• 不严谨但通俗地说,不定积分就是知道导函数f(x)f(x)f(x)找原函数F(x)F(x)F(x).

  • 以下如无特别说明,用F(x)F(x)F(x)代表原函数,f(x)f(x)f(x)代表其导函数.

1. 原函数存在定理

  • f(x)f(x)f(x)连续(第一章的概念)⇒\Rightarrow⇒ 一定有原函数F(x)F(x)F(x) ,注意是单向箭头
  • f(x)f(x)f(x) 有可去/跳跃/无穷间断点(具体怎样判定属于第一章内容),则一定无 F(x)F(x)F(x)。

举个例子:g(x)={x+5,x>3x2,x≤3g(x)= \begin{cases} x+5, x>3 \\ x^2, x\leq3 \end{cases}g(x)={x+5,x>3x2,x≤3​,x=3x=3x=3是跳跃间断点,则这个函数没有原函数,找不到一个G(x)G(x)G(x),使得 G(x)′=g(x)G(x)'=g(x)G(x)′=g(x)。

  • f(x)f(x)f(x)有震荡间断点,可能有F(x)F(x)F(x).

2.有原函数但是积不出的函数

  • 以下积分存在但积不出,如果遇到就别继续算了,换个方法,一般想办法对其求导,比如使用分部积分。
  • ∫ex2dx、∫e−x2dx、\int{e^{x^2}}dx、\int{e^{-x^2}}dx、∫ex2dx、∫e−x2dx、
  • ∫sin(x2)dx、∫cos(x2)dx、\int sin(x^2)dx、\int cos(x^2)dx、∫sin(x2)dx、∫cos(x2)dx、
  • ∫sinxxdx、∫cosxxdx\int\frac{sinx}{x}dx、\int\frac{cosx}{x}dx∫xsinx​dx、∫xcosx​dx

3.八个常用的性质

  • 用F(x)F(x)F(x)代表原函数,f(x)f(x)f(x)代表导函数
  • F(x)F(x)F(x)偶函数 ⇒\Rightarrow⇒ f(x)f(x)f(x) 奇函数
  • F(x)F(x)F(x)奇函数 ⇒\Rightarrow⇒ f(x)f(x)f(x) 偶函数
  • F(x)F(x)F(x) 是T周期函数 ⇒\Rightarrow⇒ f(x)f(x)f(x) T周期函数
  • F(x)F(x)F(x)单调 ⇒\Rightarrow⇒ f(x)f(x)f(x) 不一定单调(比如y=x3y=x^3y=x3)
  • f(x)f(x)f(x)奇函数 ⇒\Rightarrow⇒ F(x)F(x)F(x) 偶函数
  • f(x)f(x)f(x)偶函数 ⇒\Rightarrow⇒ 只有F(x)=∫0xf(x)dxF(x)=\int _{0}^{x}f(x)dxF(x)=∫0x​f(x)dx 是奇函数,也就是+C 的C=0
  • f(x)f(x)f(x) 是T周期函数 ⇒\Rightarrow⇒ F(x)F(x)F(x) 不一定是T周期函数
  • f(x)f(x)f(x) 单调 ⇒\Rightarrow⇒ F(x)F(x)F(x) 不一定单调

4.计算

1.凑微分

  • ∫g(x)dx=∫g(x)d(x+b)=1a∫g(x)d(ax+b)\int g(x)dx=\int g(x)d(x+b)=\frac{1}{a}\int g(x)d(ax+b)∫g(x)dx=∫g(x)d(x+b)=a1​∫g(x)d(ax+b)
  • f(x) 如果是有理分式,那这个题基本不用做了,用以下方法就可以解决。
  • 凑微分的本质,实际上是看被积函数里哪一部分是另一部分的导数,这样就可以把是导数的那部分凑到后面。
  • 比如:∫1+lnx(xlnx)2dx\int\frac{1+lnx}{(xlnx)^2}dx∫(xlnx)21+lnx​dx

f(x){假分式→化成真分式(多项式除法)→拆项(专门方法下面写)真分式(多项式除法)→拆项(专门方法下面写)f(x)\begin{cases} 假分式\rightarrow化成真分式(多项式除法)\rightarrow 拆项(专门方法下面写)\\ 真分式(多项式除法)\rightarrow 拆项(专门方法下面写) \end{cases}f(x){假分式→化成真分式(多项式除法)→拆项(专门方法下面写)真分式(多项式除法)→拆项(专门方法下面写)​

  • 拆项:分子的因式为几次就分别拆成几项;拆成每项的分子次数从一次依次递增;拆成每项的分子是比分母括号里的次数第一次的待定多项式。
  • 比如h(x)(ax+b)(cx+d)2(ex2+gx+h)3\frac{h(x)}{(ax+b)(cx+d)^2(ex^2+gx+h)^3}(ax+b)(cx+d)2(ex2+gx+h)3h(x)​ 分子有两个因式,拆成(1+2+3=6)项。第一个分母是一次因式,后两个分母分别是一次和一个二次,最后三个分母分别是一次,二次,三次。分子都是比分母括号里低一次的待定多项式。拆成
    A1x0ax+b+A2x0cx+d+A3x0(cx+d)2+A4x+B1ex2+gx+h+A5x+B2(ex2+gx+h)2+A6x+B3(ex2+gx+h)3\frac{A_1x^0}{ax+b}+\frac{A_2x^0}{cx+d}+\frac{A_3x^0}{(cx+d)^2}+\frac{A_4x+B_1}{ex^2+gx+h}+\frac{A_5x+B_2}{(ex^2+gx+h)^2}+\frac{A_6x+B_3}{(ex^2+gx+h)^3}ax+bA1​x0​+cx+dA2​x0​+(cx+d)2A3​x0​+ex2+gx+hA4​x+B1​​+(ex2+gx+h)2A5​x+B2​​+(ex2+gx+h)3A6​x+B3​​
    然后根据对应系数相等求出未知数。
  • 两个常用的结论可以直接记下来:
  • ∫1x2+a2dx=1aarctanxa+C\int\frac{1}{x^2+a^2}dx=\frac{1}{a}arctan\frac{x}{a}+C∫x2+a21​dx=a1​arctanax​+C
  • ∫1x2−a2dx=12aln∣x−ax+a∣+C\int\frac{1}{x^2-a^2}dx=\frac{1}{2a}ln|\frac{x-a}{x+a}|+C∫x2−a21​dx=2a1​ln∣x+ax−a​∣+C

2.三角函数

  • 形如∫sin3xdx\int sin^3xdx∫sin3xdx、∫cos4xdx\int cos^4xdx∫cos4xdx 这种,偶数次拆项(用二倍角公式),奇数次降幂(凑一个到后面)。
  • 形如 ∫cos3xcos2xdx\int cos3xcos2xdx∫cos3xcos2xdx 用积化和差公式
  • 形如 ∫asinx+bcosxcsinx+dcosxdx\int\frac{asinx+bcosx}{csinx+dcosx}dx∫csinx+dcosxasinx+bcosx​dx 分母不变 ,作如下处理
    ∫asinx+bcosxcsinx+dcosxdx=∫A(csinx+dcosx)+B(csinx+dcosx)′csinx+dcosxdx\int\frac{asinx+bcosx}{csinx+dcosx}dx=\int\frac{A(csinx+dcosx)+B(csinx+dcosx)'}{csinx+dcosx}dx∫csinx+dcosxasinx+bcosx​dx=∫csinx+dcosxA(csinx+dcosx)+B(csinx+dcosx)′​dx
    用对应系数相等求出A,B.然后拆开算。
  • 两个常用的结论可以直接记下来:
  • ∫secxdx=ln∣secx+tanx∣+C\int secxdx=ln|secx+tanx|+C∫secxdx=ln∣secx+tanx∣+C
  • ∫cscxdx=ln∣cscx−cotx∣+C\int cscxdx=ln|cscx-cotx|+C∫cscxdx=ln∣cscx−cotx∣+C
  • 遇到sec2x,tan2xsec^2x,tan^2xsec2x,tan2x,多考虑能否使用1+tan2x=sec2x1+tan^2x=sec^2x1+tan2x=sec2x做代换。sec2xsec^2xsec2x一个原函数就是tanx.

3.遇根号,有四种主要情况:

  • a2−x2\sqrt{a^2-x^2}a2−x2​ 则令 x=asint,t∈(−π2,π2)x=asint,t\in(-\frac{\pi}{2},\frac{\pi}{2})x=asint,t∈(−2π​,2π​)
  • x2−a2\sqrt{x^2-a^2}x2−a2​ 则令 x=asect,t∈(0,π)x=asect,t\in(0,\pi)x=asect,t∈(0,π)
  • x2+a2\sqrt{x^2+a^2}x2+a2​ 则令 x=atant,t∈(−π2,π2)x=atant,t\in(-\frac{\pi}{2},\frac{\pi}{2})x=atant,t∈(−2π​,2π​)
  • ax+bcx+d\sqrt\frac{ax+b}{cx+d}cx+dax+b​​ 则令 t=ax+bcx+dt=\sqrt\frac{ax+b}{cx+d}t=cx+dax+b​​
  • 根号的情况较灵活,不一定完全按照上述四种情况。
  • 例如:
  • ∫xx2−9dx\int x\sqrt{x^2-9}dx∫xx2−9​dx直接凑微分、
  • ∫x2+2x+5dx=∫(x+1)2+4dx\int\sqrt{x^2+2x+5}dx=\int\sqrt{(x+1)^2+4}dx∫x2+2x+5​dx=∫(x+1)2+4​dx然后凑微分、
  • x+x3\sqrt{x}+\sqrt[3]{x}x​+3x​令x=t6x=t^6x=t6、
  • 分母有理化等技巧.
  • 有时候没有根号但是有 a2+x2a^2+x^2a2+x2 也可试试 x=atant,t∈(−π2,π2)x=atant,t\in(-\frac{\pi}{2},\frac{\pi}{2})x=atant,t∈(−2π​,2π​)
    • 一个常用的结论可以直接记下来:
  • ∫1x2±a2dx=ln∣x2±a2+x∣+C\int \frac{1}{\sqrt{x^2\pm a^2}}dx=ln|\sqrt{x^2\pm a^2}+x|+C∫x2±a2​1​dx=ln∣x2±a2​+x∣+C

4.倒代换:分子次数高时使用

  • 比如∫1x8(1+x2)dx\int\frac{1}{x^8(1+x^2)}dx∫x8(1+x2)1​dx , 可以令x=1/tx=1/tx=1/t

5.绝大多数题目做不出,是因为没有变量代换或者代换不合适

  • 遇到困难的积分,打开脑洞多试几次代换,很有可能试出来。一般是把复杂的、难搞的部分直接代换成t。

6.分部积分

  • 分部积分法就是把d前和d后的东西拿出来相乘,再减去d前和d后交换位置的积分。

那么问题来了,该把谁凑到d 后面呢?
反 对 幂 三 指
越靠右的越优先拿到后面。这样可以通过分部积分公式简化积分,便于运算。
该方法本质是把复杂的函数(比如反三角函数,对数函数)留在d 前面,然后使用分部积分公式时就可以对其求导,这种函数求导之后会变成友好的有理分式。

  • 可以打表格法,不再赘述。

7.分段函数求不定积分

  • 先分别对每一段求积分,注意一个点,就是利用求出来的函数必定连续的条件,只保留一个常数C。

【不定积分】不定积分知识点总结相关推荐

  1. 《高等数学》 总结 导数、微分、不定积分

    必须掌握各个概念的定义.从定义中,深入的理解概念,以及发掘概念之间的相互联系. 导数&微分 微积分有两种定义: 1.古典微积分 这是一种直观.便于理解的定义.首先定义微分是微小变化量.比如函数 ...

  2. 不定积分 定积分 计算方法

    不定积分 不定积分的性质 基本积分公式 不定积分计算方法 第一类 换元积分法(凑积分法) 第二类 换元积分法 分部积分法 定积分 定积分的性质 积分上限函数 牛顿-莱布尼茨公式 定积分换元法 定积分分 ...

  3. 不定积分 — 高等数学(未完待续...)

    文章目录 考点一:不定积分的概念及性质 原函数 不定积分 不定积分的性质 (1)线性性质 (2)积分运算与微分运算互逆 笔记 考点二:基本积分公式 基本积分公式 笔记 考点一:不定积分的概念及性质 原 ...

  4. ap计算机知识点总结,AP Calculus(ABBC)知识点总结

    AP微积分共分两个模块,每个部分又分为A和B两个部分,考试时间为195分钟.其中第一个模块为多项选择题(5选1),共计105分钟,共45题,其中Part A是从1到28题,不允许使用计算器,考试时间为 ...

  5. 定积分及其应用知识点总结_AP Calculus(ABBC)知识点总结

    AP微积分共分两个模块,每个部分又分为A和B两个部分,考试时间为195分钟.其中第一个模块为多项选择题(5选1),共计105分钟,共45题,其中Part A是从1到28题,不允许使用计算器,考试时间为 ...

  6. 微积分知识点回顾与总结(五):不定积分,定积分,反常积分

    微积分知识点回顾与总结(五):不定积分,定积分 1.不定积分 2.定积分 3.牛顿-莱布尼茨(Newton-Leibnize) 4.积分中值定理及其推广 5.不定积分与定积分的工具包 6.反常积分 7 ...

  7. 高数知识点整理——有理分式的不定积分(多项式的除法)

    有理分式的不定积分 定义: P ( x ) Q ( x ) = a x x n + a n − 1 x n − 1 + - + a 1 x + a 0 b m x m + b m − 1 x m − ...

  8. 【知识点】(四)不定积分和定积分

    目录 不定积分 1. 概念和性质 2. 基本公式 3. 凑微分法 4. 换元积分法 5. 分部积分法 6. 有理函数积分 7. 三角函数积分 定积分 1. 概念和性质 2. 定积分计算 4. 计算工具 ...

  9. 高等数学 武忠祥强化班

    武忠祥强化班1:函数 1.单调性 函数导数与函数单调性 1.函数导数大于零=>=>=>函数单调增 --每一点的导数都大于零,每一点的左边小右边大,所以函数单调增 2.函数单调增≠&g ...

最新文章

  1. [转载] 理解RESTful架构
  2. 银行java多线程例子_Java 多线程 之 银行ATM实例
  3. JVM面试问题系列:JVM 配置常用参数和常用 GC 调优策略
  4. CRF++ 特征工程
  5. 中粮集团对话农民丰收节交易会-万祥军:订单农业丰收经
  6. F#学习之路(3) 如何组织程序(下)
  7. Python数据结构学习笔记——队列和双端队列
  8. 【SQL Server配置管理器】提示:无法连接到 WMI 提供程序。您没有权限或者该服务器无法访问...
  9. 教你构建MySQL主从结构,实现基于SSL加密的主从同步机制。
  10. mysql 性能 索引怎么用_MySQL索引使用方法和性能優化
  11. 计算机应用基础进制转换说课稿,计算机应用基础信息技术基础《进制转换》教案.doc...
  12. 分布式事务之基础理论(CAP/BASE理论)篇
  13. 算法系列之二十三:离散傅立叶变换之音频播放与频谱显示
  14. java并发编程-CAS算法
  15. 怎样快速提高计算机能力,如何提高算术能力?不借助计算机、笔、纸等工具,怎么能快速心算出多位数计算结果?如:489x85 如:128965-98542有什么口决及速算的方法的详细步骤?...
  16. JS中对象按属性排序(冒泡排序)
  17. 正版win10如何重装系统|win10正版重装系统教程
  18. Eclipse 代码大小写切换
  19. 基于滴滴云安装 Docker 并上传镜像到滴滴云 Docker 仓库
  20. C语言:在文件的指定位置实现局部修改,而无需重写文件的其他部分

热门文章

  1. Visual Studio 2008 QFE (zz)
  2. 关于全局唯一id的一些思考
  3. AndroidStudio 更改变量名和文件名的快捷键
  4. Syncovery 是目前功能最为强大的实时自动备份工具
  5. scipy.spatial.qhull.QhullError: QH7023 qhull option warning: unknown ‘Q‘ qhull option ‘Qn‘, skip to
  6. OPENGL学习笔记之八
  7. Windows Phone 使用FlurrySdk
  8. 再发国外网友关于meego的设计
  9. pdf 加密如何解除?
  10. HTC-VIVE如何实现瞬移和替换手柄模型