Double Integrals Over Rectangles

Geometry

We have z=f(x,y) defined on [a,b]×[c,d][a,b] \times [c,d][a,b]×[c,d]. We name the domain to be D, and cut it into smaller rectangles. Take an arbitrary point (xij,yij)(x_{ij}, y_{ij})(xij​,yij​) on the rectangle [xi,xi+1]×[yj,yj+1][x_i, x_{i+1}] \times [y_j,y_{j+1}][xi​,xi+1​]×[yj​,yj+1​]. We calculate the Riemann sum.
∑i=1m∑j=1nf(xij,yij)(xi+1−xi)(yj+1−yj)=∑i=1m∑j=1nf(xij,yij)b−amd−cn\sum_{i=1}^m\sum_{j=1}^n f(x_{ij}, y_{ij}) (x_{i+1} - x_i)(y_{j+1} - y_{j}) \\\\ = \sum_{i=1}^m\sum_{j=1}^n f(x_{ij}, y_{ij}) \frac{b-a}{m} \frac{d-c}{n} \\\\ i=1∑m​j=1∑n​f(xij​,yij​)(xi+1​−xi​)(yj+1​−yj​)=i=1∑m​j=1∑n​f(xij​,yij​)mb−a​nd−c​
If such a limit exists, then we define it to be the double integral of f over the rectangle D. This is the volume between f and xy-plane on D. If the value of the function is always 1 in D, then the double integral equals to the area of D.

Iterated Integrals

Introduce a function A(x)=∫cdf(x,y)dyA(x) = \int_c^d f(x,y) dyA(x)=∫cd​f(x,y)dy. Next, we integrate A. ∫abA(x)dx=∫ab[∫cdf(x,y)dy]dx\int_a^b A(x) dx = \int_a^b [\int_c^d f(x,y) dy] dx∫ab​A(x)dx=∫ab​[∫cd​f(x,y)dy]dx. Alternatively, we can introduce a function of B(y)B(y)B(y) to integrate on x first.

Fubini’s Theorem

Assume f is continuous function on the rectangle D={(x,y)∣a≤x≤b,c≤y≤d}D=\{(x,y)|a\le x\le b, c \le y\le d \}D={(x,y)∣a≤x≤b,c≤y≤d}.
∫∫Df(x,y)dA=∫ab∫cdf(x,y)dydx=∫cd∫abf(x,y)dxdy\int\int_D f(x,y) dA = \int_a^b \int_c^d f(x,y) dydx = \int_c^d \int_a^b f(x,y) dxdy ∫∫D​f(x,y)dA=∫ab​∫cd​f(x,y)dydx=∫cd​∫ab​f(x,y)dxdy
E.x.

Evaluate ∫∫ysin(xy)dA\int \int ysin(xy) dA∫∫ysin(xy)dA where D=[1,2]×[0,π]D = [1,2] \times [0,\pi]D=[1,2]×[0,π].

sol:
∫∫ysin(xy)dA=∫0π∫12ysin(xy)dxdy=∫0π[−cos(xy)]12dy=∫0πcos(y)−cos(2y)dy\int \int ysin(xy) dA \\\\ = \int_0^{\pi} \int_1^2 ysin(xy) dxdy \\\\ = \int_0^{\pi} [-cos(xy)]_1^2 dy \\\\ = \int_0^{\pi} cos(y)-cos(2y) dy \\\\ ∫∫ysin(xy)dA=∫0π​∫12​ysin(xy)dxdy=∫0π​[−cos(xy)]12​dy=∫0π​cos(y)−cos(2y)dy
The order of doing iterated integral may be crucial.

Double Integrals Over General Regions

We have f(x,y) on D. Assume D is bounded (we can find a rectangle R that encloses D).

Define h(x,y) = f(x,y) if (x,y)∈D(x,y) \in D(x,y)∈D, and h(x,y) = 0 if (x,y)∈(R−D)(x,y) \in (R-D)(x,y)∈(R−D). In this case,
∫∫Df(x,y)dA=∫∫Rh(x,y)dA\int\int_D f(x,y) dA = \int\int_R h(x,y) dA ∫∫D​f(x,y)dA=∫∫R​h(x,y)dA
A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, say g1(x)g_1(x)g1​(x) and g2(x)g_2(x)g2​(x).

By applying the Fubini’s theorem,
∫∫Df(x,y)dA=∫ab∫g1(x)g2(x)f(x,y)dydx\int\int_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dydx ∫∫D​f(x,y)dA=∫ab​∫g1​(x)g2​(x)​f(x,y)dydx
A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y.

E.x.

Evaluate ∫01∫x1sin(y2)dydx\int_0^1 \int_x^1 sin(y^2) dydx∫01​∫x1​sin(y2)dydx.

sol:

Trick here is to switch the order of integration. Drawing the region D, we find out that it is both type I and type II. Convert the integral.
∫01∫x1sin(y2)dydx=∫01∫0ysin(y2)dxdy=∫01ysin(y2)dy\int_0^1 \int_x^1 sin(y^2) dydx \\\\ = \int_0^1 \int_0^y sin(y^2) dxdy \\\\ = \int_0^1 ysin(y^2) dy \\\\ ∫01​∫x1​sin(y2)dydx=∫01​∫0y​sin(y2)dxdy=∫01​ysin(y2)dy

Double Integrals In Polar Coordinates

Suppose f is a continuous function defined on D (Draw a picture of D!). Convert the limit of x and y to r and theta in the polar coordinate as 0≤a≤r≤b0 \le a \le r \le b0≤a≤r≤b, α≤β\alpha \le \betaα≤β. The formula is as below
∫∫Df(x,y)dA=∫αβ∫abf(rcosθ,rsinθ)rdrdθ\int\int_D f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r cos \theta, r sin \theta)r dr d\theta ∫∫D​f(x,y)dA=∫αβ​∫ab​f(rcosθ,rsinθ)rdrdθ
If the formula involves z, then simplify it to the form of z=f(x,y). If the original equation involves terms like z2z^2z2, remember the integral of z=g(x,y)z=\sqrt{g(x,y)}z=g(x,y)​ only calculate the part where z>0z>0z>0. Based on symmetry, we can get the desired answer by multiplying the integral result by 2.

E.x.

Evaluate ∫∫D3x+4y2dA\int \int_D 3x+4y^2 dA∫∫D​3x+4y2dA where the region is the upper half plane bounded by the circles x2+y2=1x^2+y^2=1x2+y2=1 and x2+y2=4x^2+y^2=4x2+y2=4.

sol:

Write D={(r,θ)∣1≤r≤2,0≤θ≤π}D = \{(r,\theta) | 1 \le r \le 2, 0 \le \theta \le \pi\}D={(r,θ)∣1≤r≤2,0≤θ≤π}.
∫∫D3x+4y2dA=∫12∫0π(3rcosθ+4r2sin2θ)rdθdr\int \int_D 3x+4y^2 dA = \int_1^2 \int_0^{\pi} (3rcos\theta + 4r^2sin^2\theta)r d\theta dr ∫∫D​3x+4y2dA=∫12​∫0π​(3rcosθ+4r2sin2θ)rdθdr
E.x.

Compute the volume of the solid bounded by the plane z=0 and the paraboloid z=1−x2−y2z=1-x^2-y^2z=1−x2−y2.

sol:
∫∫D1−x2−y2dA=∫01∫02π(1−r2)rdθdr\int \int_D 1-x^2-y^2 dA = \int_0^1 \int_0^{2\pi} (1-r^2)r d\theta dr ∫∫D​1−x2−y2dA=∫01​∫02π​(1−r2)rdθdr
E.x.

Find the region enclosed by r=cos2θr=cos2\thetar=cos2θ. For simplicity, restrict −π/4≤θ≤π/4-\pi/4 \le \theta \le \pi/4−π/4≤θ≤π/4.

sol:
area=∫π/4−π/4∫0cos2θrdrdθ=∫π/4−π/412(cos2θ)2dθ=∫π/4−π/4(1+cos4θ)4dθ=π/8area = \int_{\pi/4}^{-\pi/4} \int_{0}^{cos 2 \theta} r dr d\theta\\\\ = \int_{\pi/4}^{-\pi/4} \frac 1 2 (cos 2\theta)^2 d\theta \\\\ = \int_{\pi/4}^{-\pi/4} \frac{(1 + cos 4\theta)}{4} d\theta \\\\ = \pi/8 area=∫π/4−π/4​∫0cos2θ​rdrdθ=∫π/4−π/4​21​(cos2θ)2dθ=∫π/4−π/4​4(1+cos4θ)​dθ=π/8

Applications of Double Integrals

Surface Area Element

S is a surface given by z=f(x,y). Derive a formula for computing the area of S. Assume that the domain of f is rectangular. The idea is to approximate S by tangent planes. Let ΔTij\Delta T_{ij}ΔTij​ to represent such planes. The work remaining is to compute ΔTij\Delta T_{ij}ΔTij​.

Name the points of one such plane as P, Q, R, W. The vector PQ⃗=<Δx,0,fx(xi,yj)Δx>\vec{PQ} = <\Delta x, 0, f_x(x_i,y_j)\Delta x>PQ​=<Δx,0,fx​(xi​,yj​)Δx> , and the vector PR⃗=<0,Δy,fy(xi,yj)Δy>\vec{PR} = <0, \Delta y, f_y(x_i,y_j)\Delta y>PR=<0,Δy,fy​(xi​,yj​)Δy> . The area of the parallelogram PQWR is given by
∣PQ⃗×PR⃗∣=ΔxΔy∣<−fx(xi,yj),−fy(xi,yj),1>∣|\vec{PQ} \times \vec{PR}| = \Delta x\Delta y|<-f_x(x_i,y_j),-f_y(x_i,y_j),1>| ∣PQ​×PR∣=ΔxΔy∣<−fx​(xi​,yj​),−fy​(xi​,yj​),1>∣
Using Riemann sum, we obtain the area of S as follows
area(S)=∫∫Dfx2+fy2+1dxdyarea(S) = \int \int_D \sqrt{f_x^2 + f_y^2 + 1} dxdy area(S)=∫∫D​fx2​+fy2​+1​dxdy

Density and Mass

The density at the point (x,y) is given by
ρ(x,y)=limΔmΔA\rho(x,y) = lim \frac{\Delta m}{\Delta A} ρ(x,y)=limΔAΔm​
Assume we know that density ρ(x,y)\rho(x,y)ρ(x,y) and we would like to compute the mass of the object.
m=∫∫Dρ(x,y)dAm = \int \int_D \rho(x,y) dA m=∫∫D​ρ(x,y)dA
The same idea can be applied to the charge density and total charge.

Center of Mass

The moment of the lamina about the x-axis and y-axis is
Mx=∫∫Dyρ(x,y)dAMy=∫∫Dxρ(x,y)dAM_x = \int\int_D y\rho(x,y) dA \\\\ M_y = \int\int_D x\rho(x,y) dA \\\\ Mx​=∫∫D​yρ(x,y)dAMy​=∫∫D​xρ(x,y)dA
The center of the mass is (xˉ,yˉ)(\bar x, \bar y)(xˉ,yˉ​) so that mxˉ=Mym \bar x = M_ymxˉ=My​ and myˉ=Mxm \bar y = M_xmyˉ​=Mx​. Therefore,
xˉ=1m∫∫Dxρ(x,y)dAyˉ=1m∫∫Dyρ(x,y)dA\bar x = \frac 1 m \int\int_D x\rho(x,y) dA \\\\ \bar y = \frac 1 m \int\int_D y\rho(x,y) dA \\\\ xˉ=m1​∫∫D​xρ(x,y)dAyˉ​=m1​∫∫D​yρ(x,y)dA
E.x.

The region is a half-circle with center at the origin and radius of a. The density of a lamina is x2+y2\sqrt{x^2+y^2}x2+y2​. Find its center of mass.

sol:

Based on symmetry, we know MxM_xMx​ is 0.
My=∫∫Dyx2+y2dA=∫0π∫0ar3sinθdrdθM_y = \int\int_D y\sqrt{x^2+y^2} dA \\\\ = \int_0^{\pi}\int_0^a r^3 sin\theta \ drd\theta My​=∫∫D​yx2+y2​dA=∫0π​∫0a​r3sinθ drdθ

Probability

Let f(x,y) stand for the pmf.
P[(x,y)∈D]=∫∫Df(x,y)dAP[(x,y) \in D] = \int\int_D f(x,y) dA P[(x,y)∈D]=∫∫D​f(x,y)dA

Triple Integrals

The Fubini’s Theorem can be extended to triple integrals.

E in R3R^3R3 is said to be of type I if it can be written as
E={(x,y,z)∣(x,y)∈D,D⊂R2,u1(x,y)≤z≤u2(x,y)}∫∫∫Ef(x,y,z)dV=∫∫D[∫u1(x,y)u2(x,y)f(x,y,z)dz]dAE = \{(x,y,z)|(x,y) \in D, D \sub R^2, u_1(x,y) \le z \le u_2(x,y) \} \\\\ \int\int\int_E f(x,y,z) dV = \int\int_D[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz] dA E={(x,y,z)∣(x,y)∈D,D⊂R2,u1​(x,y)≤z≤u2​(x,y)}∫∫∫E​f(x,y,z)dV=∫∫D​[∫u1​(x,y)u2​(x,y)​f(x,y,z)dz]dA
If we also know that D is, say, type I, then the above triple is further equal to
∫ab∫g1(x)g2(x)∫u1(x,y)u2(x,y)f(x,y,z)dzdydx\int_a^b\int_{g_1(x)}^{g_2(x)}\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dzdydx ∫ab​∫g1​(x)g2​(x)​∫u1​(x,y)u2​(x,y)​f(x,y,z)dzdydx
E.x.

E is bounded by the coordinates and the plane x+y+z=1. Find ∫∫∫EzdV\int\int\int_E z dV∫∫∫E​zdV.

sol:

Define the projection of E to the xy-plane to be D.
E={(x,y,z)∣(x,y)∈D,0≤z≤1−x−y}∫∫∫EzdV=∫01∫01−x∫01−x−yzdzdydxE = \{(x,y,z)|(x,y) \in D, 0 \le z \le 1-x-y \} \\\\ \int\int\int_E z dV = \int_0^1\int_{0}^{1-x}\int_{0}^{1-x-y} z dzdydx E={(x,y,z)∣(x,y)∈D,0≤z≤1−x−y}∫∫∫E​zdV=∫01​∫01−x​∫01−x−y​zdzdydx
E.x.

Use triple integrals to find the volume of the tetrahedron T bounded by the plane x+2y+z=2, x=2y, x=0, and z=0.

sol:

Draw the picture. Find the intersection. A=(0,0,2), B=(0,1,0), C=(1,1/2,0). We want to find volume of OABC.
VOABC=∫∫∫E1dV=∫01∫x/21−x/2∫02−x−2ydzdydxV_{OABC} = \int\int\int_E 1 dV \\\\ = \int_0^1\int_{x/2}^{1-x/2}\int_{0}^{2-x-2y} dzdydx \\\\ VOABC​=∫∫∫E​1dV=∫01​∫x/21−x/2​∫02−x−2y​dzdydx

Triple Integrals in Cylindrical Coordinates

Say E is a type I and D has a clean form in the polar coordinate.
D={(r,θ)∣α≤θ≤β,h1(θ)≤r≤h2(θ)}D = \{(r,\theta)| \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \} D={(r,θ)∣α≤θ≤β,h1​(θ)≤r≤h2​(θ)}
It is just the polar coordinates adding the z-axis.
∫∫∫Ef(x,y,z)dV=∫∫∫Vf(r,θ,z)rdzdrdθ\int\int\int_E f(x,y,z) dV = \int\int\int_V f(r,\theta, z)r \ dz drd\theta ∫∫∫E​f(x,y,z)dV=∫∫∫V​f(r,θ,z)r dzdrdθ
E.x.

Describe the surface given by z=r in the cylindrical coordinate.

sol:
z=r=x2+y2z = r = \sqrt{x^2+y^2} z=r=x2+y2​
E.x.

A solid E lies within the cylinder x2+y2=1x^2+y^2=1x2+y2=1, below the plane z=4 and above the paraboloid z=1−(x2+y2)z=1-(x^2+y^2)z=1−(x2+y2). The density function is x2+y2\sqrt{x^2+y^2}x2+y2​. Find its mass.

sol:
∫∫∫Eρ(x,y,z)dV=∫02π∫01∫1−r24r2dzdrdθ\int\int\int_E \rho(x,y,z) dV \\\\ = \int_0^{2\pi}\int_0^1\int_{1-r^2}^{4} r^2 \ dzdrd\theta \\\\ ∫∫∫E​ρ(x,y,z)dV=∫02π​∫01​∫1−r24​r2 dzdrdθ

Triple Integrals in Spherical Coordinates

We use (ρ,θ,ϕ)(\rho, \theta, \phi)(ρ,θ,ϕ) to represent a point P in the spherical coordinates. The first component is the distance between O and P. The third component is the angle between OP⃗\vec{OP}OP and the positive direction of z-axis (o≤ϕ≤πo \le \phi \le \pio≤ϕ≤π).
x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕx = \rho sin \phi cos \theta \\\\ y = \rho sin \phi sin \theta \\\\ z = \rho cos \phi \\\\ x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕ
The formula is as below
∫∫∫Ef(x,y,z)dV=∫cd∫αβ∫abf(ρ,θ,ϕ)ρ2sinϕdρdθdϕ\int\int\int_E f(x,y,z) dV = \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho, \theta, \phi) \rho^2 sin \phi \ d\rho d \theta d \phi ∫∫∫E​f(x,y,z)dV=∫cd​∫αβ​∫ab​f(ρ,θ,ϕ)ρ2sinϕ dρdθdϕ
E.x.

Compute the volume between the cone z=x2+y2z=\sqrt{x^2+y^2}z=x2+y2​ and the sphere x2+y2+z2=zx^2+y^2+z^2=zx2+y2+z2=z.

sol:

The latter part is a sphere of radius 0.5 centered at (0,0,0.5). In the spherical coordinates, the two planes can be expressed as
cosϕ=sinϕρ=cosϕcos \phi = sin \phi\\\\ \rho = cos \phi \\\\ cosϕ=sinϕρ=cosϕ
The solid can be expressed as
E={(ρ,θ,ϕ)∣0≤ϕ≤π/4,0≤ρ≤cosϕ,0≤θ≤2π}E = \{(\rho, \theta, \phi)| 0 \le \phi \le \pi/4, 0 \le \rho \le cos \phi, 0 \le \theta \le 2\pi\} E={(ρ,θ,ϕ)∣0≤ϕ≤π/4,0≤ρ≤cosϕ,0≤θ≤2π}

Change of Variables in Multiple Integrals

One-to-One Maps

Change of variable for integrals.

We have f:[a,b]−>Rf:[a,b]->Rf:[a,b]−>R and want to substitute x=g(u)x=g(u)x=g(u). Let g(c)=a,g(d)=bg(c)=a, g(d)=bg(c)=a,g(d)=b. We need one assumption that g is monotonic.
∫abf(x)dx=∫cdf(g(u))g′(u)du\int_a^b f(x)dx = \int_c^d f(g(u))g'(u) du ∫ab​f(x)dx=∫cd​f(g(u))g′(u)du
Change of variable for double integrals. Special case: polar coordinate.

In general, transformation T(u,v)=(x,y)T(u,v) = (x,y)T(u,v)=(x,y). (u,v) and (x,y) are connected by
x=g(u,v)y=h(u,v)x = g(u,v)\\\\ y = h(u,v) x=g(u,v)y=h(u,v)
If it happens that for (u1,v1)≠(u2,v2)(u_1, v_1) \ne (u_2, v_2)(u1​,v1​)​=(u2​,v2​) and T(u1,v1)=T(u2,v2)T(u_1, v_1) = T(u_2, v_2)T(u1​,v1​)=T(u2​,v2​) then we say that the map T is not one-to-one.

Given (x2,y2)(x_2, y_2)(x2​,y2​), we can find one (u2,v2)(u_2, v_2)(u2​,v2​) s.t. T(u2,v2)=(x2,y2)T(u_2, v_2)=(x_2, y_2)T(u2​,v2​)=(x2​,y2​). This is called T−1T^{-1}T−1.

To see whether a map is one-to-one:

  1. T sends different points to different points

  2. for every (x,y)∈R2(x,y)\in R^2(x,y)∈R2, we are able to find (u,v)(u, v)(u,v) s.t. T(u,v)=(x,y)T(u, v)=(x, y)T(u,v)=(x,y).

Change Variable Formula

We approximate the region after transformation by a parallelogram.

The area of such parallelogram is
AB⃗=T(u+Δu,v)−T(u,v)=<g(u+Δu,v)−g(u,v),h(u+Δu,v)−h(u,v)>=<guΔu,huΔu>AC⃗=T(u,v+Δv)−T(u,v)=<g(u,v+Δv)−g(u,v),h(u,v+Δv)−h(u,v)>=<gvΔv,hvΔv>S=∣AB⃗×AC⃗∣=∣guhv−gvhu∣\vec{AB} = T(u+\Delta u, v) - T(u, v) \\\\ = <g(u+\Delta u, v) - g(u,v), h(u+\Delta u, v) - h(u,v)> \\\\ = <g_u \Delta u, h_u \Delta u> \\\\ \vec{AC} = T(u, v+\Delta v) - T(u, v) \\\\ = <g(u, v+\Delta v) - g(u,v), h(u, v+\Delta v) - h(u,v)> \\\\ = <g_v \Delta v, h_v \Delta v> \\\\ S = |\vec{AB} \times \vec{AC}| = |g_uh_v- g_vh_u| AB=T(u+Δu,v)−T(u,v)=<g(u+Δu,v)−g(u,v),h(u+Δu,v)−h(u,v)>=<gu​Δu,hu​Δu>AC=T(u,v+Δv)−T(u,v)=<g(u,v+Δv)−g(u,v),h(u,v+Δv)−h(u,v)>=<gv​Δv,hv​Δv>S=∣AB×AC∣=∣gu​hv​−gv​hu​∣
Definition of Jacobian of the transformation T

Given by x=g(u,v)x = g(u,v)x=g(u,v) and y=h(u,v)y = h(u,v)y=h(u,v) is
∂(x,y)∂(u,v)=guhv−gvhu\frac{\partial (x,y)}{\partial (u,v)} = g_uh_v- g_vh_u ∂(u,v)∂(x,y)​=gu​hv​−gv​hu​
In the general case, the change of variable in integrals
∫∫∫EdV=∫∫∫V∣∂(x,y,z)∂(u,v,w)∣dudvdw\int\int\int_E dV = \int\int\int_V |\frac{\partial(x,y,z)}{\partial(u,v,w)}| \ dudvdw ∫∫∫E​dV=∫∫∫V​∣∂(u,v,w)∂(x,y,z)​∣ dudvdw
E.x.

We have a region R bounded by (1,0), (2,0), (0,-2), and (0,-1). Evaluate ∫∫Rex+yx−ydA\int\int_R e^{\frac{x+y}{x-y}} dA∫∫R​ex−yx+y​dA.

sol:

We first let u=x+y,v=x−yu=x+y, \ v=x-yu=x+y, v=x−y. Verify that this is an one-to-one map.

Compute the Jacobian.
∂(x,y)∂(u,v)=xuyv−xvyu=−12\frac{\partial (x,y)}{\partial (u,v)} = x_uy_v- x_vy_u = -\frac 1 2 ∂(u,v)∂(x,y)​=xu​yv​−xv​yu​=−21​
The next step is to figure out how R is transformed under the map T.

(x,y) = (1,0) => (u,v) = (1,1)

(x,y) = (2,0) => (u,v) = (2,2)

(x,y) = (0,-1) => (u,v) = (-1,1)

(x,y) = (0,-2) => (u,v) = (-2,2)
∫∫Rex+yx−ydA=∫∫Seuv∣−12∣dudv=∫12∫−vv12euvdudv=∫12[12veuv]−vvdv\int\int_R e^{\frac{x+y}{x-y}} dA = \int\int_S e^{\frac{u}{v}} |-\frac 1 2| dudv \\\\ = \int_{1}^{2}\int_{-v}^{v} \frac 1 2 e^{\frac{u}{v}} dudv \\\\ = \int_{1}^{2} [\frac 1 2 ve^{\frac u v}]_{-v}^{v} dv \\\\ ∫∫R​ex−yx+y​dA=∫∫S​evu​∣−21​∣dudv=∫12​∫−vv​21​evu​dudv=∫12​[21​vevu​]−vv​dv

Reference

  • Multivariable_Calculus_8th_Edition (15.1-15.9), James Stewart

Calc3: Multiple Integrals相关推荐

  1. 多重积分MULTIPLE INTEGRALS

    完整原文下载请点击"阅读原文"

  2. LaTex数学之积分、求和和极限

    LaTex数学之积分.求和和极限 积分 可以使用\int_{lower}^{upper} 命令添加积分表达式. 请注意,积分表达式在内联和显示数学模式中可能看起来有些不同. \usepackage{a ...

  3. 美国计算机申请转专业先修课,转专业申请需要修读哪些先修课?

    近期很多学生咨询转专业申请是否可行?转专业申请是可以的,不过很多专业都是有先修课要求的,老师今天就以美国院校转专业申请金工/金数需要提前修读哪些课程为例: 以哥伦比亚大学为例 如果是金融工程, 学校要 ...

  4. 微积分中计算椭圆面积的几种方法

    Find the area enclosed by the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2​+b2y2​=1 Trig ...

  5. 00后大学生喜欢电子版微积分教材

    废话少说,假定无穷小微积分PDF电子版已经下载安装完毕(找别人安装一次也行!).无论何时何地,读者双击该电子版按钮图标,打开文件,选择电子版所需要学习内容坐在的页码,相关学习内容即可出现在你的眼前,如 ...

  6. 无穷小微积分教材历经50年之久的读者使用鉴定书

    无穷小微积分教材历经50年之久的读者使用鉴定书 2012年2月15日,世界知名数学家Jerome Keisler教教授于1969年开 精心撰写的(公理化)无穷小微积分教材的最新版本又一次出版了. 实际 ...

  7. Multiple substitutions specified in non-positional format; did you mean to add the formatted=”false”

    make 编译android代码的出现这样的错误 这个问题可能是跟android 的版本有关系就是xml 中的String.xml文件的文字使用%s 无法识别引起的, 不过有些版本可以识别 下面的就有 ...

  8. HDU 4913 Least common multiple

    /* hdu4913 Least common multiple http://acm.hdu.edu.cn/showproblem.php?pid=4913 离散化 线段树 统计逆序数思想 tips ...

  9. 基于Picture Library创建的图片文档库中的上传多个文件功能(upload multiple files)报错怎么解决?...

    复现过程 首先,我创建了一个基于Picture Library的图片文档库,名字是 Pic Lib 创建完毕后,我点击它的Upload 下拉菜单,点击Upload Picture按钮 在弹出的对话框中 ...

最新文章

  1. oracle中 关于触发器,oracle 闪回关于触发器的bug
  2. Linux找最大最小值的命令,Linux中awk命令正确的求最大值、最小值、平均值、总和...
  3. Spring Data Redis与Jedis的选择(转)
  4. java dump分析工具_Java 性能分析工具 (2):Java 内置监控工具
  5. 小北思维|前端新技术 VS 你的认知
  6. Java基础学习总结(155)——Java 日志框架怎么选?Logback Or Log4j2?
  7. 自学python需要安装什么-初学 Python 需要安装哪些软件?
  8. [USACO16OPEN]262144
  9. [CQOI2015]选数
  10. python批量解压rar和zip的压缩包
  11. yansongda 支付宝提现,商家转账
  12. 如何向iphone手机网易云音乐添加本地音乐
  13. mysql 统计请假天数_sql查询员工请假详情——请假天数跨月问题
  14. centos安装oracle报错,CentOS安装oracle和rsh服务报错处理
  15. 谷歌高级架构师十年心血终成Kubernetes微服务实战文档
  16. 手把手教你制作一目了然的可视化地图
  17. bilinear interpolation是什么
  18. Linux笔记001 初识Linux
  19. Siri创始人正式展示Viv助手 比想象中要强大
  20. 单总线和多总线的区别

热门文章

  1. Windows下在后台运行jar包
  2. 《敏捷制造——敏捷集成基础结构设计》——1.2相关问题的国内外研究现状
  3. object-c全局变量
  4. 【ASP.NET北大青鸟】-总结(二)
  5. echo打印彩色的用法
  6. 继续说说美国互联网版权监管法案(SOPA)
  7. html服务流程如何实现_朱传燕:美容院如何规范服务流程,提升专业口碑
  8. C语言中结构体的位域(bit-fields)
  9. 内存对齐/字节对齐/数据对齐/地址总线对齐
  10. hikaridatasource 加密后登陆不上_python测试开发django42.auth模块登陆认证