搞客户端开发,时间也有点了,但是每次想起来,总感觉自己掌握的东西零零散散,没有一点集在的感觉,应用层的懂,framework的也懂,框架啥的了解一点,分层的思想也有一些,JVM的原理啊,内存分配和管理啊,运行机制啊啥的也知道一点,每次下班或者没事了,就在考虑,自己应该有一个主攻方向,往这个方向集中发展一下,首选的几个目标应该是非常清楚的,我们要掌握android,那么关于android的View机制、动画原理这些都是必须要掌握的,所以呢,自己想在这几个方面花些时间,好好研究一下,这样才能使自己更具竞争力。

好了,不管是要了解View机制,还是android动画,我们应该都需要有Choreographer的知识,明白系统刷新机制到底是怎么样的,这样才能对其他方面有更好的辅助。本章博客,我们就来学习一下Android中的Choreographer的运行机制。

我们都知道,应用层的一个Activity对应一个根View(也就是一个DecorView)、一个WindowState、一个ViewRootImpl,每个对象都非常重要,都是在Activity添加过程中重量级的对象,DecorView是当前Activity的根View,它里面管理着当前界面的View树;WindowState对象是当前Activity窗口在系统侧WindowManagerService中代理对象;ViewRootImpl则肩负着View的标准三步曲的处理和事件分发,而View绘制也是由Choreographer指导的,Choreographer的英文意思就是编舞者、舞蹈指挥,看着非常形象。那我们就从Choreographer对象的构建开始说起吧,它的构建是在ViewRootImpl的构造方法中的,代码如下:

  123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
public ViewRootImpl(Context context, Display display) {
mContext = context;
mWindowSession = WindowManagerGlobal.getWindowSession();
mDisplay = display;
mBasePackageName = context.getBasePackageName();
mDisplayAdjustments = display.getDisplayAdjustments();
mThread = Thread.currentThread();
mLocation = new WindowLeaked(null);
mLocation.fillInStackTrace();
mWidth = -1;
mHeight = -1;
mDirty = new Rect();
mTempRect = new Rect();
mVisRect = new Rect();
mWinFrame = new Rect();
mWindow = new W(this);
mTargetSdkVersion = context.getApplicationInfo().targetSdkVersion;
mViewVisibility = View.GONE;
mTransparentRegion = new Region();
mPreviousTransparentRegion = new Region();
// [+LEUI-9331]
mPreBlurParams = new BlurParams();
// [-LEUI-9331]
mFirst = true; // true for the first time the view is added
mAdded = false;
mAttachInfo = new View.AttachInfo(mWindowSession, mWindow, display, this, mHandler, this);
mAccessibilityManager = AccessibilityManager.getInstance(context);
mAccessibilityInteractionConnectionManager =
new AccessibilityInteractionConnectionManager();
mAccessibilityManager.addAccessibilityStateChangeListener(
mAccessibilityInteractionConnectionManager);
mHighContrastTextManager = new HighContrastTextManager();
mAccessibilityManager.addHighTextContrastStateChangeListener(
mHighContrastTextManager);
mViewConfiguration = ViewConfiguration.get(context);
mDensity = context.getResources().getDisplayMetrics().densityDpi;
mNoncompatDensity = context.getResources().getDisplayMetrics().noncompatDensityDpi;
mFallbackEventHandler = new PhoneFallbackEventHandler(context);
mChoreographer = Choreographer.getInstance();
mDisplayManager = (DisplayManager)context.getSystemService(Context.DISPLAY_SERVICE);
loadSystemProperties();
/**
* M: increase instance count and check log property to determine
* whether to enable/disable log system. @{
*/
mIdent = sIdent++;
checkViewRootImplLogProperty();
if (LOCAL_LOGV) {
enableLog(true, "a");
}
if (DEBUG_LIFECYCLE) {
Log.v(TAG, "ViewRootImpl construct: context = " + context + ", mThread = " + mThread
+ ", mChoreographer = " + mChoreographer + ", mTraversalRunnable = "
+ mTraversalRunnable + ", this = " + this);
}
}

来自CODE的代码片
snippet_file_0.txt

从构造方法中可以看到Choreographer是单例模式的,也就是一个ViewRootImpl对象对应一个Choreographer,当界面需要重绘时,都会调用到ViewRootImp类的scheduleTraversals()方法,这里的实现也比较简单,代码如下:

 123456789
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
scheduleConsumeBatchedInput();
}
}

来自CODE的代码片
snippet_file_0.txt

mTraversalScheduled表示是否已经发起重绘,每次scheduleTraversals()方法调用之后,就会将它置为true,然后在下次调用doTraversal()又先将它置为false,然后调用mChoreographer.postCallback()添加一个Runnable,请注意,第一个参数是Choreographer.CALLBACK_TRAVERSAL,在Choreographer当前,添加的类型一共有三种,分别是:CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL,分别表示事件回调、动画回调、绘制回调。postCallback()方法是转而调用postCallbackDelayed()方法的,最后一个参数delayMillis传的是0,表示当前的重绘不需要延时,我们跟进去看一下添加的postCallbackDelayed()方法的代码:

  12345678910111213141516171819202122232425
/**
* Posts a callback to run on the next frame after the specified delay.
* <p>
* The callback runs once then is automatically removed.
* </p>
*
* @param callbackType The callback type.
* @param action The callback action to run during the next frame after the specified delay.
* @param token The callback token, or null if none.
* @param delayMillis The delay time in milliseconds.
*
* @see #removeCallback
* @hide
*/
public void postCallbackDelayed(int callbackType,
Runnable action, Object token, long delayMillis) {
if (action == null) {
throw new IllegalArgumentException("action must not be null");
}
if (callbackType < 0 || callbackType > CALLBACK_LAST) {
throw new IllegalArgumentException("callbackType is invalid");
}
postCallbackDelayedInternal(callbackType, action, token, delayMillis);
}

来自CODE的代码片
snippet_file_0.txt

首先判断参数action是否为空,action就是我们要回调的对象,回调对象都为空了,那我们还干啥呢?其实判断callbackType,在整个过程中,只定义了上面描述的三种类型的事件,如果传入的type值不符合,那就抛出一个IllegalArgumentException("callbackType is invalid")异常。参数正常了,继续调用postCallbackDelayedInternal()进一步处理。postCallbackDelayedInternal()方法的代码如下:

  1234567891011121314151617181920212223
private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
if (DEBUG) {
Log.d(TAG, "PostCallback: type=" + callbackType
+ ", action=" + action + ", token=" + token
+ ", delayMillis=" + delayMillis);
}
synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
final long dueTime = now + delayMillis;
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
if (dueTime <= now) {
scheduleFrameLocked(now);
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}

来自CODE的代码片
snippet_file_0.txt

此处获取当前时间,然后加上要延迟的时间,作为当前Callback的时间点,以这个时间点作为标准,把Callback对象添加到mCallbackQueues[callbackType]队列当中,这块的逻辑和Looper、MessageQueue、Handler中添加Message的逻辑很相似,大家可以对比学习。然后判断dueTime <= now,这块的逻辑看了半天,我确实没看懂,dueTime会有比now小的情况吗,也就是传进来的delayMillis小于0,再往上讲,就是当前要添加的回调要在上一次添加的回调之前,这感觉不太可能吧?如果有弄懂的朋友,烦请解答一下。此处应该是执行else分支,往当前的队列中添加一个Message,那么通过Handler机制就会进行处理,此处的mHandler是一个FrameHandler对象,我们来看一下FrameHandler的代码:

  1234567891011121314151617181920
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
doScheduleCallback(msg.arg1);
break;
}
}
}

来自CODE的代码片
snippet_file_0.txt

这里的message消息也比较简单,MSG_DO_FRAME指系统在没有使用Vsync机制的时候,使用异步消息来刷新屏幕,当然,大家一定要理解,此处的刷新其实只是刷新屏幕工作的很小一部分,只是回调ViewRootImpl方法中添加的Runnable对象,最终是调用根View的draw方法,让每个子View有把自己的图像元素填充到分配好的显存当中,而要完全显示,还有很多工作要作,最终是在SurfaceFlinger类中对所有窗口的View进行合成,然后渲染,最终post到FrameBuffer上,才能显示出来的;MSG_DO_SCHEDULE_VSYNC当然就是指系统使用Vsync来刷新了;MSG_DO_SCHEDULE_CALLBACK就是指添加Callback或者FrameCallback完成的消息了。好了,我们继续看MSG_DO_SCHEDULE_CALLBACK的消息处理,它是调用doScheduleCallback(msg.arg1)来进行处理的,msg.arg1是刚才添加消息时的类型。我们整个看一下handleMessage()方法的代码,发现非常简单,这也是一个非常好的习惯,我们平时的代码当中,也应该尽量这样实现,这样一眼就可以看出来这个方法所要作的事情,把具体的处理放到每个细节方法中去。我们来看一下doScheduleCallback()方法的实现:

  12345678910
void doScheduleCallback(int callbackType) {
synchronized (mLock) {
if (!mFrameScheduled) {
final long now = SystemClock.uptimeMillis();
if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) {
scheduleFrameLocked(now);
}
}
}
}

来自CODE的代码片
snippet_file_0.txt

mFrameScheduled和ViewRootImpl的scheduleTraversals()方法中的变量mTraversalScheduled作用是一样的,也是判断当前是否正在执行添加,然后调用(mCallbackQueues[callbackType].hasDueCallbacksLocked(now))判断是否已处理过Callback事务,该方法的判断也很简单,(mHead != null && mHead.dueTime<= now),如果当前队列头不为空,并且队列头元素的时间点小于当前的时间点,那就说明是之前添加的,则需要对它进行处理;相反,如果队列头为空或者添加的时间点大于当前的时间点,也就是要延迟处理,则不需要任何操作。条件符合的话,就调用scheduleFrameLocked(now)进一步处理,我们来看一下scheduleFrameLocked()方法的实现:

  123456789101112131415161718192021222324252627282930
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {
if (DEBUG) {
Log.d(TAG, "Scheduling next frame on vsync.");
}
// If running on the Looper thread, then schedule the vsync immediately,
// otherwise post a message to schedule the vsync from the UI thread
// as soon as possible.
if (isRunningOnLooperThreadLocked()) {
scheduleVsyncLocked();
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / NANOS_PER_MS + sFrameDelay, now);
if (DEBUG) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}

来自CODE的代码片
snippet_file_0.txt

此片一开始就把mFrameScheduled赋值为true,表示事务开始执行了,那么上面doScheduleCallback()方法当中的代码此该就不会再执行了。接下来的逻辑以USE_VSYNC分开,意思也非常明了,就是系统是否使用Vsync刷新机制,它是通过获取系统属性得到的,private static final boolean USE_VSYNC =  SystemProperties.getBoolean("debug.choreographer.vsync",true)。如果使用了Vsync垂直同步机制,则一步判断当前线程是否具备消息循环,如果有消息循环,则立即请求下一次Vsync信号,如果不具有消息循环,则通过当前进程的主线程请求Vsync信号;如果没有使用Vsync机制,则使用异步消息延时执行屏幕刷新。是否具有消息循环是通过调用isRunningOnLooperThreadLocked()方法完成判断的,它的实现很简单,return Looper.myLooper() == mLooper。因为当Choreographer对象在创建的时候,参数looper就是调用Looperlooper = Looper.myLooper()获取回来的,也就是说当前进程肯定是有消息循环的,所以此处的判断为true,其他两个分支:当前线程不具备消息循环和系统未使用Vsync同步机制的逻辑,我们就不分析了,大家有兴趣的话,可以自己跟踪一下。进入if分支,继续调用scheduleVsyncLocked()方法进行处理,它的实现非常简单,就是调用mDisplayEventReceiver.scheduleVsync()来请求下一次Vsync信号。      看到这里,是不是感觉逻辑有点多了,开始乱了,转来转去的,系统到底要干啥?呵呵,我们暂停下来梳理一下,系统作了这么多事情最终的目的就是在下一次Vsync信号到来的时候,将Choreographer当中的三个队列中的事务执行起来,这些事务是应用层ViewRootImpl在scheduleTraversals()方法中添加进去的,在Choreographer当中,我们要先将外边传进来的Callback放入队列,然后就要去请求Vsync信号,因为Vsync信号是定时产生的,你不请求,它就不会理你,当然你收不到回调,也就不知道啥时候通知ViewRootImpl执行View的measure、layout、draw了,这样说一下,大家清楚我们要干什么了吗?我第一次看Choreographer类的代码时候,看了半天,也是乱了,所以这里大概理一下。      好,我们搞清楚目的了,继续往前走,我们现在已经将Callback添加到队列中了,下一步要作的就是请求Vsync信号了。mDisplayEventReceiver是一个FrameDisplayEventReceiver对象,我们来看一下它的代码定义:

  1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
implements Runnable {
private boolean mHavePendingVsync;
private long mTimestampNanos;
private int mFrame;
public FrameDisplayEventReceiver(Looper looper) {
super(looper);
}
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
// Ignore vsync from secondary display.
// This can be problematic because the call to scheduleVsync() is a one-shot.
// We need to ensure that we will still receive the vsync from the primary
// display which is the one we really care about. Ideally we should schedule
// vsync for a particular display.
// At this time Surface Flinger won't send us vsyncs for secondary displays
// but that could change in the future so let's log a message to help us remember
// that we need to fix this.
if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) {
Log.d(TAG, "Received vsync from secondary display, but we don't support "
+ "this case yet. Choreographer needs a way to explicitly request "
+ "vsync for a specific display to ensure it doesn't lose track "
+ "of its scheduled vsync.");
scheduleVsync();
return;
}
// Post the vsync event to the Handler.
// The idea is to prevent incoming vsync events from completely starving
// the message queue. If there are no messages in the queue with timestamps
// earlier than the frame time, then the vsync event will be processed immediately.
// Otherwise, messages that predate the vsync event will be handled first.
long now = System.nanoTime();
if (timestampNanos > now) {
Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
+ " ms in the future! Check that graphics HAL is generating vsync "
+ "timestamps using the correct timebase.");
timestampNanos = now;
}
if (mHavePendingVsync) {
Log.w(TAG, "Already have a pending vsync event. There should only be "
+ "one at a time.");
} else {
mHavePendingVsync = true;
}
mTimestampNanos = timestampNanos;
mFrame = frame;
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
}

来自CODE的代码片
snippet_file_0.txt

我们可以看到这里的mTimestampNanos时间定义都是纳秒级别的,因为Vsync信号是用来同步屏幕刷新频率的,所以对时间的要求非常高,才采用了纳秒级别的,如果大家对Vsync信号的产生机制不了解的话,可以看我前面的博客:Vsync垂直同步信号分发和SurfaceFlinger响应执行渲染流程分析(一),mDisplayEventReceiver类变量是在Choreographer的构造方法中赋值的,我们继续来看它的scheduleVsync()方法的实现,因为FrameDisplayEventReceiver类是继承DisplayEventReceiver的,而它没用对scheduleVsync()方法重写,所以是调用父类的:

  123456789101112
/**
* Schedules a single vertical sync pulse to be delivered when the next
* display frame begins.
*/
public void scheduleVsync() {
if (mReceiverPtr == 0) {
Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
+ "receiver has already been disposed.");
} else {
nativeScheduleVsync(mReceiverPtr);
}
}

来自CODE的代码片
snippet_file_0.txt

它的实现很简单,判断描述符mReceiverPtr是否合法,如果非法就打印日志,什么也不作了,合法的话,就继续调用native方法nativeScheduleVsync(mReceiverPtr)来请求Vsync信号。nativeScheduleVsync()方法实现在android_view_DisplayEventReceiver.cpp当中,是通过定义JNINativeMethod gMethods[]来定义方法调用指针的,因为此类的代码不多,这里就全部贴出来,方便大家查看:

   123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "DisplayEventReceiver"
//#define LOG_NDEBUG 0
#include "JNIHelp.h"
#include <android_runtime/AndroidRuntime.h>
#include <utils/Log.h>
#include <utils/Looper.h>
#include <utils/threads.h>
#include <gui/DisplayEventReceiver.h>
#include "android_os_MessageQueue.h"
namespace android {
// Number of events to read at a time from the DisplayEventReceiver pipe.
// The value should be large enough that we can quickly drain the pipe
// using just a few large reads.
static const size_t EVENT_BUFFER_SIZE = 100;
static struct {
jclass clazz;
jmethodID dispatchVsync;
jmethodID dispatchHotplug;
} gDisplayEventReceiverClassInfo;
class NativeDisplayEventReceiver : public LooperCallback {
public:
NativeDisplayEventReceiver(JNIEnv* env,
jobject receiverObj, const sp<MessageQueue>& messageQueue);
status_t initialize();
void dispose();
status_t scheduleVsync();
protected:
virtual ~NativeDisplayEventReceiver();
private:
jobject mReceiverObjGlobal;
sp<MessageQueue> mMessageQueue;
DisplayEventReceiver mReceiver;
bool mWaitingForVsync;
virtual int handleEvent(int receiveFd, int events, void* data);
bool processPendingEvents(nsecs_t* outTimestamp, int32_t* id, uint32_t* outCount);
void dispatchVsync(nsecs_t timestamp, int32_t id, uint32_t count);
void dispatchHotplug(nsecs_t timestamp, int32_t id, bool connected);
};
NativeDisplayEventReceiver::NativeDisplayEventReceiver(JNIEnv* env,
jobject receiverObj, const sp<MessageQueue>& messageQueue) :
mReceiverObjGlobal(env->NewGlobalRef(receiverObj)),
mMessageQueue(messageQueue), mWaitingForVsync(false) {
ALOGV("receiver %p ~ Initializing input event receiver.", this);
}
NativeDisplayEventReceiver::~NativeDisplayEventReceiver() {
JNIEnv* env = AndroidRuntime::getJNIEnv();
env->DeleteGlobalRef(mReceiverObjGlobal);
}
status_t NativeDisplayEventReceiver::initialize() {
status_t result = mReceiver.initCheck();
if (result) {
ALOGW("Failed to initialize display event receiver, status=%d", result);
return result;
}
int rc = mMessageQueue->getLooper()->addFd(mReceiver.getFd(), 0, Looper::EVENT_INPUT,
this, NULL);
if (rc < 0) {
return UNKNOWN_ERROR;
}
return OK;
}
void NativeDisplayEventReceiver::dispose() {
ALOGV("receiver %p ~ Disposing display event receiver.", this);
if (!mReceiver.initCheck()) {
mMessageQueue->getLooper()->removeFd(mReceiver.getFd());
}
}
status_t NativeDisplayEventReceiver::scheduleVsync() {
if (!mWaitingForVsync) {
ALOGV("receiver %p ~ Scheduling vsync.", this);
// Drain all pending events.
nsecs_t vsyncTimestamp;
int32_t vsyncDisplayId;
uint32_t vsyncCount;
processPendingEvents(&vsyncTimestamp, &vsyncDisplayId, &vsyncCount);
status_t status = mReceiver.requestNextVsync();
if (status) {
ALOGW("Failed to request next vsync, status=%d", status);
return status;
}
mWaitingForVsync = true;
}
return OK;
}
int NativeDisplayEventReceiver::handleEvent(int receiveFd, int events, void* data) {
if (events & (Looper::EVENT_ERROR | Looper::EVENT_HANGUP)) {
ALOGE("Display event receiver pipe was closed or an error occurred. "
"events=0x%x", events);
return 0; // remove the callback
}
if (!(events & Looper::EVENT_INPUT)) {
ALOGW("Received spurious callback for unhandled poll event. "
"events=0x%x", events);
return 1; // keep the callback
}
// Drain all pending events, keep the last vsync.
nsecs_t vsyncTimestamp;
int32_t vsyncDisplayId;
uint32_t vsyncCount;
if (processPendingEvents(&vsyncTimestamp, &vsyncDisplayId, &vsyncCount)) {
ALOGV("receiver %p ~ Vsync pulse: timestamp=%lld, id=%d, count=%d",
this, vsyncTimestamp, vsyncDisplayId, vsyncCount);
mWaitingForVsync = false;
dispatchVsync(vsyncTimestamp, vsyncDisplayId, vsyncCount);
}
return 1; // keep the callback
}
bool NativeDisplayEventReceiver::processPendingEvents(
nsecs_t* outTimestamp, int32_t* outId, uint32_t* outCount) {
bool gotVsync = false;
DisplayEventReceiver::Event buf[EVENT_BUFFER_SIZE];
ssize_t n;
while ((n = mReceiver.getEvents(buf, EVENT_BUFFER_SIZE)) > 0) {
ALOGV("receiver %p ~ Read %d events.", this, int(n));
for (ssize_t i = 0; i < n; i++) {
const DisplayEventReceiver::Event& ev = buf[i];
switch (ev.header.type) {
case DisplayEventReceiver::DISPLAY_EVENT_VSYNC:
// Later vsync events will just overwrite the info from earlier
// ones. That's fine, we only care about the most recent.
gotVsync = true;
*outTimestamp = ev.header.timestamp;
*outId = ev.header.id;
*outCount = ev.vsync.count;
break;
case DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG:
dispatchHotplug(ev.header.timestamp, ev.header.id, ev.hotplug.connected);
break;
default:
ALOGW("receiver %p ~ ignoring unknown event type %#x", this, ev.header.type);
break;
}
}
}
if (n < 0) {
ALOGW("Failed to get events from display event receiver, status=%d", status_t(n));
}
return gotVsync;
}
void NativeDisplayEventReceiver::dispatchVsync(nsecs_t timestamp, int32_t id, uint32_t count) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
ALOGV("receiver %p ~ Invoking vsync handler.", this);
env->CallVoidMethod(mReceiverObjGlobal,
gDisplayEventReceiverClassInfo.dispatchVsync, timestamp, id, count);
ALOGV("receiver %p ~ Returned from vsync handler.", this);
mMessageQueue->raiseAndClearException(env, "dispatchVsync");
}
void NativeDisplayEventReceiver::dispatchHotplug(nsecs_t timestamp, int32_t id, bool connected) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
ALOGV("receiver %p ~ Invoking hotplug handler.", this);
env->CallVoidMethod(mReceiverObjGlobal,
gDisplayEventReceiverClassInfo.dispatchHotplug, timestamp, id, connected);
ALOGV("receiver %p ~ Returned from hotplug handler.", this);
mMessageQueue->raiseAndClearException(env, "dispatchHotplug");
}
static jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverObj,
jobject messageQueueObj) {
sp<MessageQueue> messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
if (messageQueue == NULL) {
jniThrowRuntimeException(env, "MessageQueue is not initialized.");
return 0;
}
sp<NativeDisplayEventReceiver> receiver = new NativeDisplayEventReceiver(env,
receiverObj, messageQueue);
status_t status = receiver->initialize();
if (status) {
String8 message;
message.appendFormat("Failed to initialize display event receiver. status=%d", status);
jniThrowRuntimeException(env, message.string());
return 0;
}
receiver->incStrong(gDisplayEventReceiverClassInfo.clazz); // retain a reference for the object
return reinterpret_cast<jlong>(receiver.get());
}
static void nativeDispose(JNIEnv* env, jclass clazz, jlong receiverPtr) {
sp<NativeDisplayEventReceiver> receiver =
reinterpret_cast<NativeDisplayEventReceiver*>(receiverPtr);
receiver->dispose();
receiver->decStrong(gDisplayEventReceiverClassInfo.clazz); // drop reference held by the object
}
static void nativeScheduleVsync(JNIEnv* env, jclass clazz, jlong receiverPtr) {
sp<NativeDisplayEventReceiver> receiver =
reinterpret_cast<NativeDisplayEventReceiver*>(receiverPtr);
status_t status = receiver->scheduleVsync();
if (status) {
String8 message;
message.appendFormat("Failed to schedule next vertical sync pulse. status=%d", status);
jniThrowRuntimeException(env, message.string());
}
}
static JNINativeMethod gMethods[] = {
/* name, signature, funcPtr */
{ "nativeInit",
"(Landroid/view/DisplayEventReceiver;Landroid/os/MessageQueue;)J",
(void*)nativeInit },
{ "nativeDispose",
"(J)V",
(void*)nativeDispose },
{ "nativeScheduleVsync", "(J)V",
(void*)nativeScheduleVsync }
};
#define FIND_CLASS(var, className) \
var = env->FindClass(className); \
LOG_FATAL_IF(! var, "Unable to find class " className); \
var = jclass(env->NewGlobalRef(var));
#define GET_METHOD_ID(var, clazz, methodName, methodDescriptor) \
var = env->GetMethodID(clazz, methodName, methodDescriptor); \
LOG_FATAL_IF(! var, "Unable to find method " methodName);
int register_android_view_DisplayEventReceiver(JNIEnv* env) {
int res = jniRegisterNativeMethods(env, "android/view/DisplayEventReceiver",
gMethods, NELEM(gMethods));
LOG_FATAL_IF(res < 0, "Unable to register native methods.");
FIND_CLASS(gDisplayEventReceiverClassInfo.clazz, "android/view/DisplayEventReceiver");
GET_METHOD_ID(gDisplayEventReceiverClassInfo.dispatchVsync,
gDisplayEventReceiverClassInfo.clazz,
"dispatchVsync", "(JII)V");
GET_METHOD_ID(gDisplayEventReceiverClassInfo.dispatchHotplug,
gDisplayEventReceiverClassInfo.clazz,
"dispatchHotplug", "(JIZ)V");
return 0;
}
} // namespace android

来自CODE的代码片
snippet_file_0.txt

我们来看一下nativeScheduleVsync方法的定义,{ "nativeScheduleVsync", "(J)V", (void*)nativeScheduleVsync },这里需要说明一下,java方法和JNI方法存在着对应关系,"(J)V"括号里边的表示该方法的入参,括号外边的表示返回值J表示long,而返回值V表示Void,关于这个,大家可以看我之前的博客:JNI字段描述符“([Ljava/lang/String;)V”,也是转载别人的,呵呵。好了,我们继续看这个方法的实现,它将java层传进来的描述符强制转换为NativeDisplayEventReceiver对象,这样的处理在JNI当中是非常多见的,大家要熟悉。然后调用它的scheduleVsync()方法,最后根据返回值判断当前请求Vsync信号是否成功,如果status非0,则抛出RuntimeException异常。很明显,我们从这都可以猜出,正常情况下,返回的status应该为0了。      我们继续来看NativeDisplayEventReceiver::scheduleVsync()方法的处理逻辑。首先检查mWaitingForVsync,如果当前正在请求Vsync信号,则就不需要重复请求了,只有在当前未请求的时候,才需要发出新的请求,然后调用processPendingEvents()将当前队列中还存在receiver处理掉,因此方法与我们的流程不相关,这里就不展开了,大致是使用pipe机制将mReceiver中还存在的receiver一一读出,大家如果了解Linux机制的话,就知道pipe机制对应了两个管道,管道中的数据被读出之后,也就相应的从管道中移除了,所以不需要两端对数据做任何移除的处理,每一个receiver处理完成后,就设置一下gotVsync= true,
*outTimestamp = ev.header.timestamp,*outId = ev.header.id,*outCount = ev.vsync.count,gotVsync的意思就是当前的receiver已经收到Vsync信号通知了。好了,我们回到主流程,scheduleVsync()方法当中处理完队列中的receiver后,就开始调用mReceiver.requestNextVsync()请求新的Vsync信号了,mReceiver是一个DisplayEventReceiver对象,我们来看一下requestNextVsync()方法的实现,因这个类的代码也很少,这里就直接全部贴出来了:

  123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include <utils/Errors.h>
#include <gui/BitTube.h>
#include <gui/DisplayEventReceiver.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/ISurfaceComposer.h>
#include <private/gui/ComposerService.h>
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
DisplayEventReceiver::DisplayEventReceiver() {
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
if (sf != NULL) {
mEventConnection = sf->createDisplayEventConnection();
if (mEventConnection != NULL) {
mDataChannel = mEventConnection->getDataChannel();
}
}
}
DisplayEventReceiver::~DisplayEventReceiver() {
}
status_t DisplayEventReceiver::initCheck() const {
if (mDataChannel != NULL)
return NO_ERROR;
return NO_INIT;
}
int DisplayEventReceiver::getFd() const {
if (mDataChannel == NULL)
return NO_INIT;
return mDataChannel->getFd();
}
status_t DisplayEventReceiver::setVsyncRate(uint32_t count) {
if (int32_t(count) < 0)
return BAD_VALUE;
if (mEventConnection != NULL) {
mEventConnection->setVsyncRate(count);
return NO_ERROR;
}
return NO_INIT;
}
status_t DisplayEventReceiver::requestNextVsync() {
if (mEventConnection != NULL) {
mEventConnection->requestNextVsync();
return NO_ERROR;
}
return NO_INIT;
}
ssize_t DisplayEventReceiver::getEvents(DisplayEventReceiver::Event* events,
size_t count) {
return DisplayEventReceiver::getEvents(mDataChannel, events, count);
}
ssize_t DisplayEventReceiver::getEvents(const sp<BitTube>& dataChannel,
Event* events, size_t count)
{
return BitTube::recvObjects(dataChannel, events, count);
}
ssize_t DisplayEventReceiver::sendEvents(const sp<BitTube>& dataChannel,
Event const* events, size_t count)
{
return BitTube::sendObjects(dataChannel, events, count);
}
// ---------------------------------------------------------------------------
}; // namespace android

来自CODE的代码片
snippet_file_0.txt

requestNextVsync()方法中直接调用mEventConnection->requestNextVsync()来请求Vsync信号,mEventConnection对象是在DisplayEventReceiver类的构造函数中创建的,mEventConnection = sf->createDisplayEventConnection(),sf就是SurfaceFlinger对象,SurfaceFlinger类的createDisplayEventConnection()实现也非常简单,就是调用mEventThread->createEventConnection(),这又回到我们之前的博客了,大家可以去看一下。      EventThread一直在无限循环threadLoop()中请求Vsync信号的,当收到一个Vsync信号后,会调用status_t err = conn->postEvent(event)来进行分发,conn也就是上面的EventThread::Connection对象了,最后经过处理,回调到NativeDisplayEventReceiver::handleEvent(int receiveFd, int events, void*data)方法当中,这里同样processPendingEvents()处理完队列中的回调后,就调用dispatchVsync(vsyncTimestamp, vsyncDisplayId, vsyncCount)开始分发了,在NativeDisplayEventReceiver::dispatchVsync()这个方法中是通过当前的native层的执行环境env回调到java层的,env->CallVoidMethod(mReceiverObjGlobal,
gDisplayEventReceiverClassInfo.dispatchVsync, timestamp, id, count),再往下就回调到java层中DisplayEventReceiver类的dispatchVsync()方法中了。它里边的实现就是调用onVsync(),而FrameDisplayEventReceiver复写了onVsync()方法,所以就执行到Choreographer.FrameDisplayEventReceiver中的onVsync()方法了。      转了好大一圈,我们终于又从native层回来了。好,我们继续java层往下分析,Vsync信号拿回来了,大家应该也知道,我们的目的快达到了!!      onVsync()方法中以this为对象,向mHandler中添加了一个消息,消息处理的时候,就会调用它的run()方法了。run方法中直接调用doFrame()来进行处理。我们来看一下它的实现:

  1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
if (!mFrameScheduled) {
return; // no work to do
}
startNanos = System.nanoTime();
final long jitterNanos = startNanos - frameTimeNanos;
if (jitterNanos >= mFrameIntervalNanos) {
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
if (DEBUG) {
Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
+ "which is more than the frame interval of "
+ (mFrameIntervalNanos * 0.000001f) + " ms! "
+ "Skipping " + skippedFrames + " frames and setting frame "
+ "time to " + (lastFrameOffset * 0.000001f) + " ms in the past.");
}
frameTimeNanos = startNanos - lastFrameOffset;
}
if (frameTimeNanos < mLastFrameTimeNanos) {
if (DEBUG) {
Log.d(TAG, "Frame time appears to be going backwards. May be due to a "
+ "previously skipped frame. Waiting for next vsync.");
}
scheduleVsyncLocked();
return;
}
mFrameScheduled = false;
mLastFrameTimeNanos = frameTimeNanos;
}
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
if (DEBUG) {
final long endNanos = System.nanoTime();
Log.d(TAG, "Frame " + frame + ": Finished, took "
+ (endNanos - startNanos) * 0.000001f + " ms, latency "
+ (startNanos - frameTimeNanos) * 0.000001f + " ms.");
}
}

来自CODE的代码片
snippet_file_0.txt

如果(frameTimeNanos < mLastFrameTimeNanos)满足,则说明我们已经错过了本次的Vsync信号了,那么这种情况下,就什么也不用处理,重新获取下一次信号了。如果没有错过的话,那就进一步三次调用doCallbacks()分别对应三种事件类型来分发了。三种事件的顺序也是定义的顺序:CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL,这也是他们的处理优先级,输入事件放在第一,也是为了能尽快响应用户的操作,但是即使这样,Android的流畅性还是不如IOS,当然,这个原因就是其他方面的了,我们这里就不探讨了。我们来看一下doCallbacks()方法的实现:

  123456789101112131415161718192021222324252627282930313233
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
// We use "now" to determine when callbacks become due because it's possible
// for earlier processing phases in a frame to post callbacks that should run
// in a following phase, such as an input event that causes an animation to start.
final long now = SystemClock.uptimeMillis();
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(now);
if (callbacks == null) {
return;
}
mCallbacksRunning = true;
}
try {
for (CallbackRecord c = callbacks; c != null; c = c.next) {
if (DEBUG) {
Log.d(TAG, "RunCallback: type=" + callbackType
+ ", action=" + c.action + ", token=" + c.token
+ ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
}
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
}
}

来自CODE的代码片
snippet_file_0.txt

这里就是将每种类型的事件队列中的元素取出来,通过for循环一一调用他们的run()方法了,调用完成后,将队列中的Callback回收掉。而这里的CallbackRecord对象就是我们在ViewRootImpl类当中添加的InvalidateOnAnimationRunnable、mConsumedBatchedInputRunnable、mTraversalRunnable这三类对象了,那么回到View的流程中,收到Vsync信号后,就会回调mTraversalRunnable的run()方法,再次发起一次measure、layout、draw流程,那么也就和Vsync信号对接上了。      好了,到这里呢,我们整个流程也就分析完了,希望对大家有所帮助,谢谢大家!

Android黄油计划之Choreographer原理解析相关推荐

  1. android 屏幕录制方案,ShareREC for Android全系统录屏原理解析

    本文是Mob开发者平台技术副总监余勋杰基于MediaProjection实现Android全系统录屏功能的原理解析,包括了结合MediaRecorder和MediaCodec两套方案. 文 / 余勋杰 ...

  2. Android插件化之DroidPlugin原理解析

    文章目录 DroidPlugin原理解析 插件包安装 插件包解析和加载 插件Activity启动解析 插件service启动分析 插件receiver分析 插件provider分析 插件加载独立性 插 ...

  3. Android动态换肤实现原理解析,原理+实战+视频+源码

    前言 本人今年25岁,毕业之后进入一家小型的互联网公司工作,在这原公司呆了3年,直至今年才有了跳槽的想法. 每个程序员 都拥有大厂梦,我也不例外,在小公司待久了,感觉人会荒废掉,太轻松,没有压迫感.因 ...

  4. 真香定律!Android动态换肤实现原理解析,原理+实战+视频+源码

    自己项目中一直都是用的开源的xUtils框架,包括BitmapUtils.DbUtils.ViewUtils和HttpUtils四大模块,这四大模块都是项目中比较常用的.最近决定研究一下xUtils的 ...

  5. Android逆向之八门神器原理解析(主要分析其修改内存原理)

    实现dump出指定进程的内存文件 进阶 进程注入 参考教程:Android注入完全剖析 问题解决 1.执行memdump时报错:error: only position independent exe ...

  6. app保活面试题,Android动态换肤实现原理解析,再不刷题就晚了!

    前言 近期被两则消息刷屏,[字节跳动持续大规模招聘,全年校招超过1万人][腾讯有史以来最大规模的校招启动]当然Android岗位也包含在内,因此Android还是有很多机会的.结合往期面试的同学(主要 ...

  7. Android 操作系统 获取Root权限 原理解析

    android root权限破解分析 许多机友新购来的Android机器没有破解过Root权限,无法使用一些需要高权限的软件,以及进行一些高权限 的操作,其实破解手机Root权限是比较简单 及安全的, ...

  8. 安卓app开发教程!Android动态换肤实现原理解析,值得收藏!

    开头 Android开发,假如开始没有任何的开发经验的话, 千万不要着急,不要想着在短时间内就把一个语言学习好, 因为你之前没有任何的学习经验, 在这个过程中需要有耐心地学习完JAVA的基础知识, 然 ...

  9. Android动态换肤实现原理解析,灵魂拷问

    前言 转眼间,2020 年已过去一大半了,2020 年很难,各企业裁员的消息蛮多的,降职,不发年终奖等等.2020 年确实是艰难的一年.然而生活总是要继续,时间不给你丧的机会!如果我们能坚持下来,不断 ...

最新文章

  1. 浅析Python中bytes和str区别
  2. linux命令行中curl和wget自动解压功能对比
  3. “非深度网络”12层打败50层,普林斯顿+英特尔:更深不一定更好
  4. wordpress导航页采用分类目录排序
  5. Python 中的3Dplot
  6. Hibernate 参数设置一览表
  7. [LeetCode] Remove Duplicates from Sorted Array II
  8. 【Prometheus + Grafana】 使用 topk 在 grafana 绘制 前 n 个时间序列
  9. 头文件定义全局变量_5.2 C++局部变量与全局变量 | 输出局部全局变量
  10. Galaxy s4怎么安装一个预装软件的签名不一致的新版本
  11. CCNA training notes
  12. PowerPoint笔记(四)
  13. 《Java虚拟机规范》阅读(二):编译
  14. 59.Linux/Unix 系统编程手册(下) -- SOCKET: Internet Domain
  15. 超链接、插入子报表、网页框
  16. java excel 单元格 斜线_POI实现excel单元格画斜线
  17. 用闭包写法优化laravel多条件查询
  18. freeswitch ws php,针对FreeSwitch的呼叫中心接口
  19. php rn 返回,rn滑动返回页面监听 - osc_13a0punx的个人空间 - OSCHINA - 中文开源技术交流社区...
  20. java根据内容生成二维码

热门文章

  1. OpenGl学习笔记二:创建自己的着色器
  2. 修改谷歌浏览器ua的简单方法
  3. 第三部分 项目整合管理
  4. SAS统计描述、作图与均值显著性检验
  5. Keil_uvision 基本使用教程
  6. 6、Spring事务配置上篇
  7. 基于word2vec+TextCNN 实现中文文本分类
  8. 一款适合程序员的流程图/思维导图利器
  9. 渗透利器BurpSuite简介
  10. 【SFace】《SFace: An Efficient Network for Face Detection in Large Scale Variations》