Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace of R[0,1]R^{[0, 1]}R[0,1]

Note Before Proof: 证明一个集合是另外一个集合的子空间,只要证明这个集合具有加法单位元0、加法封闭性、标量乘法封闭性即可。
Prove:
Let V = {f∣f:[0,1]→Rf | f: [0, 1] \rightarrow Rf∣f:[0,1]→R such that f is continuous}.
Part 1, additive identity(加法单位元):
Take f0=0(∀x∈[0,1])f_{0} = 0 (\forall x \in [0, 1])f0​=0(∀x∈[0,1]). Clearly f0f_{0}f0​ is continuous and f0∈Vf_{0} \in Vf0​∈V.
Part 2, closed under addition(加法封闭性):
Take f,g∈Vf, g \in Vf,g∈V.
For each ϵ>0\epsilon > 0ϵ>0 and for each x∈[0,1]x \in [0, 1]x∈[0,1] there exists a δ>0\delta > 0δ>0. Such that if ∣x1−x2∣<δ|x_{1} - x_{2}| < \delta∣x1​−x2​∣<δ, then ∣f(x1)−f(x2)∣<ϵ2|f(x_{1}) - f(x_{2})| < \frac{\epsilon}{2}∣f(x1​)−f(x2​)∣<2ϵ​, and ∣g(x1)−g(x2)∣<ϵ2|g(x_{1}) - g(x_{2})| < \frac{\epsilon}{2}∣g(x1​)−g(x2​)∣<2ϵ​.
Since f+g=(f+g)(x)=f(x)+g(x)f + g = (f + g)(x) = f(x) + g(x)f+g=(f+g)(x)=f(x)+g(x), we have
∣(f+g)(x1)−(f+g)(x2)∣=∣[f(x1)−f(x2)]+[g(x1)−g(x2)]∣≤∣[f(x1)−f(x2)]∣+∣[g(x1)−g(x2)]∣<ϵ.\begin{aligned} & |(f + g)(x_{1}) - (f + g)(x_{2})|\\= & |[f(x_{1}) - f(x_{2})] + [g(x_{1}) - g(x_{2})]|\\ \le & |[f(x_{1}) - f(x_{2})]| + |[g(x_{1}) - g(x_{2})]|\\< & \epsilon.\end{aligned}=≤<​∣(f+g)(x1​)−(f+g)(x2​)∣∣[f(x1​)−f(x2​)]+[g(x1​)−g(x2​)]∣∣[f(x1​)−f(x2​)]∣+∣[g(x1​)−g(x2​)]∣ϵ.​
i.e. f+gf + gf+g is continuous at all x∈[0,1]x \in [0, 1]x∈[0,1].
Therefor, f+g∈Vf + g \in Vf+g∈V.
Part 3, closed under scalar multiplication(标量乘法封闭性):
Take f∈Vf \in Vf∈V, and a∈Ra \in Ra∈R.
Assume a= 0, then
(af)(x)=a⋅f(x)=0,x∈[0,1](af)(x) = a \cdot f(x) = 0, x \in [0, 1](af)(x)=a⋅f(x)=0,x∈[0,1].
Clearly, afafaf is a continuous real-valued function on the interval [0, 1].
Assume a≠0a \neq 0a​=0, for each ϵ>0\epsilon > 0ϵ>0 and for each x∈[0,1]x \in [0, 1]x∈[0,1], there exists a δ>0\delta > 0δ>0 such that if
∣x1−x2∣<δ|x_{1} - x_{2}| < \delta∣x1​−x2​∣<δ,
then
∣f(x1)−f(x2)∣<ϵa|f(x_{1}) - f(x_{2})| < \frac{\epsilon}{a}∣f(x1​)−f(x2​)∣<aϵ​.
Now we have
∣(af)(x1)−(af)(x2)∣=∣a[f(x1)−f(x2)]∣=∣a∣⋅∣f(x1)−f(x2)∣<ϵ|(af)(x_{1}) - (af)(x_{2})| = |a[f(x_{1}) - f(x_{2})]| = |a|\cdot|f(x_{1}) - f(x_{2})| < \epsilon∣(af)(x1​)−(af)(x2​)∣=∣a[f(x1​)−f(x2​)]∣=∣a∣⋅∣f(x1​)−f(x2​)∣<ϵ.
Therefor, af∈Vaf \in Vaf∈V.
Thus V is a subspace of R[0,1]R^{[0, 1]}R[0,1].

【归档】Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace...相关推荐

  1. 详解DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

    Reference: Park J J, Florence P, Straub J, et al. Deepsdf: Learning continuous signed distance funct ...

  2. DeepSDF : Learning Continuous Signed Distance Functions for Shape Representation

    作者提出了一个新的深度学习网络来生成某一类物体的连续SDF表示.主要贡献:  1. 相较于传统的SDF只能表示某一个形状的隐式表示,DeepSDF可以直接表示一类物体的SDF函数.所谓shape co ...

  3. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

    目录 1. 概述 2. 相关工作 2.1 表示学习技术 2.2 3D形状补全 3. DeepSDF 4. Auto-decoder 4.1 训练阶段 4.2 推理阶段 5. 实验与应用 5.1 表示已 ...

  4. 6.4 Invariant Subspaces

    这一节除了讨论invariant subspaces外,还有很多其他扩展性的内容.例如EXAMPLE 8说明:和TTT可交换的operator的range和null space都是在TTT下invar ...

  5. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres "Topology" states that if a function \(f : A \rightarrow X \ ...

  6. betapert分布 matlab,[转载]贝塔(β,beta)分布

    Beta Probability density function Cumulative distribution function parameters: no closed form for α ...

  7. MAALA4.14.2_空间和子空间 (Space and Subspace)

    注:本文是对Matrix Analysis and Applied Linear Algebra一书4.1节Space and Subspace和4.2节Four Fundamental Subspa ...

  8. oracle12c 清理归档,Oracle 12c中数据删除(delete)新特性之数据库内归档功能

    有些应用有"标记删除"的概念,即不是删除数据,而是数据依然保留在表中,只是对应用不可见而已.这种需求通常通过如下方法实现: 1)  给相关表增加一个另外的列,该列存储标志数据被删除 ...

  9. Oracle 应用归档 卡死,关于Oracle归档进程的运行机制

    前几天有位朋友在留言板上提了这样一个问题: Fri May 25 20:46:06 2007 //自动备份controlfile Starting control autobackup Control ...

最新文章

  1. mysql分组和where条件查询_【MySQL】:分组查询where和having
  2. winform 界面 xml化_FlinkSQL 1.11 on Zeppelin平台化实践
  3. oracle自定义存储过程:删除表(无论表是否存在)和检测表是否存在
  4. 1的准确率_库存准确率总是100%正常吗?
  5. 安装ugjava安装在哪里_讨论!空调安装安全绳该挂哪里
  6. linux中vi编辑器(转载)
  7. c#文件分割与合并 part 1 (转自互联网)
  8. 基于arcpy包在arcmap里面实现图层的随机选取
  9. Gps经纬度转化关系
  10. Mac系统文件在Win解压乱码问题
  11. 开发一套企业管理软件系统要花费多少钱?
  12. word上怎么把图片拼接到一起_如何用Word把自己插入的两张图片合在一起?
  13. 计算机网络术语总结1
  14. 在项目中遇到导入TXT乱码现象。为什么UTF-8不行?ANSI是什么编码?
  15. 详解编码器和解码器电路:定义,工作原理,应用,真值表
  16. ibm 刀片服务器kvm使用
  17. 用Cloudflare CDN 如何自定义节点(CF自选IP)/撸CloudFlare Pro
  18. 用计算机怎么算体质指数,身高193cm体重20kg的男性标准体重与BMI指数 - BMI计算器...
  19. php fcgi 配置,apache使用fcgi配置PHP环境的步骤
  20. 2021年宏观经济十大趋势展望

热门文章

  1. stopstart按钮怎么用_汽车Start-Stop启停技术简明讲解
  2. 教你如何更改U盘图标
  3. Infor CloudSuite Industrial (SyteLine) 报告文件存储位置设置
  4. 第 1-6 课:Spring 的另一个核心机制 AOP
  5. 记一次 关于Android studio 编译报错compileDebugJavaWithJavac FAILED
  6. android系统APK签名生成大全
  7. 通过python smtplib库添加右抄送和密送人
  8. Android界面编程之简单的图片浏览器
  9. SAP UI5 应用开发教程之六十九 - 如何从 SAP UI5 Not Found 页面跳转回到正常的应用页面试读版
  10. 常见的百度蜘蛛IP 日志分析