本文主要记录学习MyISAM 和 InnoDB 这两个存储引擎。

为什么要学习锁机制

锁是计算机协调多个进程或线程并发访问某一资源的机制。

因为数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,所以进一步学习MySQL,就需要去了解它的锁机制。

MySQL锁概述:

相对其他数据库而言,MySQL 的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。MySQL这3种锁的特性可大致归纳如下。

开销、加锁速度、死锁、粒度、并发性能

①:表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。

②:行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

③:页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。由于BDB已经被InnoDB取代,即将成为历史(所以现在基本都在使用InnoDB存储引擎)。

MyISAN存储引擎

MyISAM 存储引擎只支持表锁,这也是 MySQL 开始几个版本中唯一支持的锁类型。

MySQL表级锁

查询表锁争用情况

mysql> show status like 'table%';+----------------------------+-------+| Variable_name | Value |+----------------------------+-------+| Table_locks_immediate | 4 || Table_locks_waited | 0 || Table_open_cache_hits | 4 || Table_open_cache_misses | 8 || Table_open_cache_overflows | 0 |+----------------------------+-------+5 rows in set (0.00 sec)

如果 Table_locks_waited 的值比较高,则说明存在着较严重的表级锁争用情况。

MySQL的表级锁的两种模式

  • 表共享读锁(Table Read Lock)

  • 表独占写锁(Table Write Lock)

MySQL中的表锁兼容性:

请求锁模式
矩阵结果表示是否兼容
当前锁模式
None 读锁 写锁
读锁
写锁

也就是说,在MyISAM读模式下,不会阻塞其它用户的同一表读操作,但是会阻塞写操作;而在写模式下,会同时阻塞其它用户同一表的读写操作。

测试MyISAM的写锁模式

新建一个user表,引擎是MyISAM:

mysql> desc user;+---------+-------------+------+-----+---------+----------------+| Field | Type | | Key | Default | Extra |+---------+-------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | | auto_increment || name | varchar(20) | YES | | | || age | int(3) | YES | | | || address | varchar(60) | YES | | | |+---------+-------------+------+-----+---------+----------------+4 rows in set (0.01 sec)
session A session B
获得user表的锁锁定
mysql> lock table user write;
Query OK, 0 rows affected (0.00 sec)
mysql>select * from user;
Empty set (0.00 sec)
mysql> insert into user(id, name, age, address) values(1, 'test', 18, 'test address');
Query OK,1 row affected (0.02 sec)
mysql> select * from userG
被阻塞了,一直卡住在这,没有返回结果
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> select * from userG
**********
name: test
age: 18
address: test address
1 row in set (5 min 29.61 sec)

可以看出,通过lock table user write将user表锁住后,其它用户进行对该表操作时,都会被阻塞。

测试MyISAM读锁

在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

session A session B
获得user表的读锁定
mysql> lock table user read;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from user where id = 1 G
中从查询速度中可以看出,sessionB并没有被阻塞
1 row in set (0.00 sec)
由于没有获取order表的读锁定,所以不能查询order表
mysql> select * from order;
ERROR 1100 (HY000): Table 'order' was not locked with LOCK TABLES
但是session B可以访问oder表,不阻塞
mysql> select * from order;
Empty set (0.00 sec)
获得读锁定时,不能进行写操作
mysql> update user set name = 'wahaha' where id = 1;
ERROR 1099 (HY000): Table 'user' was locked with a READ lock and can't be updated
其它session进行更新操作时,会被阻塞
mysql> update user set name = 'wahaha' where id = 1;
等待ing
释放锁
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> update user set name = 'wahaha' where id = 1;
Query OK, 1 row affected (1 min 6.43 sec)

MyISAM支持并发插入

MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

  • 当concurrent_insert设置为0时,不允许并发插入。

  • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。

  • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

MyISAM的锁调度

MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。但它认为写锁的优先级比读锁高,所以即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。可以通过一些设置来调节MyISAM的调度行为。

  • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。

  • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。

  • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。上面已经讨论了写优先调度机制带来的问题和解决办法。

这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

事务概念

学习Spring的时候,一般通过注解@Transitional就能启动spring的事务管理,在MySQL中也同样支持事务的四个原则ACID:

  • **A(Atomicity)原子性:**事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。

  • **C(Consistent)一致性:**在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。

  • **I(Isolation)隔离性:**数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。

  • **D(Durable)持久性:**事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

  • 更新丢失(Last update):A和B同时对一行数据进行处理,A修改后进行保存,然后B修改后进行保存,这样A的更新被覆盖了,相当于发生丢失更新的问题。所以可以在A事务未结束前,B不能访问该记录,这样就能避免更新丢失的问题。

  • 脏读(Dirty Reads):A事务在对一条记录做修改,但还未提交,这条记录处于不一致的状态;这时,B事务也来读同一条记录,这时如果没有加控制,B读了未修改前的数据,并根据该数据进行进一步处理,就会产生未提交的数据依赖关系。这种现象叫做“脏读”

  • 不可重复读(Non-Repeatable Reads):B事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变(被更新或者删除了,例如A事务修改了)。这种现象叫做“不可重复读”。

  • 幻读(Phantom Reads):A事务按照相同查询条件,重新读取之前检索过得内容,却发现其它事务插入或修改其查询条件的新数据,这种现象就叫”幻读“。

事务的隔离级别

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

4种隔离级别比较

读数据一致性及允许的并发副作用
隔离级别
读数据一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted) 最低级别,只能保证不读取
物理上损害的数据
已提交读(Read committed) 语句级
可重复读(Repeatable read) 事务级
可序列化(Serializable) 最高级别,事务级

获取InnoDB行锁争用情况

检查InnoDB_row_lock状态变量来分析:

mysql> show status like 'InnoDB_row_lock%';+-------------------------------+-------+| Variable_name | Value |+-------------------------------+-------+| Innodb_row_lock_current_waits | 0 || Innodb_row_lock_time | 0 || Innodb_row_lock_time_avg | 0 || Innodb_row_lock_time_max | 0 || Innodb_row_lock_waits | 0 |+-------------------------------+-------+5 rows in set (0.00 sec)复制代码

如果InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,表示锁争用情况比较严重。

InnoDB的行锁模式以及加锁方法

InnoDB实现了一下两种类型的行锁:

  • 共享锁(S):允许一个事务去多一行,阻止其它事务获得相同数据集的排他锁。

  • 排他锁(X): 允许获得排他锁的事务更新数据,阻止其它事务获得相同数据集的共享锁和排他写锁。

另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。(感觉与MyISAM的表锁机制类似)

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。

  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

InnoDB行锁模式兼容性列表:

请求锁模式
矩阵结果表示是否兼容
当前锁模式
X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容

如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。意向锁是InnoDB自动加的;对于UPDATE、DELETE和INSERT语句,InnoDB会自动给设计数据集加排他锁(X);对于普通的SELECT语句,InnoDB不会加锁。可以通过以下语句显示给记录集加共享锁或排他锁:

  • 共享锁(S):SELECT * FROM TABLE_NAME WHERE ... LOCK IN SHARE MODE.

  • 排他锁(X):SELECT * FROM TABLE_NAME WHERE ... FOR UPDATE.

用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。

所以在使用共享锁模式下,查询完数据后不要进行更新操作,不然又可能会造成死锁;要更新数据,应该使用排他锁模式。

InnoDB行锁实现方式

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!(这个问题遇到过,由于没加索引,行锁变表锁)

  • 在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。

  • 由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。

  • 当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

  • 即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。

可以通过explain执行计划查看是否真正使用了索引。

间隙锁(Next-key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举个例子:假如emp表中只有101条记录,其id的值从1~101,下面的sql:select * from emp where id > 100 for update;是范围条件查询,InnoDB不仅会对符合条件的id值为101的记录加锁,也会对id大于101(并不存在的值)的“间隙”加锁。

结论:

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

关于死锁(DeadLock)

上面知识点说过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步或得的,所以InnoDB发生死锁是可能的。

举个例子:

session A session B
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...
做一些其他处理...
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
...
select * from table_2 where id =1 for update;
因session_2已取得排他锁,等待
做一些其他处理...
mysql> select * from table_1 where where id=1 for update;
死锁

也就是我们死锁产生的条件,互相持有资源不释放,还有环形等待。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数 innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

免死锁的方法

  1. 在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。在下面的例子中,由于两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可以避免。

  2. 在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。

  3. 在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。

  4. 在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。

  5. 当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。

  • 对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁

小结

这是一篇学习文章,关于MySQL的锁机制又多了几分了解,以后在写SQL和排查问题时候,尽量避免死锁和更快定位问题所在。

出处:https://juejin.im/post/5ce8eee45188253114078f2a

编辑:尹文敏

如何成为 DevOps 大牛?

DevOps 国际峰会 2019 · 北京站,

一线互联网、金融、通信企业 DevOps 落地实践案例

Jenkins、Kubernetes、持续交付技术大咖为您分享落地案例

点击阅读原文,查看更多精彩

mysql insert into select大量数据插入比较慢_史上最全MySQL锁机制相关推荐

  1. 数据图表与分析图_史上最全最实用的数据可视化分析图表制作工具汇总

    俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据 ...

  2. 史上最全MySQL 大表优化方案(长文)

    转载自  史上最全MySQL 大表优化方案(长文) 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 一.单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑 ...

  3. mysql存储过程更新数据后返回一个字段_史上最全存储引擎、索引使用及SQL优化的实践...

    整个MySQL Server由以下组成 : Connection Pool :连接池组件 Management Services & Utilities :管理服务和工具组件 SQL Inte ...

  4. 史上最全MySQL锁机制

    本文主要记录学习MyISAM 和 InnoDB 这两个存储引擎. 为什么要学习锁机制 锁是计算机协调多个进程或线程并发访问某一资源的机制. 因为数据也是一种供许多用户共享的资源,如何保证数据并发访问的 ...

  5. mysql 前沿表设计_史上最简单MySQL教程详解(基础篇)之表的维护和改造

    表结构修改 在我们实际的开发的过程,随着开发的深入,会发现我们事先设计好的表可能已经不再适合,就会设计到对表的修改和改造.这里我就向大家介绍一下一些常用的方法和情况.这里我们使用的是之前在中就已经使用 ...

  6. 史上最全Mysql规范

    1 整体规范 1.1 注释 1)[强制]数据库所有对象必须要有注释,包括:表.字段.索引等,并且要保持最新: 1.2 字符集 1)[强制]默认使用utf8字符集,无乱码风险,除一些需要存储特殊符号的字 ...

  7. 史上最全MySQL基本操作(这一篇就够用了!!!)

    基础知识请移步:数据库.MySQL基本知识 欢迎学习交流!!! 持续更新中- 文章目录 MySQL基本操作 一.SQL语法规则 二.SQL库操作 1.创建数据库 2.显示数据库 3.使用数据库 4.修 ...

  8. 史上最全mysql日期计算(月初、月末、上中下旬判断、年初、年末、季初、季末)

    其中 startDay 格式为 = '2021-01-01',替换即可使用,如果对你有帮助的话,请多多关注,感谢大家~~ select DATE_FORMAT(startDay,'%Y%m%d') # ...

  9. mysql explain字段含义_史上最全的explain常见结果含义分析,值得收藏

    概述 对于MySQL执行计划的获取,我们可以通过explain方式来查看,explain方式看似简单,实际上包含的内容很多,尤其是输出结果中的type类型列.理解这些不同的类型,对于我们SQL优化举足 ...

最新文章

  1. 【ACE Meetup天津站】云计算时代的运维管理
  2. 通过Spark listener实现Direct模式读取Kafaka数据
  3. nginx location匹配优先级_一分钟搞清楚:Nginx之Location优先级
  4. Dubbo Admin —— Spring Cloud Alibaba 2021.1 + Nacos + Dubbo Admin参考配置
  5. OpenCASCADE绘制测试线束:图形命令之AIS 查看器——查看命令
  6. openmv串口数据 串口助手_Qt小项目之串口助手控制LED
  7. Cross-Validation(交叉验证)详解
  8. 今天看到导师给我的批注哭了...
  9. tomcat-内存溢出java.lang.OutOfMemoryErrory:PermGen space解决方法
  10. java final对象_JAVA final 与 不可变对象
  11. FFMPEG安装及入门
  12. gridview的sort_Gridview自动排序功能的实现
  13. 并行计算 SLIC超像素算法(一) 大致描述
  14. 51小项目——使用proteus搭建简易的光照度计-(1)
  15. 量子计算机的相干特征,几乎不受损耗和退相干影响的量子态,旨在推动量子计算机发展!...
  16. 2015年我的国庆节
  17. 利用python实现修改阿里云DNS值解析
  18. 这就是我英语 来自http://www.uuseenews.com.cn/
  19. 嘉洋原创一:价值规律主导下的行情周期
  20. 【C语言】英文文章出现次数最多的单词

热门文章

  1. 开源的视频笔记合集: 陌溪 / LearningNotes
  2. linux centos7修改默认启动的内核(升级及切换内核)
  3. k8s部署ingress:使用heptio-contour部署ingress controller(通过sealos安装,非nginx-ingress类型)
  4. kibana操作elasticsearch:查看映射关系
  5. Linux hostname指令
  6. Qt开发MQTT(二) 之第三方QMQTT
  7. 卡尔曼滤波、粒子滤波【通俗解释】
  8. 很酷的word技巧---删除行前的空格
  9. ios 侧滑返回停顿_iOS push侧滑返回功能实现方法
  10. stm32f302 can通讯_福特福克斯发动机无法启动,诊断电脑还通讯不了怎么修?