文章目录

  • 类型六:调节规律
    • 06 知识回顾
      • 稳态下压气机和涡轮共同工作条件
      • 涡轮落压比
      • 两种调节规律

类型六:调节规律

06 知识回顾

稳态下压气机和涡轮共同工作条件

1.转速一致

对于单转子涡喷发动机,压气机转子转速等于涡轮转子的转速,即
n c = n T n_c=n_T nc​=nT​
2.流量连续

流过涡轮的燃气流量 q m , g q_{m,g} qm,g​等于流入压气机的空气流量 q m , a q_{m,a} qm,a​加上进入燃烧室的燃油流量 q m , f q_{m,f} qm,f​,再减去引气系统引走的空气流量 q m , c o l q_{m,col} qm,col​,即
q m , g = q m , a + q m , f − q m , c o l q_{m,g}=q_{m,a}+q_{m,f}-q_{m,col} qm,g​=qm,a​+qm,f​−qm,col​
此式可以写成:
q m , g = β q m , a q_{m,g}=\beta q_{m,a} qm,g​=βqm,a​
其中:
β = q m , a + q m , g − q m , c o l q m , a = 1 + f − v c o l \beta =\frac{q_{m,a}+q_{m,g}-q_{m,col}}{q_{m,a}}=1+f-v_{col} β=qm,a​qm,a​+qm,g​−qm,col​​=1+f−vcol​
3.压力平衡

涡轮进口处燃气总压等于压气机进口处空气总压乘以燃烧室总压恢复系数,即
p 3 ∗ = σ b p 2 ∗ p_{3}^{*}=\sigma _bp_{2}^{*} p3∗​=σb​p2∗​
4.功率平衡

涡轮提供给压气机的功率与压气机压缩空气所消耗的功率平衡,即
N c = N T η m N_c=N_T\eta _m Nc​=NT​ηm​

考虑到:
N c = q m , a w c , N T = q m , g w T = β q m , a w T N_c=q_{m,a}w_c,N_T=q_{m,g}w_T=\beta q_{m,a}w_T Nc​=qm,a​wc​,NT​=qm,g​wT​=βqm,a​wT​
所以:
w c = w T β η m w_c=w_T\beta \eta _m wc​=wT​βηm​

涡轮落压比

π T ∗ = [ σ e A 5 q ( λ 5 ) σ t A t q ( λ t ) ] 2 n ′ n ′ + 1 \pi _{T}^{*}=\left[ \frac{\sigma _eA_5q\left( \lambda _5 \right)}{\sigma _tA_tq\left( \lambda _t \right)} \right] ^{\frac{2n^{\prime}}{n^{\prime}+1}} πT∗​=[σt​At​q(λt​)σe​A5​q(λ5​)​]n′+12n′​

几何不可调时,当涡轮导向器最小截面和喷管都处于临界或超临界状态,落压比为常数。
π T ∗ n ′ + 1 2 n ′ = σ e A 5 σ t A t = c o n s t {\pi _{T}^{*}}^{\frac{n^{\prime}+1}{2n^{\prime}}}=\frac{\sigma _eA_5}{\sigma _tA_t}=const πT∗​2n′n′+1​=σt​At​σe​A5​​=const

两种调节规律

1. n = n m a x = c o n s t n=n_{max}=const n=nmax​=const和 A 5 = c o n s t A_5=const A5​=const的最大工作状态调节规律

2. n = n m a x = c o n s t n=n_{max}=const n=nmax​=const和 T 3 ∗ = c o n s t T_3^*=const T3∗​=const的最大工作状态条件概率

1.某单轴涡喷发动机,在飞行高度 H = 0 H=0 H=0,马赫数 M a = 0 Ma=0 Ma=0以最大转速工作时,压气机的 π c ∗ = 12.0 \pi_c^*=12.0 πc∗​=12.0,效率 η c ∗ = 0.85 \eta_c^*=0.85 ηc∗​=0.85,涡轮后燃气总温 T 4 ∗ = 1000 K T_4^*=1000\ \mathrm{K} T4∗​=1000 K,若该发动机采用转速 n = n= n=常数,喷管喉部面积 A 5 = A_5= A5​=常数的调节规律,当 H = 11 k m H=11\ \mathrm{km} H=11 km( T 0 ′ = 216.5 K T_{0}^{\prime}=216.5 \mathrm{K} T0′​=216.5K), M a = 2.0 Ma=2.0 Ma=2.0时, π c ∗ ′ = 8.0 {\pi _{c}^{*}}^{\prime}=8.0 πc∗​′=8.0, η c ∗ ′ = 0.82 {\eta _{c}^{*}}^{\prime}=0.82 ηc∗​′=0.82,试计算:当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前、后燃气总温 T 3 ∗ ′ {T_{3}^{*}}^{\prime} T3∗​′、 T 4 ∗ ′ {T_{4}^{*}}^{\prime} T4∗​′各为多少?若发动机采用转速 n = n= n=常数,涡轮前燃气总温 T 3 ∗ = T_3^*= T3∗​=常数的调节规律,试计算: H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮后燃气总温 T 4 ∗ ′ ′ {T_{4}^{*}}^{^{''}} T4∗​′′为多少?当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,喷管喉部面积 A 5 A_5 A5​变化了多少?(假设涡轮导向器,喷管均处于超临界状态,空气和燃气的流量相同,定压比热容分别为 1.005 k J / ( k g ⋅ K ) 1.005\ \mathrm{kJ/(kg\cdot K)} 1.005 kJ/(kg⋅K)、 1.158 k J / ( k g ⋅ K ) 1.158\ \mathrm{kJ/(kg\cdot K)} 1.158 kJ/(kg⋅K);绝热指数分别为 1.40 1.40 1.40、 1.33 1.33 1.33,其他各种损失系数和部件效率等于 1.0 1.0 1.0)

:空气和燃气的流量相同,即 β = 1 \beta=1 β=1

H = 0 H=0 H=0、 M a = 0 Ma=0 Ma=0,进气道内为绝能流动,可以得到: T 1 ∗ = T 0 ∗ = T 0 = 288.15 K T_{1}^{*}=T_{0}^{*}=T_0=288.15 \mathrm{K} T1∗​=T0∗​=T0​=288.15K

功率平衡: w c = w T β η m w_c=w_T\beta \eta _m wc​=wT​βηm​,由于 β = 1 \beta=1 β=1、 η m = 1 \eta_m=1 ηm​=1,可以得到 w c = w T w_c=w_T wc​=wT​,即:
c p T 1 ∗ η c ∗ ( π c ∗ γ − 1 γ − 1 ) = c p ′ ( T 3 ∗ − T 4 ∗ ) \frac{c_pT_{1}^{*}}{\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}\left( T_{3}^{*}-T_{4}^{*} \right) ηc∗​cp​T1∗​​(πc∗​γγ−1​−1)=cp′​(T3∗​−T4∗​)
可以算出涡轮前总温:
T 3 ∗ = c p T 1 ∗ c p ′ η c ∗ ( π c ∗ γ − 1 γ − 1 ) + T 4 ∗ = 1005 × 288.15 1158 × 0.85 ( 1 2 1.4 − 1 1.4 − 1 ) + 1000 = 1304.19 K T_{3}^{*}=\frac{c_pT_{1}^{*}}{c_{p}^{\prime}\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) +T_{4}^{*}=\frac{1005\times 288.15}{1158\times 0.85}\left( 12^{\frac{1.4-1}{1.4}}-1 \right) +1000=1304.19\,\,\mathrm{K} T3∗​=cp′​ηc∗​cp​T1∗​​(πc∗​γγ−1​−1)+T4∗​=1158×0.851005×288.15​(121.41.4−1​−1)+1000=1304.19K
由于涡轮效率为 η T ∗ = 1 \eta_T^*=1 ηT∗​=1,所以有:
π T ∗ = ( T 3 ∗ T 4 ∗ ) γ ′ γ ′ − 1 = ( 1304.19 1000 ) 1.33 1.33 − 1 = 2.916 \pi _{T}^{*}=\left( \frac{T_{3}^{*}}{T_{4}^{*}} \right) ^{\frac{\gamma ^{\prime}}{\gamma ^{\prime}-1}}=\left( \frac{1304.19}{1000} \right) ^{\frac{1.33}{1.33-1}}=2.916 πT∗​=(T4∗​T3∗​​)γ′−1γ′​=(10001304.19​)1.33−11.33​=2.916
H = 11 k m H=11\ \mathrm{km} H=11 km、 M a = 2 Ma=2 Ma=2,进气道内为绝能流动,可以得到:
T 1 ∗ ′ = T 0 ∗ ′ = T 0 ′ ( 1 + γ − 1 2 M a 2 ) = 216.5 × ( 1 + 1.4 − 1 2 × 2 2 ) = 389.7 K {T_{1}^{*}}^{\prime}={T_{0}^{*}}^{\prime}={T_0}^{\prime}\left( 1+\frac{\gamma -1}{2}Ma^2 \right) =216.5\times \left( 1+\frac{1.4-1}{2}\times 2^2 \right) =389.7\,\,\mathrm{K} T1∗​′=T0∗​′=T0​′(1+2γ−1​Ma2)=216.5×(1+21.4−1​×22)=389.7K
若该发动机采用转速 n = n= n=常数,喷管喉部面积 A 5 = A_5= A5​=常数的调节规律,涡轮导向器,喷管均处于超临界状态,可知涡轮落压比 π T ∗ = 2.916 \pi_T^*=2.916 πT∗​=2.916不变。

根据功率平衡:
c p T 1 ∗ ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = c p ′ T 3 ∗ ′ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) η T ∗ ′ \frac{c_p{T_{1}^{*}}^{\prime}}{{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}{T_{3}^{*}}^{\prime}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right) {\eta _{T}^{*}}^{\prime} ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=cp′​T3∗​′ ​1−πT∗​γ′γ′−1​1​ ​ηT∗​′
可以计算出 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前燃气总温为:
T 3 ∗ ′ = c p T 1 ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) c p ′ η c ∗ ′ η T ∗ ′ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) = 1005 × 389.7 × ( 8 1.4 − 1 1.4 − 1 ) 1158 × 0.82 × 1 × ( 1 − 1 2.91 6 1.33 − 1 1.33 ) = 1435.12 K {T_{3}^{*}}^{\prime}=\frac{c_p{T_{1}^{*}}^{\prime}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right)}{c_{p}^{\prime}{\eta _{c}^{*}}^{\prime}{\eta _{T}^{*}}^{\prime}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right)}=\frac{1005\times 389.7\times \left( 8^{\frac{1.4-1}{1.4}}-1 \right)}{1158\times 0.82\times 1\times \left( 1-\frac{1}{2.916^{\frac{1.33-1}{1.33}}} \right)}=1435.12\,\,\mathrm{K} T3∗​′=cp′​ηc∗​′ηT∗​′(1−πT∗​γ′γ′−1​1​)cp​T1∗​′(πc∗′​γγ−1​−1)​=1158×0.82×1×(1−2.9161.331.33−1​1​)1005×389.7×(81.41.4−1​−1)​=1435.12K
由于涡轮效率为 η T ∗ ′ = 1 {\eta _{T}^{*}}^{\prime}=1 ηT∗​′=1,所以有:
T 4 ∗ ′ = T 3 ∗ ′ π T ∗ γ ′ − 1 γ ′ = 1435.12 2.91 6 1.33 − 1 1.33 = 1100.44 K {T_{4}^{*}}^{\prime}=\frac{{T_{3}^{*}}^{\prime}}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}}=\frac{1435.12}{2.916^{\frac{1.33-1}{1.33}}}=1100.44\,\,\mathrm{K} T4∗​′=πT∗​γ′γ′−1​T3∗​′​=2.9161.331.33−1​1435.12​=1100.44K
若发动机采用转速 n = n= n=常数,涡轮前燃气总温 T 3 ∗ = T_3^*= T3∗​=常数的调节规律

根据功率平衡:
c p T 1 ∗ ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = c p ′ ( T 3 ∗ − T 4 ∗ ′ ′ ) \frac{c_p{T_{1}^{*}}^{\prime}}{{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}\left( T_{3}^{*}-{T_{4}^{*}}^{^{''}} \right) ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=cp′​(T3∗​−T4∗​′′)
可以计算出 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮后燃气总温为:
T 4 ∗ ′ ′ = T 3 ∗ − c p T 1 ∗ ′ c p ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = 1304.19 − 1005 × 389.7 1158 × 0.82 ( 8 1.4 − 1 1.4 − 1 ) = 969.51 K {T_{4}^{*}}^{^{''}}=T_{3}^{*}-\frac{c_p{T_{1}^{*}}^{\prime}}{c_{p}^{\prime}{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =1304.19-\frac{1005\times 389.7}{1158\times 0.82}\left( 8^{\frac{1.4-1}{1.4}}-1 \right) =969.51\,\,\mathrm{K} T4∗​′′=T3∗​−cp′​ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=1304.19−1158×0.821005×389.7​(81.41.4−1​−1)=969.51K
此时涡轮落压比:
π T ∗ ′ = ( T 3 ∗ T 4 ∗ ′ ′ ) γ ′ γ ′ − 1 = ( 1304.19 969.51 ) 1.33 1.33 − 1 = 3.304 {\pi _{T}^{*}}^{\prime}=\left( \frac{T_{3}^{*}}{{T_{4}^{*}}^{^{''}}} \right) ^{\frac{\gamma ^{\prime}}{\gamma ^{\prime}-1}}=\left( \frac{1304.19}{969.51} \right) ^{\frac{1.33}{1.33-1}}=3.304 πT∗​′=(T4∗​′′T3∗​​)γ′−1γ′​=(969.511304.19​)1.33−11.33​=3.304
由于:
π T ∗ = [ σ e A 5 q ( λ 5 ) σ t A t q ( λ t ) ] 2 γ ′ γ ′ + 1 \pi _{T}^{*}=\left[ \frac{\sigma _eA_5q\left( \lambda _5 \right)}{\sigma _tA_tq\left( \lambda _t \right)} \right] ^{\frac{2\gamma ^{\prime}}{\gamma ^{\prime}+1}} πT∗​=[σt​At​q(λt​)σe​A5​q(λ5​)​]γ′+12γ′​
涡轮导向器,喷管均处于超临界状态,其他各种损失系数和部件效率等于 1.0 1.0 1.0,上式可改写为:
π T ∗ = ( A 5 A t ) 2 γ ′ γ ′ + 1 \pi _{T}^{*}=\left( \frac{A_5}{A_t} \right) ^{\frac{2\gamma ^{\prime}}{\gamma ^{\prime}+1}} πT∗​=(At​A5​​)γ′+12γ′​
当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,喷管喉部面积 A 5 A_5 A5​变化为:
A 5 ′ A 5 = ( π T ∗ ′ π T ∗ ) γ ′ + 1 2 γ ′ = ( 3.304 2.916 ) 1.33 + 1 2 × 1.33 = 1.116 \frac{A_{5}^{\prime}}{A_5}=\left( \frac{{\pi _{T}^{*}}^{\prime}}{\pi _{T}^{*}} \right) ^{\frac{\gamma ^{\prime}+1}{2\gamma ^{\prime}}}=\left( \frac{3.304}{2.916} \right) ^{\frac{1.33+1}{2\times 1.33}}=1.116 A5​A5′​​=(πT∗​πT∗​′​)2γ′γ′+1​=(2.9163.304​)2×1.331.33+1​=1.116

2.已知某一单转子涡喷发动机在 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0(标准大气压条件)工作时,压气机出口总温为 T 2 ∗ = 642 K T_2^*=642\ \mathrm{K} T2∗​=642 K,涡轮后燃气总温 T 4 ∗ = 1100 K T_4^*=1100\ \mathrm{K} T4∗​=1100 K,涡轮效率 η T ∗ = 0.98 \eta_T^*=0.98 ηT∗​=0.98,若发动机采用转速 n = n m a x = n=n_{max}= n=nmax​=常数,涡轮前燃气总温 T 3 ∗ = T 3 , m a x ∗ = T_3^*=T_{3,max}^*= T3∗​=T3,max∗​=常数的调节规律,当 H = 11 k m H=11\ \mathrm{km} H=11 km( T 0 ′ = 216.5 K T_{0}^{\prime}=216.5 \mathrm{K} T0′​=216.5K), M a = 2.0 Ma=2.0 Ma=2.0时, π c ∗ ′ = 8.0 {\pi _{c}^{*}}^{\prime}=8.0 πc∗​′=8.0, η c ∗ ′ = 0.81 {\eta _{c}^{*}}^{\prime}=0.81 ηc∗​′=0.81,涡轮效率 η T ∗ ′ = 0.95 {\eta _{T}^{*}}^{\prime}=0.95 ηT∗​′=0.95,当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前、后燃气总温 T 3 ∗ T_3^* T3∗​、 T 4 ∗ T_4^* T4∗​各为多少?落压比为多少?(假设涡轮导向器,喷管均处于超临界状态,各种机械损失效率为 0.98 0.98 0.98,两种情况下油气比 f = 0.02 f=0.02 f=0.02,引气冷却系数 v c o l = 0.01 v_{col}=0.01 vcol​=0.01,定压比热容分别为 1.005 k J / ( k g ⋅ K ) 1.005\ \mathrm{kJ/(kg\cdot K)} 1.005 kJ/(kg⋅K)、 1.158 k J / ( k g ⋅ K ) 1.158\ \mathrm{kJ/(kg\cdot K)} 1.158 kJ/(kg⋅K);绝热指数分别为 1.40 1.40 1.40、 1.33 1.33 1.33)

解: β = 1 + f − v c o l = 1 + 0.02 − 0.01 = 1.01 \beta =1+f-v_{col}=1+0.02-0.01=1.01 β=1+f−vcol​=1+0.02−0.01=1.01

H = 0 H=0 H=0、 M a = 0 Ma=0 Ma=0,进气道内为绝能流动,可以得到: T 1 ∗ = T 0 ∗ = T 0 = 288.15 K T_{1}^{*}=T_{0}^{*}=T_0=288.15 \mathrm{K} T1∗​=T0∗​=T0​=288.15K

采用转速 n = n m a x = n=n_{max}= n=nmax​=常数,涡轮前燃气总温 T 3 ∗ = T 3 , m a x ∗ = T_3^*=T_{3,max}^*= T3∗​=T3,max∗​=常数的调节规律

功率平衡: w c = w T β η m w_c=w_T\beta \eta _m wc​=wT​βηm​,即:
c p ( T 2 ∗ − T 1 ∗ ) = c p ′ ( T 3 ∗ − T 4 ∗ ) β η m c_p\left( T_{2}^{*}-T_{1}^{*} \right) =c_{p}^{\prime}\left( T_{3}^{*}-T_{4}^{*} \right) \beta \eta _m cp​(T2∗​−T1∗​)=cp′​(T3∗​−T4∗​)βηm​
可以计算出涡轮前总温:
T 3 ∗ = c p c p ′ β η m ( T 2 ∗ − T 1 ∗ ) + T 4 ∗ = 1005 1158 × 1.01 × 0.98 × ( 642 − 288.15 ) + 1100 = 1410.26 K T_{3}^{*}=\frac{c_p}{c_{p}^{\prime}\beta \eta _m}\left( T_{2}^{*}-T_{1}^{*} \right) +T_{4}^{*}=\frac{1005}{1158\times 1.01\times 0.98}\times \left( 642-288.15 \right) +1100=1410.26\,\,\mathrm{K} T3∗​=cp′​βηm​cp​​(T2∗​−T1∗​)+T4∗​=1158×1.01×0.981005​×(642−288.15)+1100=1410.26K
H = 11 k m H=11\ \mathrm{km} H=11 km、 M a = 2 Ma=2 Ma=2,进气道内为绝能流动,可以得到:
T 1 ∗ ′ = T 0 ∗ ′ = T 0 ′ ( 1 + γ − 1 2 M a 2 ) = 216.5 × ( 1 + 1.4 − 1 2 × 2 2 ) = 389.7 K {T_{1}^{*}}^{\prime}={T_{0}^{*}}^{\prime}={T_0}^{\prime}\left( 1+\frac{\gamma -1}{2}Ma^2 \right) =216.5\times \left( 1+\frac{1.4-1}{2}\times 2^2 \right) =389.7\,\,\mathrm{K} T1∗​′=T0∗​′=T0​′(1+2γ−1​Ma2)=216.5×(1+21.4−1​×22)=389.7K
由功率平衡:
c p T 1 ∗ ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = c p ′ ( T 3 ∗ ′ − T 4 ∗ ′ ) β η m \frac{c_p{T_{1}^{*}}^{\prime}}{{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}\left( {T_{3}^{*}}^{\prime}-{T_{4}^{*}}^{\prime} \right) \beta \eta _m ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=cp′​(T3∗​′−T4∗​′)βηm​
可以计算出:
T 4 ∗ ′ = T 3 ∗ ′ − c p T 1 ∗ ′ c p ′ η c ∗ ′ β η m ( π c ∗ ′ γ − 1 γ − 1 ) = 1410.26 − 1005 × 389.7 1158 × 0.81 × 1.01 × 0.98 ( 8 1.4 − 1 1.4 − 1 ) = 1067.95 K {T_{4}^{*}}^{\prime}={T_{3}^{*}}^{\prime}-\frac{c_p{T_{1}^{*}}^{\prime}}{c_{p}^{\prime}{\eta _{c}^{*}}^{\prime}\beta \eta _m}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =1410.26-\frac{1005\times 389.7}{1158\times 0.81\times 1.01\times 0.98}\left( 8^{\frac{1.4-1}{1.4}}-1 \right) =1067.95\,\,\mathrm{K} T4∗​′=T3∗​′−cp′​ηc∗​′βηm​cp​T1∗​′​(πc∗′​γγ−1​−1)=1410.26−1158×0.81×1.01×0.981005×389.7​(81.41.4−1​−1)=1067.95K
其中: T 3 ∗ ′ = T 3 ∗ = 1410.26 K {T_{3}^{*}}^{\prime}=T_{3}^{*}=1410.26 \mathrm{K} T3∗​′=T3∗​=1410.26K

功率平衡还可以写为:
c p T 1 ∗ ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = c p ′ T 3 ∗ ′ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) η T ∗ ′ β η m \frac{c_p{T_{1}^{*}}^{\prime}}{{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}{T_{3}^{*}}^{\prime}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right) {\eta _{T}^{*}}^{\prime}\beta \eta _m ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=cp′​T3∗​′ ​1−πT∗​γ′γ′−1​1​ ​ηT∗​′βηm​
解出涡轮落压比:
π T ∗ = ( 1 − c p T 1 ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) c p ′ T 3 ∗ ′ η c ∗ ′ η T ∗ ′ β η m ) γ ′ 1 − γ ′ = ( 1 − 1005 × 389.7 ( 8 1.4 − 1 1.4 − 1 ) 1158 × 1410.26 × 0.81 × 0.95 × 1.01 × 0.98 ) 1.33 1 − 1.33 = 3.28 \pi _{T}^{*}=\left( 1-\frac{c_p{T_{1}^{*}}^{\prime}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right)}{c_{p}^{\prime}{T_{3}^{*}}^{\prime}{\eta _{c}^{*}}^{\prime}{\eta _{T}^{*}}^{\prime}\beta \eta _m} \right) ^{\frac{\gamma ^{\prime}}{1-\gamma ^{\prime}}}=\left( 1-\frac{1005\times 389.7\left( 8^{\frac{1.4-1}{1.4}}-1 \right)}{1158\times 1410.26\times 0.81\times 0.95\times 1.01\times 0.98} \right) ^{\frac{1.33}{1-1.33}}=3.28 πT∗​= ​1−cp′​T3∗​′ηc∗​′ηT∗​′βηm​cp​T1∗​′(πc∗′​γγ−1​−1)​ ​1−γ′γ′​= ​1−1158×1410.26×0.81×0.95×1.01×0.981005×389.7(81.41.4−1​−1)​ ​1−1.331.33​=3.28

3.某单轴涡喷发动机在标准海平面 H = 0 H=0 H=0,马赫数 M a = 0 Ma=0 Ma=0以最大转速工作时,压气机的 π c ∗ = 12.0 \pi_c^*=12.0 πc∗​=12.0,压气机效率 η c ∗ = 0.84 \eta _{c}^{*}=0.84 ηc∗​=0.84、涡轮效率 η T ∗ = 0.92 \eta_T^*=0.92 ηT∗​=0.92,涡轮后燃气总温 T 4 ∗ = 1100 K T_4^*=1100\ \mathrm{K} T4∗​=1100 K,若该发动机采用转速 n = n= n=常数,喷管喉部面积 A 5 = A_5= A5​=常数的调节规律,当 H = 11 k m H=11\ \mathrm{km} H=11 km( T 0 ′ = 216.5 K T_{0}^{\prime}=216.5 \mathrm{K} T0′​=216.5K), M a = 2.0 Ma=2.0 Ma=2.0时, π c ∗ ′ = 8.0 {\pi _{c}^{*}}^{\prime}=8.0 πc∗​′=8.0, η c ∗ ′ = 0.81 {\eta _{c}^{*}}^{\prime}=0.81 ηc∗​′=0.81,涡轮效率 η T ∗ ′ = 0.91 {\eta _{T}^{*}}^{\prime}=0.91 ηT∗​′=0.91,试计算:当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前燃气总温 T 3 ∗ ′ {T_{3}^{*}}^{\prime} T3∗​′等于多少?假设涡轮导向器,喷管均处于超临界状态,两种情况下油气比 f = 0.01 f=0.01 f=0.01,引气冷却系数 v c o l = 0.01 v_{col}=0.01 vcol​=0.01,定压比热容分别为 1.005 k J / ( k g ⋅ K ) 1.005\ \mathrm{kJ/(kg\cdot K)} 1.005 kJ/(kg⋅K)、 1.158 k J / ( k g ⋅ K ) 1.158\ \mathrm{kJ/(kg\cdot K)} 1.158 kJ/(kg⋅K);定熵指数分别为 1.40 1.40 1.40、 1.33 1.33 1.33;其它各种损失系数等于 1.0 1.0 1.0)

解: β = 1 + f − v c o l = 1 + 0.01 − 0.01 = 1 \beta =1+f-v_{col}=1+0.01-0.01=1 β=1+f−vcol​=1+0.01−0.01=1

H = 0 H=0 H=0、 M a = 0 Ma=0 Ma=0,进气道内为绝能流动,可以得到: T 1 ∗ = T 0 ∗ = T 0 = 288.15 K T_{1}^{*}=T_{0}^{*}=T_0=288.15 \mathrm{K} T1∗​=T0∗​=T0​=288.15K

采用转速 n = n= n=常数,喷管喉部面积 A 5 = A_5= A5​=常数的调节规律

功率平衡: w c = w T β η m w_c=w_T\beta \eta _m wc​=wT​βηm​,由于 β = 1 \beta=1 β=1、 η m = 1 \eta_m=1 ηm​=1,可以得到 w c = w T w_c=w_T wc​=wT​,即:
c p T 1 ∗ η c ∗ ( π c ∗ γ − 1 γ − 1 ) = c p ′ ( T 3 ∗ − T 4 ∗ ) \frac{c_pT_{1}^{*}}{\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}\left( T_{3}^{*}-T_{4}^{*} \right) ηc∗​cp​T1∗​​(πc∗​γγ−1​−1)=cp′​(T3∗​−T4∗​)
可以算出涡轮前总温:
T 3 ∗ = c p T 1 ∗ c p ′ η c ∗ ( π c ∗ γ − 1 γ − 1 ) + T 4 ∗ = 1005 × 288.15 1158 × 0.84 ( 1 2 1.4 − 1 1.4 − 1 ) + 1100 = 1407.82 K T_{3}^{*}=\frac{c_pT_{1}^{*}}{c_{p}^{\prime}\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) +T_{4}^{*}=\frac{1005\times 288.15}{1158\times 0.84}\left( 12^{\frac{1.4-1}{1.4}}-1 \right) +1100=1407.82\,\,\mathrm{K} T3∗​=cp′​ηc∗​cp​T1∗​​(πc∗​γγ−1​−1)+T4∗​=1158×0.841005×288.15​(121.41.4−1​−1)+1100=1407.82K
涡轮功可写为:
w T = c p ′ ( T 3 ∗ − T 4 ∗ ) = c p ′ T 3 ∗ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) η T ∗ w_T=c_{p}^{\prime}\left( T_{3}^{*}-T_{4}^{*} \right) =c_{p}^{\prime}T_{3}^{*}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right) \eta _{T}^{*} wT​=cp′​(T3∗​−T4∗​)=cp′​T3∗​ ​1−πT∗​γ′γ′−1​1​ ​ηT∗​
解出涡轮落压比:
π T ∗ = ( T 3 ∗ η T ∗ T 3 ∗ η T ∗ + T 4 ∗ − T 3 ∗ ) γ ′ γ ′ − 1 = ( 1407.82 × 0.92 1407.82 × 0.92 + 1100 − 1407.82 ) 1.33 1.33 − 1 = 2.99 \pi _{T}^{*}=\left( \frac{T_{3}^{*}\eta _{T}^{*}}{T_{3}^{*}\eta _{T}^{*}+T_{4}^{*}-T_{3}^{*}} \right) ^{\frac{\gamma ^{\prime}}{\gamma ^{\prime}-1}}=\left( \frac{1407.82\times 0.92}{1407.82\times 0.92+1100-1407.82} \right) ^{\frac{1.33}{1.33-1}}=2.99 πT∗​=(T3∗​ηT∗​+T4∗​−T3∗​T3∗​ηT∗​​)γ′−1γ′​=(1407.82×0.92+1100−1407.821407.82×0.92​)1.33−11.33​=2.99
涡轮导向器,喷管均处于超临界状态,可知涡轮落压比 π T ∗ \pi_T^* πT∗​不变。

H = 11 k m H=11\ \mathrm{km} H=11 km、 M a = 2 Ma=2 Ma=2,进气道内为绝能流动,可以得到:
T 1 ∗ ′ = T 0 ∗ ′ = T 0 ′ ( 1 + γ − 1 2 M a 2 ) = 216.5 × ( 1 + 1.4 − 1 2 × 2 2 ) = 389.7 K {T_{1}^{*}}^{\prime}={T_{0}^{*}}^{\prime}={T_0}^{\prime}\left( 1+\frac{\gamma -1}{2}Ma^2 \right) =216.5\times \left( 1+\frac{1.4-1}{2}\times 2^2 \right) =389.7\,\,\mathrm{K} T1∗​′=T0∗​′=T0​′(1+2γ−1​Ma2)=216.5×(1+21.4−1​×22)=389.7K
由功率平衡:
c p T 1 ∗ ′ η c ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) = c p ′ T 3 ∗ ′ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) η T ∗ ′ \frac{c_p{T_{1}^{*}}^{\prime}}{{\eta _{c}^{*}}^{\prime}}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}{T_{3}^{*}}^{\prime}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right) {\eta _{T}^{*}}^{\prime} ηc∗​′cp​T1∗​′​(πc∗′​γγ−1​−1)=cp′​T3∗​′ ​1−πT∗​γ′γ′−1​1​ ​ηT∗​′
可以计算出 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前燃气总温为:
T 3 ∗ ′ = c p T 1 ∗ ′ ( π c ∗ ′ γ − 1 γ − 1 ) c p ′ η c ∗ ′ η T ∗ ′ ( 1 − 1 π T ∗ γ ′ − 1 γ ′ ) = 1005 × 389.7 × ( 8 1.4 − 1 1.4 − 1 ) 1158 × 0.81 × 0.91 × ( 1 − 1 2.9 9 1.33 − 1 1.33 ) = 1564.64 K {T_{3}^{*}}^{\prime}=\frac{c_p{T_{1}^{*}}^{\prime}\left( {\pi _{c}^{*^{\prime}}}^{\frac{\gamma -1}{\gamma}}-1 \right)}{c_{p}^{\prime}{\eta _{c}^{*}}^{\prime}{\eta _{T}^{*}}^{\prime}\left( 1-\frac{1}{{\pi _{T}^{*}}^{\frac{\gamma ^{\prime}-1}{\gamma ^{\prime}}}} \right)}=\frac{1005\times 389.7\times \left( 8^{\frac{1.4-1}{1.4}}-1 \right)}{1158\times 0.81\times 0.91\times \left( 1-\frac{1}{2.99^{\frac{1.33-1}{1.33}}} \right)}=1564.64\,\,\mathrm{K} T3∗​′=cp′​ηc∗​′ηT∗​′(1−πT∗​γ′γ′−1​1​)cp​T1∗​′(πc∗′​γγ−1​−1)​=1158×0.81×0.91×(1−2.991.331.33−1​1​)1005×389.7×(81.41.4−1​−1)​=1564.64K

航空发动机原理复习之计算题总结(四)相关推荐

  1. 航空发动机原理复习之计算题总结(一)

    文章目录 类型一:燃气轮机性能指标计算 01 知识回顾 燃气轮机相关性能指标 类型二:发动机推力计算 02 知识回顾 两种推力计算公式 喷管工作的三种工作状态 类型一:燃气轮机性能指标计算 01 知识 ...

  2. 航空发动机原理复习之计算题总结(三)

    文章目录 类型四:相似参数换算 04 知识回顾 六大相似参数 类型五:压气机.涡轮相关参数计算 05 知识回顾 压气机的相关参数 涡轮的相关参数 (1)压气机 (2)涡轮 类型四:相似参数换算 04 ...

  3. 航空发动机原理复习之计算题总结(二)

    文章目录 类型三:压气机加级.换级.去级 03 知识回顾 相似参数 (1)压气机加级 (2)压气机换级 (3)压气机去级 类型三:压气机加级.换级.去级 03 知识回顾 相似参数 对于同一台压气机,无 ...

  4. 大学操作系统期末考试复习经典计算题快速回顾

    操作系统期末考试复习经典计算题 1.银行家算法 2.计算周转时间 2.1 先来先服务(FCFS) 2.2 短作业优先调度算法(SJF) 2.3 优先级调度算法和高响应比优先调度算法 3.页面置换算法( ...

  5. 计算机网络原理公式,计算机网络原理公式及计算题

    计算机网络原理公式及计算题 (25页) 本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦! 11.90 积分  计算机网络原理公式及计算题第三章物理层公式一:数据 ...

  6. 操作系统总复习(计算题分析题)

    操作系统总复习(一)-- 计算题 1.设在批处理系统中有四道作业.它们进入系统的时间及运行时间如下: (1)FCFS算法(先来先调度) (2)SJF算法(最短者优先) 2.在银行家算法中,若出现下述资 ...

  7. 计算机七个计算原理,计算机组成原理计算题(7页)-原创力文档

    计算题: [第三章] 交叉方式的片选方法,交叉方式的地址分配,交叉存取度的概念,交叉存储器的带宽的计算 多模块交叉存储器采用低位地址做偏选. 模块存取一个字的存储周期为T ,总线传送时间为 t ,存储 ...

  8. 信息系统项目管理师-计算题专题(四)运筹学计算

    运筹学 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 涉及知识点 可能涉及到如下 ...

  9. 微型计算机PTR说明类型,微机原理复习资料

    实用标准 微机原理复习资料 填空题 (1) 对于指令XCHG BX,[BP+SI],如果指令执行前,(BX)= 561AH, (BP)=0200H, (SD) = 0046H, (SS) = 2F00 ...

最新文章

  1. Junit指定测试执行顺序
  2. Eclipse安装插件时报No repository found containing...解决办法
  3. .NET Core的介绍
  4. 循环码差错图样matlab,基于MATLAB的(15,7)循环码的编译仿真.doc
  5. 如何查看mysql8.0的默认密码_MySQL8.0安装之后查找默认密码
  6. python Exception(异常处理)
  7. 中的listeners_C++中Future和Promise的一种简单实现
  8. 菜鸟涂鸦作品展_No.24
  9. regexp(正则表达式)的使用
  10. CSS 权威指南 读书笔记(三)
  11. 1.0 如何使用cubemx并且移植RTX操作系统?(方法二)
  12. 关于自己搭建的邮件被微软反垃圾邮件标记为垃圾邮件
  13. 如何有效的清理c盘文件?真实有效
  14. [蓝屏]driver_unloaded_without_cancelling_pending_operations
  15. 运维工程师分享7道经典面试题
  16. ACM-ICPC Jiaozuo Onsite 2018 Resistors in Parallel (思维+java大数+找规律)
  17. Linux安装postman工具
  18. 多层Android锁机样本分析
  19. 数据库设计之第一范式、第二范式、第三范式
  20. vmware 安装win98报错

热门文章

  1. 采购人员考证书有用吗?
  2. 香农公式--通信的浅显理解--单纯只是为了弄懂功率和信道容量的关系
  3. 直流无刷电机(BLDC)转速闭环调速系统及Matlab/Simulink仿真分析
  4. Simulink|电动汽车、永磁电动机建模与仿真
  5. 只需三行代码轻松实现酷炫gif动图转换为mp4视频
  6. 2202: 合并链表(线性表)
  7. OCPC系列 - PID算法(理解PID算法)-比例控制算法、积分控制算法、微分控制算法
  8. 安卓模拟器安装教程_XP系统安装安卓模拟器失败原因解决
  9. 【逆向】【Android微信】加密数据库踩坑
  10. win10任务管理器开机老是自己打开