 12.3 The Dot Product(Scalar/Inner Product)
    • Physical background
    • Properties of the dot product
    • Dot Product

12.1 Three Dimensional Coordinate

Coordinate System

z=f(x,y),(x,y)∈Dz = f(x,y) , (x,y) \in Dz=f(x,y),(x,y)∈D

这表示一个二元函数,z由两个自变量x,y唯一确定,设在xoy平面上有一个区域D,则D为此二元函数的定义域,那么z=f(x,y)就确定了一个在oxyz空间直角坐标系内的一个曲面(平面算一种特殊的曲面),定义域上任意一定均对应曲面上的一点,此点到xoy平面的距离即为z的绝对值。

  • The origin(原点):A fixed point O

  • Coordinate axes(坐标轴): Three directed lines through O that are perpendicular(垂直的) to each other.

  • Right-hand rule(右手定则): The direction of the z axis is determined by the right-hand rule.

  • Coordinate plane(坐标平面):The xy-plane is the plane that contains x- and y-axis,etc.

  • Octants(卦限): Eight octants.(三个相互垂直的平面划分空间的八个部分中的任意一个)

  • Coordinates(坐标): P(a, b, c)

  • Projections(投影) of P(a, b, c):

    Projections of P onto xy-plane: Drop a perpendicular from P to the xy-plane, we get Q(a, b, 0) (投影到的平面缺哪一个坐标轴,投影点坐标哪一轴坐标为0) ,etc.

Equation of a Sphere(球面方程)

Distance Formula in Three dimensions:

The distance∣P1P2∣|P_1P_2|∣P1​P2​∣between the points P1(x1,y1,z1)P_1(x_1, y_1,z_1)P1​(x1​,y1​,z1​) and P2(x2,y2,z2)P_2(x_2, y_2,z_2)P2​(x2​,y2​,z2​) is

∣P1P2∣=(x1−x2)2+(y1−y2)2+(z1−z2)2|P_1P_2| = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} ∣P1​P2​∣=(x1​−x2​)2+(y1​−y2​)2+(z1​−z2​)2​

Equation of a Sphere:

An equation of a sphere with center C(h,k,l)C(h, k, l)C(h,k,l) and radius rrr is

(x−h)2+(y−k)2+(z−l)2=r2(x − h)^2 + (y − k)^2 + (z − l)^2 = r^2(x−h)2+(y−k)2+(z−l)2=r2

12.2 Vectors

Vectors

  • Vector:The term vector is used to indicate a quality that has both magnitude and direction.Displacement vector(位移): It has initial point A (the tail), the terminal point B (the tip), denote it by v⃗\vec{v}v = AB⃗\vec{AB}AB

  • Zero vector: 0⃗\vec{0}0 has length 0, no specific direction

  • Equivalent or equal: u⃗=v⃗\vec{u} = \vec{v}u=v means they have the same length and the same direction.

Combining Vectors

  • Definition of vector addition:If u⃗\vec{u}u and v⃗\vec{v}v are vectors positioned so the initial point of v⃗\vec{v}v is at the terminal point of u⃗\vec{u}u, then the sum u⃗\vec{u}u + v⃗\vec{v}v is the vector from the initial point of u⃗\vec{u}u to the terminal point of v⃗\vec{v}v.

  • Definition of scalar Multiplication(数乘):If c is a scalar and v⃗\vec{v}v is a vector, then the scalar multiple cv⃗c\vec{v}cv is the vector which has the length ∣c∣⋅∣v⃗∣|c| · |\vec{v}|∣c∣⋅∣v∣ and has the same direction as v⃗\vec{v}v if c is positive and the opposite to u⃗\vec{u}u if c is negative.

  • Definition of difference:

    u⃗−v⃗=u⃗+(−1)v⃗\vec{u} − \vec{v} = \vec{u} + (−1)\vec{v}u−v=u+(−1)v

Components

Treat vectors algebraically.

  • Representations of vector:

    a⃗=(a1,a2),a⃗=(a1,a2,a3)\vec{a} = (a_1, a_2) , \vec{a} = (a_1, a_2, a_3)a=(a1​,a2​),a=(a1​,a2​,a3​)

  • Position vector of the point P(a1,a2,a3)P(a_1, a_2, a_3)P(a1​,a2​,a3​):

    a⃗=OP⃗=(a1,a2,a3)\vec{a} = \vec{OP} = (a_1, a_2, a_3)a=OP=(a1​,a2​,a3​)

  • The length of a⃗=(a1,a2,a3)\vec{a} = (a_1, a_2, a_3)a=(a1​,a2​,a3​) is

    ∣a⃗∣=∣∣a⃗∣∣=a12+a22+a32|\vec{a}|=||\vec{a}||=\sqrt{a_1^2+a_2^2+a_3^2} ∣a∣=∣∣a∣∣=a12​+a22​+a32​​

Vectors Addition and Scalar Multiplication

If a⃗=(a1,a2)\vec{a} = (a_1 , a_2)a=(a1​,a2​) , b⃗=(b1,b2)\vec{b} = (b_1 , b_2)b=(b1​,b2​) and c is a number, then

  • a⃗+b⃗=(a1+b1,a2+b2)\vec{a} + \vec{b} = (a_1 + b_1 , a_2 + b_2)a+b=(a1​+b1​,a2​+b2​);

  • ca⃗=(ca1,ca2)c\vec{a} = (ca_1 , ca_2)ca=(ca1​,ca2​).

Properties of Vectors

If a⃗\vec{a}a , b⃗\vec{b}b and c⃗\vec{c}c are vectors in VnV_nVn​ , and c and d are scalars, then

a⃗+b⃗=b⃗+a⃗;a⃗+(b⃗+c⃗)=(a⃗+b⃗)+c⃗\vec{a} +\vec{b} = \vec{b} + \vec{a} ; \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}a+b=b+a;a+(b+c)=(a+b)+c (交换律、结合律)

a⃗+0⃗=a⃗;a⃗+(−a⃗)=0⃗\vec{a}+\vec{0}=\vec{a}; \vec{a}+(-\vec{a})=\vec{0}a+0=a;a+(−a)=0 !!!

c(a⃗+b⃗)=ca⃗+c⃗b⃗;(c+d)a⃗=ca⃗+da⃗c(\vec{a} +\vec{b}) = c\vec{a} + c⃗\vec{b} ;(c + d)\vec{a} = c\vec{a} + d\vec{a}c(a+b)=ca+c⃗b;(c+d)a=ca+da (分配律)

(cd)a⃗=c(da⃗),1a⃗=a⃗(cd)\vec{a} = c(d\vec{a}), 1\vec{a} = \vec{a}(cd)a=c(da),1a=a

Vectors

Let i⃗,j⃗\vec{i},\vec{j}i,j​ and k⃗\vec{k}k be the standard basis vectors(标准正交基) with the directions of positive x−x-x−, y−y-y−, and z−z-z−axes, respectively

i⃗=(1,0,0),j⃗=(0,1,0),k⃗=(0,0,1)\vec{i} = (1, 0, 0), \vec{j} = (0, 1, 0),\vec{k} = (0, 0, 1)i=(1,0,0),j​=(0,1,0),k=(0,0,1)

Any vector a⃗=(a1,a2,a3)\vec{a} = (a_1, a_2, a_3)a=(a1​,a2​,a3​) can be expressed in terms of i⃗,j⃗\vec{i},\vec{j}i,j​ and k⃗\vec{k}k. (重要!!!)

a⃗=a1i⃗+a2j⃗+a3k⃗.\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}. a=a1​i+a2​j​+a3​k.

The unit vector(单位向量) that has the same direction as a⃗\vec{a}a with a⃗≠0⃗\vec{a} \ne \vec{0}a​=0

u⃗=a⃗∣a⃗∣\vec{u}=\frac{\vec{a}}{|\vec{a}|}u=∣a∣a​

12.3 The Dot Product(Scalar/Inner Product)

Physical background

Properties of the dot product

If a⃗,b⃗\vec{a},\vec{b}a,b and c⃗\vec{c}c are vectors in VnV_nVn​ , and c is a scalar, then

  • a⃗⋅a⃗=∣a⃗∣2;a⃗⋅b⃗=b⃗⋅a⃗\vec{a}\cdot \vec{a}=|\vec{a}|^2;\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a}a⋅a=∣a∣2;a⋅b=b⋅a
  • a⃗⋅(b⃗+c⃗)=a⃗⋅b⃗+a⃗⋅c⃗;(ca⃗)⋅b⃗=c(a⃗⋅b⃗)=a⃗⋅(cb⃗)\vec{a}\cdot (\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c};(c\vec{a})\cdot \vec{b}=c(\vec{a}\cdot \vec{b})=\vec{a}\cdot (c\vec{b})a⋅(b+c)=a⋅b+a⋅c;(ca)⋅b=c(a⋅b)=a⋅(cb)
  • 0⃗⋅a⃗=0\vec{0}\cdot\vec{a}=00⋅a=0 !!!
  • a⃗⊥b⃗⇔a⃗⋅b⃗=0\vec{a}\bot\vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0a⊥b⇔a⋅b=0

Dot Product

  • If θ is the angle between the vector a⃗\vec{a}a and b⃗\vec{b}b, then the dot product a⃗⋅b⃗\vec{a} \cdot \vec{b}a⋅b is a scalar defined by

    a⃗⋅b⃗=∣a⃗∣∣b⃗∣cosθ,θ∈[0,π].\vec{a} · \vec{b} = |\vec{a}||\vec{b}| cos θ, θ ∈ [0, π].a⋅b=∣a∣∣b∣cosθ,θ∈[0,π].

  • If a⃗=(a1,a2)\vec{a} = (a_1 , a_2)a=(a1​,a2​) and b⃗=(b1,b2)\vec{b} = (b_1, b_2)b=(b1​,b2​), then

    a⃗⋅b⃗=a1b1+a2b2.\vec{a} · \vec{b} = a_1b_1+a_2b_2.a⋅b=a1​b1​+a2​b2​.

    Proof:

  • Generalization: Let a⃗=(a1,a2,⋅⋅⋅,an)\vec{a} = (a_1, a_2, · · · , a_n)a=(a1​,a2​,⋅⋅⋅,an​) and b⃗=(b1,b2,⋅⋅⋅,bn)\vec{b} = (b_1, b_2, · · · , b_n)b=(b1​,b2​,⋅⋅⋅,bn​) be two n-dimensional vectors, then the dot product between these two vectors can be defined as

    a⃗⋅b⃗=a1b1+a2b2+⋅⋅⋅+anbn.\vec{a} \cdot \vec{b} = a_1b_1+ a_2b_2+ · · · + a_nb_n.a⋅b=a1​b1​+a2​b2​+⋅⋅⋅+an​bn​.

  • The direction angles(方向角) of a nonzero vector a⃗\vec{a}a are angles α, β and γ that a⃗\vec{a}a makes with positive x-, y-, and z-axes.

  • The direction cosines of vector a⃗\vec{a}a is

    cosα=a⃗⋅i⃗∣a⃗∣=a1∣a⃗∣cos\alpha = \frac{\vec{a}\cdot\vec{i}}{|\vec{a}|}=\frac{a_1}{|\vec{a}|}cosα=∣a∣a⋅i​=∣a∣a1​​

    cosβ=a⃗⋅j⃗∣a⃗∣=a2∣a⃗∣cos\beta = \frac{\vec{a}\cdot\vec{j}}{|\vec{a}|}=\frac{a_2}{|\vec{a}|}cosβ=∣a∣a⋅j​​=∣a∣a2​​

    cosγ=a⃗⋅k⃗∣a⃗∣=a3∣a⃗∣cos\gamma = \frac{\vec{a}\cdot\vec{k}}{|\vec{a}|}=\frac{a_3}{|\vec{a}|}cosγ=∣a∣a⋅k​=∣a∣a3​​

  • (cos α, cos β, cos γ) is the unit vector(单位向量) in the direction of a⃗\vec{a}a. !!!

  • Two vectors a⃗\vec{a}a and b⃗\vec{b}b are perpendicular(垂直的) if and only if

    a⃗⋅b⃗=0\vec{a} \cdot \vec{b}=0a⋅b=0

  • The scalar projection(标量投影) of b⃗\vec{b}b on a⃗\vec{a}a is

    compa⃗b⃗=a⃗⋅b⃗∣a⃗∣comp_{\vec{a}} \vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}compa​b=∣a∣a⋅b​

  • The vector projection(矢量投影) of b⃗\vec{b}b on a⃗\vec{a}a (a shadow of b⃗\vec{b}b ) is

    proja⃗b⃗=(a⃗⋅b⃗∣a⃗∣)a⃗∣a⃗∣=a⃗⋅b⃗∣a⃗∣2a⃗proj_{\vec{a}} \vec{b} = ( \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|})\frac{\vec{a}}{|\vec{a}|}= \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a}proja​b=(∣a∣a⋅b​)∣a∣a​=∣a∣2a⋅b​a

工科数学分析 MA_12 Vectors and the Geometry of Space (上篇)相关推荐

  1. 工科数学分析无穷级数总结

    目录 序言 一.常数项级数 概念 1. 什么是常数项无穷级数? 2. 级数的收敛性与和 两个特别的级数 级数的判别方法 ①常数项级数判别法 ②正项级数的审敛准则 ③变号级数的审敛准则 ④绝对收敛 二. ...

  2. HDU3113(工科数学分析之分解)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3113 题意:给出一个正整数n,范围是[1,1000000],求出满足方程的一组整数解,要求x最小. 分析: ...

  3. POJ3244(工科数学分析)

    题目:http://poj.org/problem?id=3244 题意:给定n个三元组,对于任意两个三元组,设和,定义: ,求所有无序对的和. 分析:首先我们要知道: 简单分析一下这个结果是怎么得来 ...

  4. Affine geometry

    In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians ...

  5. 工科数学分析学习笔记

    教材:工科数学分析 编者:孙兵 毛京中 第一章 函数.极限与连续 第一节 函数 自然定义域:使得算式有意义的一切实数组成的集合 N(a,δ)N(a,\delta)N(a,δ) 称为点aaa的δ\del ...

  6. 数学分析笔记-菲赫金哥尔茨-第一卷-绪论

    标签(空格分隔): 微积分 数学分析笔记-菲赫金哥尔茨-第一卷-绪论 1.有理数域 1.前言. 有理数结构p/q(p,q均为自然数). 没有这样的有理数p/q,其平方能等于2.证明略过 研究数学问题, ...

  7. 数学分析笔记-菲赫金哥尔茨-第一卷-极限论

    标签(空格分隔): 微积分 数学分析笔记-菲赫金哥尔茨-第一卷-极限论 1.整序变量及其极限 22.变量.整序变量. 整序变量的定义(序列,估计数列,级数-也行). 整序变量的给定(给定通项公式,或者 ...

  8. matlab图形黎曼几何,张思容

    姓 名:张思容 职  称:讲师 所属系别:计算科学系 学科专业:几何分析,医学图像分析 办公地点:沙河校区主E403-3 办公电话: 教育背景 ●1990-1995, 中国科学技术大学数学系/概率统计 ...

  9. 【转载】知乎答案----孙志岗----Google 发布了程序员养成指南,国内互联网巨头是否也有类似的指南和课程推荐...

    国内公司在复制国外商业模式的同时,也应复制人家的社会担当.所以,来答题了!就参考 Google 的框架,列一下中文的课程.大体上在线学完一个计算机专业,是基本不成问题的.但是,这不意味着你可以不上大学 ...

最新文章

  1. shell script
  2. 一球从M米高度自由下落,每次落地后返回原高度的一半,再落下。 它在第N次落地时反弹多高?共经过多少米? 保留两位小数...
  3. 8月日更,我的困难与感悟
  4. python进行数据查询_如何进行python数据库查询?(实例解析)
  5. 数据结构与算法——冒泡排序(改进后)
  6. 兼容性测试之VMware
  7. 使用Github Pages和Hexo搭建自己的独立博客【超级详细的小白教程】
  8. 【复赛前排分享(二)】收好这份王牌优化指南,助你轻松上分无压力
  9. bochs镜像java模拟器_bochs模拟器镜像下载-bochs模拟器win10镜像下载精简版-手机腾牛网...
  10. ubuntu 16.04 插入耳机没有声音
  11. html怎么把图片的图层,PS制作-把图片添加到图层的4种方法
  12. 肠道微生物组如何影响运动能力,所谓的“精英肠道微生物组”真的存在吗?
  13. android:persistent属性研究
  14. 数据可视化之美-动态图绘制【补充】(以Python为工具)
  15. [译] linux内存管理之RSS和VSZ的区别
  16. linux安装python任意版本,一键安装和一键卸载shell脚本
  17. 节日贺卡使用python编写
  18. R语言对完全随机分组实验、拉丁方实验及正交实验进行方差分析(例题,过程+代码)
  19. 金指拓客助力实体门店在短视频低成本精准拓客 打造同城私域号
  20. android发广播更新相册,安卓保存视频和图片之后相册不刷新的问题总结

热门文章

  1. iOS 如何优雅的写一个验证码输入框
  2. 文科生读计算机博士,文科类哪些专业博士前景好?看完这篇就懂了!
  3. 初识python psutil
  4. 高速USB转8串口产品设计-RS232串口
  5. A Two-stage Unsupervised Approach for Low light Image Enhancement(一种两阶段无监督的微光图像增强方法)
  6. my97datepicker日历显示不完整
  7. 专注情感故事短视频,三感video获千万级A+轮融资...
  8. 华为运营商级路由器配置示例 | EVdPdNd VPLS over SR-MPLS BE(BD EVdPdNd)
  9. 【开奖】犀牛书获奖名单,留言开通成功,有奖征集意见赠书!
  10. x265-1.8版本-encoder/frameencoder.cpp注释