©作者 | 苏熠暄

单位 | 剑桥大学

研究方向 | 文本生成和表征学习

本文提出了一个全新的 MAGIC (iMAge-guided text GeneratIon with CLIP) 框架。该框架可以使用图片模态的信息指导预训练语言模型完成一系列跨模态生成任务,例如 image captioning 和 visually grounded story generation。

与其他方法不同的是,MAGIC 框架无需多模态的训练数据,只需利用现成的语言模型(例如 GPT-2)和图文匹配模型(例如 CLIP)就能够以 zero-shot 的方式高质量地完成多模态生成任务。此外,不同于使用梯度更新生成模型cache 的传统方法,MAGIC 框架无需梯度更新,因而具备更高效的推理效率。

论文标题:

Language Models Can See: Plugging Visual Controls in Text Generation

作者单位:

剑桥大学,腾讯AI Lab,特伦托大学,DeepMind,香港大学

论文链接:

https://arxiv.org/pdf/2205.02655.pdf

代码链接:

https://github.com/yxuansu/MAGIC

研究背景以及目的

借助于日益强大的预训练语言模型,我们已经可以根据文本前缀生成一段流利文本。当前,绝大多数工作的主要研究方向集中于利用文本模态的前缀来生成后续文本的方法。然而,如何有效利用其他模态的信息(例如图片)来指导预训练语言模型生成高质量的文本,仍然是一个待解决的难题。

目前,针对此类问题最常见的解决思路是在收集好的高质量多模态平行数据的基础上,训练多模态的模型来完成特定的跨模态任务。例如,现在我们可以在图文匹配的标注数据集上,通过监督学习的方法训练 image captioning 模型,从而根据输入图片生成对应的文本描述。

但是,该方法存在标注数据获得困难的弊端,并不适合所有应用场景。为了解决这一难题,许多研究者们提出了一系列弱监督的方法。而这类方法也有其弊端,它们会受到不同多模态任务的特定限制。例如,在 image captioning 任务中,弱监督的方法需要使用特定的目标检测器,来收集图片内可识别目标的标签信息。然而,当图片中包含目标检测器无法识别的物体(out-of-domain object)时,弱监督方法的有效性就会大打折扣。

为了摆脱对目标检测器的依赖从而真正实现 zero-shot 跨模态文本生成,ZeroCap [1] 提出在推理阶段通过梯度更新的方式修正生成语言模型模型的内部的隐状态,从而使生成的文本描述和图片内容尽可能接近。但是,这一方法也有其弊端,通过多次迭代梯度更新来调整模型的内部隐状态,在当前预训练语言模型参数量越来越大的趋势下,其运行效率会变得越来越低,严重限制了该方法在实际场景中的应用。

本文提出了一个全新的 MAGIC 框架。MAGIC 通过直接插入可控的图文匹配模型分数的方式,使得语言模型在解码过程中选择更接近图片信息的生成结果。这样,语言模型可以在不经过任何跨模态训练的情况下,高质量地解决跨模态生成任务,得到明显优于弱监督模型的文本生成质量。同时,与 ZeroCap 相比,MAGIC 还拥有接近 27 倍的推理速度提升。

研究方法


2.1 无监督语言建模

为了适应特定跨模态任务的文本领域,我们在本文中,预先使用了跨模态训练数据集中的文本数据,采取无监督的方式更新语言模型的参数(仅需在 1 块 NVIDIA 1080Ti 上运行不到两个小时),从而使得语言模型更加熟悉该领域的文本分布。具体而言,本文使用 MLE 损失函数训练语言模型的参数:

此外,SimCTG [2] 的最新工作证明了通过引入对比损失来校准模型的语义空间,能够获得质量更高的的语言模型。因此,本文也同时优化如下的对比损失:

其中 是用来校准生成模型表示空间的 margin 参数, 用来计算 token 表示之间的余弦相似度。最终,本文将两个损失函数合并,以此来优化文本模态的 GPT-2 语言模型:

2.2 MAGIC Search

本文提出了 MAGIC Search 解码算法。MAGIC 使用视觉信息指导预训练语言模型的生成过程。具体而言,给定文本前缀 和图片 ,第 步的 token 选择公式如下:

其中 表示按照语言模型概率分布选择的 top-k 个候选 token。同时,我们借鉴了 SimCTG 中 contrastive search 的思路,在 token 选择指标中引入了 model confidence 和 degeneration penalty 项来使得模型选择更合适的 token。上述公式中最重要的一项是将视觉控制信息引入到模型的解码过程中的 magic score:

其中 是 CLIP 的 image encoder 产生的图片表示, 是 CLIP 的 text encoder 产生的文本表示。 参数用来调节视觉信息的控制力度。当其值为 0 时,语言模型的生成过程不再被视觉信息所影响,从而 magic search 退化为传统的 contrastive search。

实验结论


3.1 Zero-shot Image Captioning

3.1.1 实验设置

本文在 MS-COCO 和 Flickr30k 数据集上进行了大量的实验,并选用以下的无监督 baseline 进行对比:

1. top-k sampling:不基于图片信息,用 top-k 解码方法使用语言模型来生成caption;

2. nucleus sampling:不基于图片信息,用 nucleus 解码方法使用语言模型生成 caption;

3. contrastive search:不基于图片信息,用 contrastive search 解码方法使用语言模型来生成 caption;

4. CLIPRe:使用 CLIP 模型从 MS-COCO 或 Flickr30k 的训练数据中检索文本数据;

5. ZeroCap:在解码过程中,使用 CLIP 信息来指导语言模型梯度更新的方法。

值得注意的是 top-k sampling, nucleus sampling 和 contrastive search 解码方法因为不基于图片信息,所以可看作是文本生成模型在跨模态任务上的性能下界。此外,本文还选取了一批监督和弱监督的方法来进行对比。

对于评价方法,本文采用 image captioning 中经典的评价指标:BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr 和 SPICE,同时也测试了不同模型的相对解码速率。

3.1.2 MS-COCO和Flickr30k实验结果


如上图所示,本文发现当忽视 captions 的信息,只使用语言模型进行生成时效果并不好(Top-k, Nucleus, Contrastive),这说明没有对应的图片信息,只依靠语言模型很难完成这个跨模态的任务。CLIPRe 方法效果虽然显著好于 Top-k 等纯文本解码方法,但仍然弱于当前 state-of-the-art 的无监督方法,ZeroCap。这是由 training set 和 test set 之间的数据差异所造成。这也证明了检索模型在该任务上效果弱于生成模型。

本文 MAGIC 的生成结果显著优于 ZeroCap,展示了 MAGIC 框架的有效性。并且因为 MAGIC 完全不依赖于梯度更新,其解码速度比 ZeroCap 快接近 27 倍。

3.1.3 跨领域实验结果

此外,本文还做了跨领域的实验以进一步测试 MAGIC 的泛化能力。具体而言,本文使用在源领域(例如 MS-COCO)上得到的无监督语言模型,在目标领域(例如 Flickr30k)的测试集上进行实验。本文在该实验中对比无监督解码方法和 CLIPRe。其中 CLIPRe 的检索数据集仅来自于源领域的训练集,实验结果如下:

从表格中结果可以发现,MAGIC 远好于纯文本解码方法和 CLIPRe 强 baseline。

3.1.4 Case Study


我们通过一些例子来定性的对比 baseline 和我们的方法:

这几个例子显示出 MAGIC 不仅能够生成非常流利的文本,同时其生成文本中的信息和图片模态的关联性也更强。例如图 (a) 中,MAGIC 可以准确的生成“building”,但是 ZeroCap 却生成了“school bus”这个无关的结果。此外,图 (d) 中,虽然 ZeroCap 生成出了“boatboard”这一相关词汇,但其语句流利度低,并且存在语法错误。相比之下,MAGIC 生成的文本在通顺流畅的同时,也与图片显示的内容一致。

3.2 Visually Grounded Story Generation

除了 image captioning 任务之外,我们还将 MAGIC 框架拓展到了其他基于视觉的文本生成任务,例如 visually grounded story generation。在该任务中,给一个图片和故事标题,模型的任务是生成一个流利有趣并且与图片内容及故事标题一致的故事。

3.2.1 实验设置 

本文在 ROCStories 数据集上进行了实验,并选取以下的文本解码方式作为我们的 baseline:1) Greedy search;2)Beam search;3)Top-K sampling;4)Nucleus sampling;5)Typical sampling;和 6)Contrastive search。

为了达到给 ROCStories 数据集中每一个测试样例提供一个图片信息的目的,本文使用 CLIP 模型从公开的 ConceptCaption 数据集中检索和故事标题最相关的图片。

为了有效评价模型的效果,本文采用了以下几种评价指标:

1. 自动评价指标:本文采用之前文本生成研究中的一系列评价指标

  • n-gram 重复率 (rep-n)

  • 生成文本多样性 (div.)

  • 语义一致性 (coh.):生成的故事和标题是否语义一致

  • 图文匹配相关性 (CLIPScore)

  • MAUVE 分数

2. 人工评价指标:为了更精准的反映生成故事的质量,五个专业的标注员从以下几个角度对生成故事的质量进行打分(1-5 分,1 分最差,5分最好)

  • 相关性:生成的故事是否和标题有关

  • 流利度:生成的故事是否流利易懂

  • 信息量:生成的故事是否多样且有趣

  • 故事图片相关性:生成的故事是否和通过标题检索得到的图片语义一致

3.2.2 实验结果

如上图所示,MAGIC 在大多数的指标上都达到了最佳的效果,明显优于其他方法。其中 rep-n, diversity 和 MAUVE 的最佳结果说明 MAGIC 生成的故事和人类文本更加接近。并且 MAGIC 在 coherence 和图文匹配一致性分数上显著优于其他的方法,说明 MAGIC 在综合利用了图片和文本标题的信息之后可以生成和标题信息更加相关的故事内容。人工评价的效果也显示 MAGIC 生成的故事在各个角度上均达到了最好的效果。

3.2.3 Case Study

如上图所示,MAGIC 可以有效的生成出和图片有关的信息。在第一个例子中,MAGIC 生成的故事包含了详细的冰淇凌的种类和味道,除了 orange 的结果稍有差异,其他的文本都完美符合图片中的描述。在第二个例子中,contrastive search 生成的结果和故事标题间相关度较差。与之相反,MAGIC 生成的内容和图片中的信息及主题高度相关,例如:1)和朋友们在沙滩;2)打沙滩排球;3)比赛持续了两个小时;4)朋友赢下了比赛。

参考文献

[1] Tewel et al., ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic, arXiv 2022

[2] Su et al., A Contrastive Framework for Neural Text Generation, arXiv 2022

更多阅读

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

剑桥大学等提出MAGIC,一个即插即用、无需训练的图像-文本生成框架相关推荐

  1. MAGIC: 即插即用、无需训练的图像-文本生成框架

    来源:知乎-刘亚辉 地址:https://zhuanlan.zhihu.com/p/510927638 剑桥大学.腾讯AI Lab.特伦托大学.DeepMind.香港大学新作 Language Mod ...

  2. ViT强势应用 | V2X基于ViT提出了一个具有V2X通信的强大协作感知框架

    点击下方卡片,关注"自动驾驶之心"公众号 ADAS巨卷干货,即可获取 在本文中研究了Vehicle-to-Everything(V2X)通信在提高自动驾驶汽车感知性能方面的应用.使 ...

  3. 妙笔生花:一个易用、高效的文本生成开源库

    文本生成作为近年来自然语言处理中的热门领域,受到了学界和工业界的广泛关注.随着研究的不断深入,文本生成领域下的子任务和相应的模型越来越丰富,一些优秀的开源框架也纷纷涌现. 现有的开源文本生成库大致可分 ...

  4. fasttext文本分类python实现_一个使用fasttext训练的新闻文本分类器/模型

    fastext是什么? Facebook AI Research Lab 发布的一个用于快速进行文本分类和单词表示的库.优点是很快,可以进行分钟级训练,这意味着你可以在几分钟时间内就训练好一个分类模型 ...

  5. 剑桥大学数据中心采用高效冷却系统节省成本

    剑桥大学在2014年投资2000万英镑建设了一个新的综合性数据中心,该数据中心已经取代了该大学多个不同的数据中心设施,并大幅度减少剑桥大学的碳足迹,同时扩大其技术领先的优势. 剑桥大学的多用户数据中心 ...

  6. 无需训练,自动扩展的视觉Transformer来了

    来自德克萨斯大学奥斯汀分校.悉尼科技大学和谷歌的研究者提出了一个无需训练就能自动扩展框架 As-ViT,其能以高效和有原则的方式自动发现和扩展 ViT. 当前 Vision Transformers ...

  7. ICLR 2022 | 无需训练!As-ViT:自动扩展视觉Transformer

    点击下方卡片,关注"CVer"公众号 AI/CV重磅干货,第一时间送达 转载自:机器之心 | 编辑:小舟 来自德克萨斯大学奥斯汀分校.悉尼科技大学和谷歌的研究者提出了一个无需训练就 ...

  8. 【深度学习】ToMe:我的方法无需训练即可加速 ViT 模型|搞懂Transformer系列

    作者丨科技猛兽 编辑丨极市平台 导读 这篇文章提出了一种无需训练即可加速 ViT 模型,提高吞吐量的方法 Token Merging (ToMe).ToMe 通过一种轻量化的匹配算法,逐步合并 ViT ...

  9. 何恺明团队12页论文新作剑指AIGC!“新CLIP”只需一个trick,训练速度快3.7倍!性能不降反升...

    杨净 艳艳 发自 凹非寺 量子位 | 公众号 QbitAI 何恺明团队又上新了. 这次,他们的成果围绕当下最火的AIGC背后的CLIP展开. --只在该模型的极简结构上,施加了一个简单的mask,就让 ...

最新文章

  1. html页面转换成pdf
  2. mysql创建数据库并且指定utf-8编码
  3. MATLAB中K-means函数表达方式
  4. PHP7新增的主要特性
  5. ssh key生成_Stelnet(ssh)登陆华为交换机配置教程
  6. JSP userBean setProperty getProperty指令使用
  7. [html] HTML5的video怎样预加载(支持全量加载)?
  8. MySQL笔记-解决InnoDB: Could not find a valid tablespace file for 'mysql/innodb_index_stats'
  9. Python基础19(random模块)
  10. Spring MVC框架-持久层用hibernate自动化(1)
  11. DataLogic 工业串口扫码器Python读取说明
  12. JSP从入门到实战视频教程
  13. 【老生谈算法】基于matlab的车牌识别算法详解及程序源码——车牌识别算法
  14. 【Java】线程插队
  15. 小白开始学RTOS 1
  16. jmeter 接口请求出现安全验证解决方案
  17. 可以伪装成计算机的应用,伪装成计算器隐藏应用软件
  18. 【SaltStack官方版】—— EventsReactor系统—BEACONS
  19. 关于蓝牙开发,必须注意的广播
  20. 企微服务商平台收费接口对接教程

热门文章

  1. 按键精灵_Wscript.Shell操作
  2. 企业发放的奖金根据利润提成计算
  3. 分页第一页用0还是1_计算机用0 和1刻画文字、图片和声音
  4. SVN更新或提交时出现冲突该如何解决
  5. ActiveMQ详解
  6. ActiveMQ的作用,原理是啥?
  7. Win10点击PowerShell显示找不到文件路径
  8. python读取数据的函数详解_python如何从文件读取数据及解析
  9. DockerHub上最受欢迎的151个官方镜像,相传掌握第17个可以主宰宇宙!
  10. RabbitMQ:消费者ACK机制、生产者消息确认