前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。这篇中我们来讨论改进PID控制器参数设置的问题。

1、问题提出

  在前面的文章中我们曾推导过PID控制器的公式,并且对其进行了离散化以适用于程序实现,具体的离散化公式如下:

  在编写程序时,我们将比例项的系数设定为Kp、积分项的系数设定为Ki、微分项的系数设定为Kd,其中:

  这其中T是采样周期,Ti是积分时间,Td是微分时间。所以在设置参数的时候我们需要先去顶比例系数Kp,然后在根据采样周期和积分微分时间来计算Ki和Kd。这么做虽然是公式变得简单了,但与我们传统的参数设置相比就显得不那么直观,所以有些使用者希望还是以传统的比例带PB、积分时间Ti、微分时间Td来配置相应的参数,这一篇中就来分析并解决这个问题。

2、分析设计

  对于上述这个问题,我们需要搞清楚Kp、Ki、Kd与PB、Ti、Td之间的关系。事实上,它们之间的关系并不复杂。首先比例系数Kp与比例带之间是互为倒数的关系,所以我们知道了其中一个就可以得到另一个。而Ti和Ki的关系以及Td和Kd的关系我们前面已经给出了。

接下来我们需要做的事,实际上就是让我们的PID控制器在不同的应用需求下呈现出不同的参数设置就可以设置不同的参数形式了。

3、软件实现

  我们已经分析了需要实现的内容,接下来我们就来考虑怎么实现。关于这一点,我们考虑我们的PID控制器的设计形式,需要修改的主要是三个方面的内容。第一个需要修改的地方就是PID控制器对象的定义。我们定义一个宏来实现条件编译,以实现在不同的需求下实现不同的参数定义,所以我们实现PID控制器的对象类型定义如下:

/*定义PID对象类型*/
typedef struct CLASSIC
{float *pPV;          //测量值指针float *pSV;          //设定值指针float *pMV;          //输出值指针uint16_t *pMA;        //手自动操作指针\#if PID_PARAMETER_STYLE > (0)float *pKp;          //比例系数指针float *pKi;          //积分系数指针float *pKd;          //微分系数指针
\#elsefloat *pPb;          //比例带float *pTi;          //积分时间,单位为秒float *pTd;          //微分时间,单位为秒float ts;           //采样周期,单位为秒
\#endiffloat setpoint;        //设定值float lasterror;       //前一拍偏差float preerror;        //前两拍偏差float deadband;        //死区float result;         //PID控制器计算结果float output;         //输出值0-100%float maximum;        //输出值上限float minimum;        //输出值下限float errorabsmax;      //偏差绝对值最大值float errorabsmin;      //偏差绝对值最小值float alpha;         //不完全微分系数float deltadiff;       //微分增量float integralValue;     //积分累计量float gama;          //微分先行滤波系数float lastPv;         //上一拍的过程测量值float lastDeltaPv;      //上一拍的过程测量值增量ClassicPIDDRType direct;   //正反作用ClassicPIDSMType sm;     //设定值平滑ClassicPIDCSType cas;     //串级设定}CLASSICPID;

  我们定义了对象类型,可以得到我们需要的对象变量,但这个对象变量需要初始化才能使用。所以第二个需要修改的地方就是PID控制器对象初始化函数。我们使用条件编译,在不同的应用需求下我们初始化不同的对象参数,具体实现如下:

/* PID初始化操作,需在对vPID对象的值进行修改前完成               */
/* CLASSICPID vPID,普通PID对象变量,实现数据交换与保存            */
/* float vMax,float vMin,过程变量的最大最小值(量程范围)          */
void PIDParaInitialization(CLASSICPID *vPID,  //PID控制器对象float *pPV,     //测量值指针float *pSV,     //设定值指针float *pMV,     //输出值指针\#if PID_PARAMETER_STYLE > (0)float *pKp,     //比例系数指针float *pKi,     //积分系数指针float *pKd,     //微分系数指针
\#elsefloat *pPb;          //比例带float *pTi;          //积分时间float *pTd;          //微分时间float ts,      //采样周期,单位为秒
\#endifuint16_t *pMA,    //手自动操作指针float vMax,     //控制变量量程float vMin,     //控制变量的零点ClassicPIDDRType direct,   //正反作用ClassicPIDSMType sm,     //设定值平滑ClassicPIDCSType cas     //串级设定)
{if((vPID==NULL)||(pPV==NULL)||(pSV==NULL)||(pMV==NULL)||(pMA==NULL)){return;}vPID->pPV=pPV;vPID->pSV=pSV;vPID->pMV=pMV;vPID->pMA=pMA;\#if PID_PARAMETER_STYLE > (0)if((pKp==NULL)||(pKi==NULL)||(pKd==NULL)){return;}vPID->pKp=pKp;vPID->pKi=pKi;vPID->pKd=pKd;if(*vPID->pKp<=0.00001){*vPID->pKp=1.0;       //比例系数*vPID->pKi=0.01;       //积分系数*vPID->pKd=0.01;       //微分系数}
\#elseif((pPb==NULL)||(pTi==NULL)||(pTd==NULL)){return;}vPID->pPb=pPb;vPID->pTi=pTi;vPID->pTd=pTd;vPID->ts=ts;if(*vPID->pPb<=0.00001){*vPID->pPb=1.0;       //比例带*vPID->pTi=1.0;       //积分时间,单位为秒*vPID->pTd=0.0001;     //微分时间,单位为秒}
\#endifvPID->maximum=vMax;      //控制变量的量程vPID->minimum=vMin;      //控制变量的零点*vPID->pSV=*pPV;       //设定值vPID->setpoint=*pPV;     //设定值*vPID->pMA=1;         //初始化为自动模式vPID->direct=direct;     //设定PID对象的正反作用vPID->cas=cas;        //设定是否启用串级vPID->sm=sm;         //设定是否启用设定值平滑if(vPID->cas==CASCADE){vPID->sm=SMOOTH_DISABLE;}vPID->lasterror=0.0;     //前一拍偏差vPID->preerror=0.0;      //前两拍偏差vPID->result=vMin;      //PID控制器结果vPID->output=0.0;       //输出值,百分比*vPID->pMV=vPID->output;   //输出值,百分比vPID->errorabsmax=(vMax-vMin)*0.9;vPID->errorabsmin=(vMax-vMin)*0.1;vPID->deadband=(vMax-vMin)*0.001;   //死区vPID->alpha=0.2;   //不完全微分系数vPID->deltadiff=0.0;     //微分增量vPID->integralValue=0.0;}

  第三个需要修改的是PID控制器对象的实现。在前面我们已经描述PB、Ti、Td与Kp、Ki、Kd之间的数学关系。为了方便处理,我们通过条件编译在不同应用需求下将参数均转化为统一的Kp、Ki、Kd来进行计算。具体的实现方式如下:

/* 通用PID控制器,采用增量型算法,具有变积分,梯形积分和抗积分饱和功能     */
/* 微分项采用不完全微分,一阶滤波,alpha值越大滤波作用越强          */
/* CLASSICPID vPID,PID对象变量,实现数据交换与保存              */
/* float pv,过程测量值,对象响应的测量数据,用于控制反馈           */
void PIDRegulator(CLASSICPID *vPID)
{float thisError;float result;float factor;float increment;float pError,dError,iError;float kp,ki,kd;\#if PID_PARAMETER_STYLE > (0)kp=*vPID->pKp;ki=*vPID->pKi;kd=*vPID->pKd;
\#elseif((*vPID->pTi)<vPID->ts){*vPID->pTi=vPID->ts;}kp=1/(*vPID->pPb);ki=kp*(vPID->ts/(*vPID->pTi));kd=kp*((*vPID->pTd)/vPID->ts);
\#endifif(*vPID->pMA<1)   //手动模式{vPID->output=*vPID->pMV;//设置无扰动切换vPID->result=(vPID->maximum-vPID->minimum)*vPID->output/100.0+vPID->minimum;*vPID->pSV=*vPID->pPV;vPID->setpoint=*vPID->pSV;}else          //自动模式{if(vPID->sm==SMOOTH_ENABLE) //设定值平滑变化{SmoothSetpoint(vPID);}else{if(vPID->cas==CASCADE)  //串级处理{vPID->setpoint=(vPID->maximum-vPID->minimum)*(*vPID->pSV)/100.0+vPID->minimum;}else{vPID->setpoint=*vPID->pSV;}}thisError=vPID->setpoint-(*vPID->pPV); //得到偏差值result=vPID->result;if (fabs(thisError)>vPID->deadband){pError=thisError-vPID->lasterror;iError=(thisError+vPID->lasterror)/2.0;dError=thisError-2*(vPID->lasterror)+vPID->preerror;//变积分系数获取factor=VariableIntegralCoefficient(thisError,vPID->errorabsmax,vPID->errorabsmin);//计算微分项增量带不完全微分vPID->deltadiff=kd*(1-vPID->alpha)*dError+vPID->alpha*vPID->deltadiff;increment=kp*pError+ki*factor*iError+vPID->deltadiff;  //增量计算}else{if((fabs(vPID->setpoint-vPID->minimum)<vPID->deadband)&&(fabs((*vPID->pPV)-vPID->minimum)<vPID->deadband)){result=vPID->minimum;}increment=0.0;}//正反作用设定if(vPID->direct==DIRECT){result=result+increment;}else{result=result-increment;}/*对输出限值,避免超调和积分饱和问题*/if(result>=vPID->maximum){result=vPID->maximum;}if(result<=vPID->minimum){result=vPID->minimum;} vPID->preerror=vPID->lasterror; //存放偏差用于下次运算vPID->lasterror=thisError;vPID->result=result;vPID->output=(vPID->result-vPID->minimum)/(vPID->maximum-vPID->minimum)*100.0;*vPID->pMV=vPID->output;}
}

4、总结

  在这一篇中,我们只是为了实现不同使用者的需求,将PID控制器的参数定义做了相应的修改,而控制器本身的功能并没有什么变化。这样既保证原有的应用不会受到影响,新的应用也可以根据需要定义参数,使用Kp、Ki、Kd或是PB、Ti、Td由应用设计的需要选择。

  这里需要说一下,不论我们如何定义参数,采样周期的选择都需要认真考虑。即使我们采用相同的参数整定,当采样周期不同时,效果可能会有较大差异,所以在整定参数前应根据系统的特性采用合适的采样周期。

欢迎关注:

PID控制器改进笔记之六:改进PID控制器之参数设定相关推荐

  1. PID控制器开发笔记之一:PID算法原理及基本实现

           在自动控制中,PID及其衍生出来的算法是应用最广的算法之一.各个做自动控制的厂家基本都有会实现这一经典算法.我们在做项目的过程中,也时常会遇到类似的需求,所以就想实现这一算法以适用于 ...

  2. PID控制器开发笔记之七:微分先行PID控制器的实现

    前面已经实现了各种的PID算法,然而在某些给定值频繁且大幅变化的场合,微分项常常会引起系统的振荡.为了适应这种给定值频繁变化的场合,人们设计了微分先行算法. 1.微分先行算法的思想 微分先行PID控制 ...

  3. PID控制器开发笔记之二:积分分离PID控制器的实现

    前面的文章中,我们已经讲述了PID控制器的实现,包括位置型PID控制器和增量型PID控制器.但这个实现只是最基本的实现,并没有考虑任何的干扰情况.在本节及后续的一些章节,我们就来讨论一下经典PID控制 ...

  4. PID控制器开发笔记之八:带死区的PID控制器的实现

    在计算机控制系统中,由于系统特性和计算精度等问题,致使系统偏差总是存在,系统总是频繁动作不能稳定.为了解决这种情况,我们可以引入带死区的PID算法. 1.带死区PID的基本思想 带死区的PID控制算法 ...

  5. PID控制器开发笔记(转)

    源: PID控制器开发笔记 转载于:https://www.cnblogs.com/LittleTiger/p/10499701.html

  6. PID控制器概述及python实现PID控制算法

    PID控制器简要分析 PID控制器概述 PID控制器的分类 位置式PID 增量式PID 代码实现 参数整定 PID控制器概述 PID控制器是自动控制领域一种常见的控制器,其简单易设计的结构和良好的鲁棒 ...

  7. PID控制器改进笔记之一:改进PID控制器之参数动态调整

    前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器.这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性 ...

  8. PID控制器开发笔记之十三:单神经元PID控制器的实现

    神经网络是模拟人脑思维方式的数学模型.神经网络是智能控制的一个重要分支,人们针对控制过程提供了各种实现方式,在本节我们主要讨论一下采用单神经元实现PID控制器的方式. 1.单神经元的基本原理 单神经元 ...

  9. PID控制器开发笔记之十一:专家PID控制器的实现

    前面我们讨论了经典的数字PID控制算法及其常见的改进与补偿算法,基本已经覆盖了无模型和简单模型PID控制经典算法的大部.再接下来的我们将讨论智能PID控制,智能PID控制不同于常规意义下的智能控制,是 ...

最新文章

  1. Adding a horizontal separator to a Flex PopUpButton control’s pop up menu (redux)
  2. 今奥无人机举证_【企业动态】今奥小飞无人机助力安徽省省级占补平衡核查与验收...
  3. mac上nginx静态页面访问403
  4. Docker 架构原理及简单使用
  5. html中th 与thead tbody的 使用
  6. Linux定时器函数setitimer
  7. 5阶无向完全图_离散数学图论答案
  8. Topaz DeNoise AI 2.3.6汉化版|AI智能降噪插件Topaz DeNoise AI 2.3.6中文版
  9. js调用Python函数
  10. python 京东签到_Python实战—京东用户行为分析
  11. PS去掉图片中的文字标识
  12. java打印表情包_表情包生成器
  13. Linux命名空间cgroups简介
  14. 第二章:计算思维——知识点整理
  15. 百度Q-T语义一致性比未获奖 (总结)
  16. Mac -- 启动ssh服务
  17. Python爬虫学了几个月却不敢接单?过来人的经验总结收好!
  18. 圣斗士图标:十二星座黄金圣衣
  19. 【毕业设计_课程设计】开源物联网系统设计(源码+论文)
  20. 抱怨一下网络,发泄下

热门文章

  1. 知识图谱最新权威综述论文解读:知识表示学习部分
  2. profile 配置文件修改后如何生效?
  3. 江西财经大学第二届程序设计竞赛同步赛 H大时钟 (扩展欧几里得)
  4. linux和windows下忘记mysql密码的几种找回方法
  5. MicroPython (一)点亮我的Led
  6. Falsy Bouncer-freecodecamp算法题目
  7. Pycharm简单配置及详细快捷键介绍
  8. iOS:图片相关(19-05-09更)
  9. 推荐两本移动开发挺火的书
  10. [问题解决] LaTex Error:Unknown graphics extension:.eps