MyISAM的锁调度

MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。但它认为写锁的优先级比读锁高,所以即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。可以通过一些设置来调节MyISAM的调度行为。

通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。

通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。

通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。上面已经讨论了写优先调度机制带来的问题和解决办法。

这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

事务概念

学习Spring的时候,一般通过注解@Transitional就能启动spring的事务管理,在MySQL中也同样支持事务的四个原则ACID:

**A(Atomicity)原子性:**事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。

**C(Consistent)一致性:**在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。

**I(Isolation)隔离性:**数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。

**D(Durable)持久性:**事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

更新丢失(Last update):A和B同时对一行数据进行处理,A修改后进行保存,然后B修改后进行保存,这样A的更新被覆盖了,相当于发生丢失更新的问题。所以可以在A事务未结束前,B不能访问该记录,这样就能避免更新丢失的问题。

脏读(Dirty Reads):A事务在对一条记录做修改,但还未提交,这条记录处于不一致的状态;这时,B事务也来读同一条记录,这时如果没有加控制,B读了未修改前的数据,并根据该数据进行进一步处理,就会产生未提交的数据依赖关系。这种现象叫做“脏读”

不可重复读(Non-Repeatable Reads):B事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变(被更新或者删除了,例如A事务修改了)。这种现象叫做“不可重复读”。

幻读(Phantom Reads):A事务按照相同查询条件,重新读取之前检索过得内容,却发现其它事务插入或修改其查询条件的新数据,这种现象就叫”幻读“。

事务的隔离级别

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

4种隔离级别比较

读数据一致性及允许的并发副作用

隔离级别

读数据一致性

脏读

不可重复读

幻读

未提交读(Read uncommitted)

最低级别,只能保证不读取

物理上损害的数据

已提交读(Read committed)

语句级

可重复读(Repeatable read)

事务级

可序列化(Serializable)

最高级别,事务级

否获取InnoDB行锁争用情况

检查InnoDB_row_lock状态变量来分析:

mysql> show status like 'InnoDB_row_lock%';

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| Innodb_row_lock_current_waits | 0 |

| Innodb_row_lock_time | 0 |

| Innodb_row_lock_time_avg | 0 |

| Innodb_row_lock_time_max | 0 |

| Innodb_row_lock_waits | 0 |

+-------------------------------+-------+

5 rows in set (0.00 sec)

复制代码

如果InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,表示锁争用情况比较严重。

InnoDB的行锁模式以及加锁方法

InnoDB实现了一下两种类型的行锁:

共享锁(S):允许一个事务去多一行,阻止其它事务获得相同数据集的排他锁。

排他锁(X): 允许获得排他锁的事务更新数据,阻止其它事务获得相同数据集的共享锁和排他写锁。

另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。(感觉与MyISAM的表锁机制类似)

意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。

意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

InnoDB行锁模式兼容性列表:

请求锁模式

矩阵结果表示是否兼容

当前锁模式

X

IX

S

IS

X

冲突

冲突

冲突

冲突

IX

冲突

兼容

冲突

兼容

S

冲突

冲突

兼容

兼容

IS

冲突

兼容

兼容

兼容

如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。意向锁是InnoDB自动加的;对于UPDATE、DELETE和INSERT语句,InnoDB会自动给设计数据集加排他锁(X);对于普通的SELECT语句,InnoDB不会加锁。可以通过以下语句显示给记录集加共享锁或排他锁:

共享锁(S):SELECT * FROM TABLE_NAME WHERE ... LOCK IN SHARE MODE.

排他锁(X):SELECT * FROM TABLE_NAME WHERE ... FOR UPDATE.

用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。

所以在使用共享锁模式下,查询完数据后不要进行更新操作,不然又可能会造成死锁;要更新数据,应该使用排他锁模式。

InnoDB行锁实现方式

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!(这个问题遇到过,由于没加索引,行锁变表锁)

在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。

由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。

当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。

可以通过explain执行计划查看是否真正使用了索引。

间隙锁(Next-key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举个例子:假如emp表中只有101条记录,其id的值从1~101,下面的sql:select * from emp where id > 100 for update;是范围条件查询,InnoDB不仅会对符合条件的id值为101的记录加锁,也会对id大于101(并不存在的值)的“间隙”加锁。

结论:

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

关于死锁(DeadLock)

上面知识点说过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步或得的,所以InnoDB发生死锁是可能的。

举个例子:

session A

session B

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from table_1 where where id=1 for update;

...

做一些其他处理...

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from table_2 where id=1 for update;

...

select * from table_2 where id =1 for update;

因session_2已取得排他锁,等待

做一些其他处理...

mysql> select * from table_1 where where id=1 for update;

死锁

也就是我们死锁产生的条件,互相持有资源不释放,还有环形等待。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数 innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

避免死锁的方法

在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。在下面的例子中,由于两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可以避免。

在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。

在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。

在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。

当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁

小结

这是一篇学习文章,关于MySQL的锁机制又多了几分了解,以后在写SQL和排查问题时候,尽量避免死锁和更快定位问题所在。

出处:https://juejin.im/post/5ce8eee45188253114078f2a

编辑:尹文敏

如何成为 DevOps 大牛?

DevOps 国际峰会 2019 · 北京站,

一线互联网、金融、通信企业 DevOps 落地实践案例

Jenkins、Kubernetes、持续交付技术大咖为您分享落地案例

mysql锁历史记录_史上最全MySQL锁机制相关推荐

  1. mysql insert into select大量数据插入比较慢_史上最全MySQL锁机制

    本文主要记录学习MyISAM 和 InnoDB 这两个存储引擎. 为什么要学习锁机制 锁是计算机协调多个进程或线程并发访问某一资源的机制. 因为数据也是一种供许多用户共享的资源,如何保证数据并发访问的 ...

  2. 史上最全MySQL 大表优化方案(长文)

    转载自  史上最全MySQL 大表优化方案(长文) 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 一.单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑 ...

  3. seat TCC 实战(图解_秒懂_史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! Java 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 免费赠送 经典图书 : 极致经典 + 社群大片好评 < Java 高 ...

  4. idea mac 替换_史上最全的IntelliJ IDEA For Mac快捷键!快来收藏吧!

    原标题:史上最全的IntelliJ IDEA For Mac快捷键!快来收藏吧! IntelliJ IDEA 2020 for Mac适用于JVM的功能强大且符合人体工程学的IDA! IDEA对新手来 ...

  5. sql server与java实例_史上最全:PostgreSQL DBA常用SQL查询语句(建议收藏学习)

    活动预告:本周六,在北京将迎来一年一度的 ACOUG年会,在本次年会上,我们将对社区过去一年的工作进行回顾和梳理,并展望和探讨下一年工作的内容,同时,本次年会也开放了直播通道,名额不多,报名从速哦~ ...

  6. python高分书籍推荐_史上最全的Python书排行榜|你想知道的都在这里

    原标题:史上最全的Python书排行榜|你想知道的都在这里 感谢关注天善智能,走好数据之路↑↑↑ 欢迎关注天善智能,我们是专注于商业智能BI,大数据,数据分析领域的垂直社区,学习,问答.求职一站式搞定 ...

  7. win7蓝屏_史上最全电脑蓝屏代码含义,Win7电脑蓝屏最全攻略

    电脑蓝屏大家或多或少的都遇到过,今天李哥为大家整理了这方面的内容,给大家来详细了解一下. 电脑蓝屏,又叫蓝屏死机,简称BSOD,是微软的 Windows 系列操作系统在无法从一个系统错误中恢复过来时, ...

  8. java spring框架 注解_史上最全的java spring注解

    史上最全的java spring注解,没有之一 注解是个好东西,但好东西我们也是看见过,整理过,理解过,用过才知道好.不求我们每个都记住,但求保有印象,在需要的时候能提取出来再查找相关资料,平时工作就 ...

  9. python 完全面向对象_史上最全的Python面向对象知识点疏理

    原标题:史上最全的Python面向对象知识点疏理 面向对象技术简介 类: 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例.class 类变量:类变 ...

  10. @async注解_史上最全的java spring注解

    史上最全的java spring注解,没有之一 注解是个好东西,但好东西我们也是看见过,整理过,理解过,用过才知道好.不求我们每个都记住,但求保有印象,在需要的时候能提取出来再查找相关资料,平时工作就 ...

最新文章

  1. eclipse下的spring环境配置
  2. 内核知识第九讲,32位下的分页管理,36位下的分页管理.以及64位下的分页管理
  3. PM——【1】维护功能位置主数据
  4. 让atmega8可以和飞思卡尔xs128一样对IO引脚进行定义
  5. phpfind mysql怎么用_MySQL 的 find_in_set 函数使用方法
  6. IntelliJ IDEA for Mac 在eclipse(MacOS)模式下的快捷键
  7. 【渝粤教育】国家开放大学2018年秋季 0717-22T社会保障基础 参考试题
  8. HIPS 自定义框架
  9. [vue] 在.vue文件中style是必须的吗?那script是必须的吗?为什么?
  10. 7 分钟了解 eBay Flink 服务的端到端管理
  11. 在X79 LGA2011上改造安装利民AX120R LGA1200风扇
  12. 远程连接Linux系统
  13. python学习教程34-Excel生成折线图
  14. 俄罗斯方块游戏的算法
  15. Keras的Adam优化器decay理解及自适应学习率
  16. 计算机快捷键知识点,电脑常用快捷键复习知识点.pdf
  17. IEEE 802.3av 10Gbits EPON 中文翻译(一)
  18. 给1078万考生批卷的,可能不是个人
  19. 美国互联网影视业的盈利模式
  20. 解决Chaquopy在AS中pip安装过慢的问题

热门文章

  1. TrustedInstaller
  2. 英文电子专业词汇(新手必备)
  3. Android 支付宝sdk接入问题:不能唤起支付宝客户端,或者偶然唤起支付客户端
  4. 【机器学习基础】泛化能力、过拟合、欠拟合、不收敛、奥卡姆剃刀原则
  5. 计算机教师考核方案,教师校园网使用考核方案范文
  6. Admob反馈利诱性质流量(无效流量)解决方案
  7. BZOJ2794: [Poi2012]Cloakroom
  8. cv::Mat属性 step, size, step1, elemSize, elemSize1
  9. AEC 声学回声消除
  10. cf计算机丢失msvcp100,Win7丢失MSVCP100.dll导致程序无法启动怎们办