我周围的人几乎都认为二分查找很简单,但事实真的如此吗?二分查找真的很简单吗?并不简单。看看 Knuth 大佬(发明 KMP 算法的那位)怎么说的:

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky...

这句话可以这样理解:思路很简单,细节是魔鬼。

本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。

而且,我们就是要深入细节,比如while循环中的不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

一、二分查找的框架

int binarySearch(int[] nums, int target) {int left = 0, right = ...;while(...) {int mid = (right + left) / 2;if (nums[mid] == target) {...} else if (nums[mid] < target) {left = ...} else if (nums[mid] > target) {right = ...}}return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

其中...标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外声明一下,计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2,本文暂时忽略这个问题。

二、寻找一个数(基本的二分搜索)

这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target) {int left = 0; int right = nums.length - 1; // 注意while(left <= right) { // 注意int mid = (right + left) / 2;if(nums[mid] == target)return mid; else if (nums[mid] < target)left = mid + 1; // 注意else if (nums[mid] > target)right = mid - 1; // 注意}return -1;
}

1. 为什么 while 循环的条件中是 <=,而不是 < ?

答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

我们这个算法中使用的是 [left, right] 两端都闭的区间。这个区间就是每次进行搜索的区间,我们不妨称为「搜索区间」(search space)

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

    if(nums[mid] == target)return mid;

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

while(left <= right)的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

while(left < right)的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就可能出现错误。

当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:

//...
while(left < right) {// ...
}
return nums[left] == target ? left : -1;

2. 为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?

当然是去搜索 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

3. 此算法有什么缺陷?

答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的时间复杂度了。

我们后续的算法就来讨论这两种二分查找的算法。

三、寻找左侧边界的二分搜索

直接看代码,其中的标记是需要注意的细节:

int left_bound(int[] nums, int target) {if (nums.length == 0) return -1;int left = 0;int right = nums.length; // 注意while (left < right) { // 注意int mid = (left + right) / 2;if (nums[mid] == target) {right = mid;} else if (nums[mid] < target) {left = mid + 1;} else if (nums[mid] > target) {right = mid; // 注意}}return left;
}

1. 为什么 while(left < right) 而不是 <= ?

答:用相同的方法分析,因为初始化 right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。

while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 恰巧为空,所以可以正确终止。

2. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。

比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。如果 target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

while (left < right) {//...
}
// target 比所有数都大
if (left == nums.length) return -1;
// 类似之前算法的处理方式
return nums[left] == target ? left : -1;

3. 为什么 left = mid + 1,right = mid ?和之前的算法不一样?

答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。

4. 为什么该算法能够搜索左侧边界?

答:关键在于对于 nums[mid] == target 这种情况的处理:

    if (nums[mid] == target)right = mid;

可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

5. 为什么返回 left 而不是 right?

答:返回left和right都是一样的,因为 while 终止的条件是 left == right。

四、寻找右侧边界的二分查找

寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:

int right_bound(int[] nums, int target) {if (nums.length == 0) return -1;int left = 0, right = nums.length;while (left < right) {int mid = (left + right) / 2;if (nums[mid] == target) {left = mid + 1; // 注意} else if (nums[mid] < target) {left = mid + 1;} else if (nums[mid] > target) {right = mid;}}return left - 1; // 注意

1. 为什么这个算法能够找到右侧边界?

答:类似地,关键点还是这里:

    if (nums[mid] == target) {left = mid + 1;

当 nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。

2. 为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

答:首先,while 循环的终止条件是 left == right,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1 好了。

至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

    if (nums[mid] == target) {left = mid + 1;// 这样想: mid = left - 1

因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left - 1]可能是target。

至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。

3. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:

while (left < right) {// ...
}
if (left == 0) return -1;
return nums[left-1] == target ? (left-1) : -1;

五、最后总结

先来梳理一下这些细节差异的因果逻辑:

第一个,最基本的二分查找算法:

因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

第二个,寻找左侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid+1 和 right = mid因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid+1 和 right = mid因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

通过本文,你学会了:

1. 分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

2. 注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

3. 如需要搜索左右边界,只要在 nums[mid] == target 时做修改即可。搜索右侧时需要减一。

就算遇到其他的二分查找变形,运用这几点技巧,也能保证你写出正确的代码。LeetCode Explore 中有二分查找的专项练习,其中提供了三种不同的代码模板,现在你再去看看,很容易就知道这几个模板的实现原理了。

【算法】详解二分查找算法(思路很简单,细节是魔鬼)相关推荐

  1. 二分查找:思路很简单,细节是魔鬼

    文章目录 1. 简介 2. 最简单的二分查找 3. 4种常见的二分查找变形问题 3.1 查找第一个值等于给定值的元素 3.2 查找最后一个值等于给定值的元素 3.3 查找第一个大于等于给定值的元素 3 ...

  2. 算法详解_常用算法详解——打印杨辉三角形

    杨辉三角,是二项式系数在三角形中的一种几何排列.在中国南宋数学家杨辉1261年所著的<详解九章算法>一书中出现.在欧洲,这个表叫做帕斯卡三角形.帕斯卡(1623----1662)是在165 ...

  3. 自动驾驶算法详解(3): LQR算法进行轨迹跟踪,lqr_speed_steering_control( )的python实现

    前言: LQR算法在自动驾驶应用中,一般用在NOP.TJA.LCC这些算法的横向控制中,一般与曲率的前馈控制一起使用,来实现轨迹跟踪的目标,通过控制方向盘转角来实现横向控制. 本文将使用python来 ...

  4. c语言二分法查找一个数_算法简解-二分查找

    读书不记录=没读,始终是我的信条·····最近因为要参加竞赛,发现自己真的差的很远,所以打算重新开始学习一遍算法及AI的相关数学知识,相信很多人都是闻数学,理工科色变,之前也是觉得上数理课太难了,真的 ...

  5. java二分排序法原理_Java常见排序算法详解—— 二分插入排序

    转载请注明出处: 二分插入排序Binary Insert Sort 概念: 二分(折半)插入排序是一种在直接插入排序算法上进行小改动的排序算法.其与直接排序算法最大的区别在于查找插入位置时使用的是二分 ...

  6. 蒙哥马利java算法_算法详解 - 蒙哥马利算法的概念与原理

    算法的详解 扯了一大顿,终于引出了今天文章的主角,前面讲到的两个算法,第一个就是蒙哥马利乘模,第二个就是蒙哥马利约减.下面我们来讲这两个算法的详解. 正如前面提到的蒙哥马利算法的三个特性之一是,不是基 ...

  7. 深度学习 --- BP算法详解(BP算法的优化)

    上一节我们详细分析了BP网络的权值调整空间的特点,深入分析了权值空间存在的两个问题即平坦区和局部最优值,也详细探讨了出现的原因,本节将根据上一节分析的原因进行改进BP算法,本节先对BP存在的缺点进行全 ...

  8. python算法与数据结构-二分查找算法

    二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难. 因此折半查找方法适用于不经常变动而查找频繁的有序列表. 递归实现二分查找,代码如下所示: ...

  9. manacher算法详解(马拉车算法)

    马拉车算法 Manacher算法是由题目"求字符串中最长回文子串的长度"而来.比如 abcdcb 的最长回文子串为 bcdcb ,其长度为5. 回文:正着念,反着念都一样 暴力解不 ...

最新文章

  1. Transaction事务注解和DynamicDataSource动态数据源切换问题解决
  2. 高端技巧:怎样使用#define定义变量
  3. 4.IDA-导航(跳转到地址、导航按钮、栈帧、调用约定、局部变量布局、IDA的栈视图)
  4. 文本摘要提取_了解自动文本摘要-1:提取方法
  5. javascript按中文首字母排序
  6. 舵机任意角度程序_【舵机初动】基于Mind+ Ardunio入门教程10
  7. 【转载】WebService到底是什么?
  8. [导入]Nebula3学习笔记(3): Core Namespace
  9. android表情转码,UCS-4 android/ios微信emoji表情转码
  10. 关于Team Building
  11. 云计算云存储的一些基本概念
  12. 6.0 深度学习图片常见转换操作
  13. npmnjs学习笔记-moddle description编写规则
  14. B细胞介导的体液免疫
  15. 到底什么是嵌入式?什么是单片机?
  16. 人眼特征标定数据(睁闭眼+瞳孔位置)
  17. Precision、Recall、F1-score、Micro-F1、Macro-F1、Recall@K
  18. Java内存管理:Java内存区域 JVM运行时数据区
  19. linux修改X2APIC参数,虚拟机对x2apic destination mode的选择
  20. Postman使用小技巧 - 用Postman生成Request代码

热门文章

  1. 确定子句文法 练习与实践环节
  2. 陌陌CEO唐岩:财富令我自由
  3. http请求报文详解
  4. 我的世界客户端开不了java_[疑难解答]为何启动MC我的世界客户端时闪退
  5. 形式逻辑(普通逻辑)1:什么是概念
  6. 享元模式(对象共享)
  7. Java实现MD5加密及解密的代码实例分享
  8. CORS(Cross-Origin Resource Sharing) 跨域资源共享
  9. padavan安装node.js
  10. Xposed框架开发入门