Welcome to the video AWR1x, Interference detection.
欢迎观看视频AWR1x,干扰检测。
Hi, I’m Peter and I’m a field application engineer for driver-assistance systems in Europe.
嗨,我是彼得,我是欧洲欧洲驾驶员辅助系统的现场应用工程师
This video briefly describes how a typical interferer occurs in the victim IF band, and how AWR1x detects interfered samples in the received signal.
本视频简要介绍了典型的干扰源如何在受害者中频波段出现,以及AWR1x如何在接收到信号中检测到干扰样本。
The main part discusses how AWR1x can be set up to create a monitoring report, and how that report with and without the interferer looks like.
主要部分讨论了如何设置AWR1x来创建监视报告,以及有无干扰的报告是怎样的。
The number of automotive radar sensors that operate the same 77 and 79 gigahertz frequency band is continuously increasing.
在77和79GHz频段工作的汽车雷达传感器的数量不断增加。
This increases the probability of temporarily interfering each other.
这就增加了暂时互相干扰的可能性。
During interference, the own received signals is overlaid by the interferer signal, which negatively impacts the detection sensitivity.
在干扰过程中,干扰信号叠加在自己接收到的信号上,这会对检测灵敏度产生负面影响
If not detected and mitigated before signal processing, often the interferer signal is stronger compared to their own received signal, due to the direct line of sight between interfering sensor and victim sensor.
如果在信号处理之前没有检测到和减轻干扰,通常干扰信号比它们自己接收到的信号更强,这是由于干扰传感器和受害者传感器之间的直接视线。
In order to minimize the negative impact of interferers, there are various ways discussed in research papers to mitigate interference.
为了使干扰源的负面影响最小化,研究文章中讨论了各种减轻干扰的方法。
Before mitigation can be applied, it is crucial to detect the interfered segment of the received signal.
在应用抑制之前,检测接收信号的干扰段是至关重要的
The highly integrated AWR1x 77 gigahertz [INAUDIBLE] device family has a built-in self-test processor subsystem, also known as BSS subsystem that configures and monitors the on chirp RF baseband components in real time.
高度集成的AWR1x 77GHz设备系列有一个内置的自检处理器子系统,也称为BSS子系统,可实时配置和监控on chirp射频基带组件。
The BSS processor is also able to detect interferer and to provide a report on a chirp-to-chirp basis.
BSS处理器还能够检测干扰源,并在chirp-to-chirp的基础上提供报告。
Most of the 77 gigahertz radar sensors for automotive are using the frequency modulated continuous wave scheme, also known as FMCW.
汽车用77GHz雷达传感器大多采用调频连续波方案,也称为FMCW。
The diagram shows the exemplar FMCW signal that sweeps from 76 to 77 gigahertz, which is called a chirp.
图中显示了从76到77GHz的FMCW信号范例,这被称为chirp。
Whereas the green signal is own or victim transmit signal, and the dashed blue signal is the victim received signal.
而绿色信号是自身或受害者发射信号,蓝色虚线信号是受害者接收信号
That is delayed compared to the transmit signal, due to propagation time to and from the reflecting object.
与发射信号相比,由于发射物体之间的传播时间而延迟。
The delta between transmit and receive signal is called intermediate frequency band, or IF band.
发送和接收信号之间的增量称为中频带,或IF band
For chirps, it was positive frequency slope, the valid IF band is always located below or off the transmit signal is shown with the light blue shaded area.
对于chirp,它是正的频率斜率,有效的中频波段总是位于发射信号的下方或之外以浅蓝色阴影区显示。
For townships it would be the opposite.
对于townships来说,情况恰恰相反
And interferer with a steeper slope crosses a victim iF Now let’s look at the resulting IF signal.
当干扰源的斜率更抖时,它会穿过一个受害者,现在让我们看看产生的中频信号。
The blue received signal is overlaid by a red interferer signal when crossing the IF band.
当越过中频波段时,蓝色接收信号被红色干扰信号覆盖。
The interferer sweeps through the complete IF band in this example from maximum frequency down to DC.
在本例中,干扰源从最大频率向下扫过整个中频频段。
If no interference detection and mitigation would be applied before spectro signal processing, the complete frequency spectrum would be impacted.
如果在光谱信号处理器前不进行干扰检测和抑制,会影响整个频谱。
Or in other words, the noise flow would be increased due to wide band interferer, and weak receive signals may no longer be detected.
或者换句话说,由于带宽干扰,噪声流会增加,微弱的接收信号可能不再被检测到。
The AWR1x family has a complex base band architecture which allows to monitor not only the IF or signal band, but also the image band which is located on the opposite side of the signal band.
AWR1x系列有一个复杂的基带结构,它不仅可以监视IF或信号频带,还可以监视位于信号频带的另一侧图像频带。
Shown here is light green shaded area and is green interferer signal.
这里显示的是浅绿色阴影区和绿色干扰信号。
With a complex receiver, the image and signal bands can be separated, whereas in the image band only noise and interferer would be present.
对于一个复杂的接收器,图像和信号频带可以分离,而在图像频带中只有噪声和干扰。
AWR1x provides signal and image band informational report on a chirp-to-chirp basis.
AWR1x提供信号和图像波段的信息报告,以chirp-to-chirp为基础。
The signal and image band report is part of the chirp quality, or CQ, information.
信号和图像段报告是chirp质量或CQ信息的一部分。
There are three types of CQ information, and one of them is the signal and image band monitor report.
CQ信息有三种类型,其中一种是信号和图像波段监视器报告。
Another type of CQ data would be the ADC and the IF saturation information, which could be also exploited to identify strong interferers that cause saturation effects in the AWR1x receive chain.
另一种CQ数据是ADC和IF饱和信息,也可以利用它们来识别在AWR1x接收链中引起饱和效应的强干扰源。
Those saturation information is not scope of this presentation.
这些饱和信息不再本演示文稿的范围内。
The signal and image band monitor report is created for every chirp and stored in a dedicated CQ ping-pong buffer.
为每个chirp创建信号和图像波段监视器报告,并将其存储在专用的CQ-ping-pong缓冲区中。
The CQ data can either be sent to the outside via the high-speed interface as part of the radar data, or can be processed internally, for example, by the DSP subsystem on AWS1642.
CQ数据可以作为雷达数据的一部分通过高速接口发送到外部,或者可以在内部处理,例如由AWR1642上的DSP子系统处理。
The DSP has to receive the report from the CQ buffer on time before it is replaced with new information.
在用新信息替换之前,DSP必须及时从CQ缓冲器接收报告。
The report is comprised of primary and secondary time-slice-based energy numbers, separated into signal and image band, whereas the primary and secondary time slices are in chronological order and are staggered as shown in the diagram.
报告由一次和二次时间片为基础的能量数自称,分为信号带和图像带,而一次和二次时间片按时间顺序排列,如图所示交错排列。
The total number of primary and secondary time slices is configurable between 1 and 127, up to 64 primary and 63 secondary slices.
主时间片和辅助时间片的总数可在1到127之间配置,最多可配置64个主时间片和63个辅助时间片
The power numbers are stored in chronological order in the CQ ping-pong buffer.
功率数按时间顺序存储在CQ-ping-pong缓冲器中。
Signal and image band values are 8-bit energy values and are stored in alternating order.
信号和图像频带值是8位能量值,以交替顺序存储。
If one LSB represents minus 0.5 dBm, smaller figures represent higher energy levels.
如果一个LSB代表-0.5dBm,较小的数字代表更高的能量水平
The first 16-bit value contains a total number of time slices.
前16位值包含时间片的总数
To set up the signal and image band monitor, two API calls have to be invoked.
要设置信号和图像带监视器,两个API必须被调用。
With the first API call, various monitors can be enabled or disabled.
通过第一个API调用,可以启用或禁用各种监控器
To enable the signal and image band monitor, bit 25 of the parameter n mosque has to be set to when calling this API.
要启用信号和图像带监视器,在调用此API时,必须将参数n mosque的位25设置为使能
With the second API call, the monitoring function can be configured.
通过第二个API调用,可以配置监视函数
As previously mentioned, the number of time slices can be configured between 1 and 127.
如前所述,时间片的数量可以配置在1到127之间。
In addition, the energy figure per time slice is calculated across a defined number of samples where the minimum number of samples allowed is four.
此外,每个时间片的能量图是通过定义的样本数量计算的,其中允许的最小样本数为4。
After the signal and image band monitor is set up, the corresponding CQ information is shared via the high-speed interface or via the CQ buffer.
在设置信号和图像频带监视器之后,通过高速接口或CQ缓冲器共享相应的CQ信息。
Without an interferer, a typical complex baseband signal looks like as shown in that diagram at the bottom.
没有干扰源,典型的复杂基带信号如下图所示
This is a raw data in the time domain, where the blue signal reflects a real component of the raw data and the red signal, the image and the report.
这是时域中的原始数据,其中蓝色信号反映原始数据并且红色信号是图像和报告的真实组成部分。
The diagram on top plots a corresponding signal and image band monitoring report.
顶部的图表绘制了相应的信号和图像波段检测报告。
The x-axis represents a time slice number, and the y-axis the energy b level of the time slices.
x轴表示时间片编号,y轴表示时间片的能量b级。
The blue signal reflects the signal band levels across time slices.
蓝色信号反映了跨时间片的信号带水平
And the red signal shows the image band energy levels.
红色信号显示了图像带的能量水平
Due to presence of an IF signal, the signal band level are considerably higher than the image band signal, which essentially reflects a noise floor.
由于存在IF信号,信号频带远高于图像带信号,而图像带信号基本上反映noise floor
With suppressants of an interferer, the complex baseband signal looks very similar, except for a short period of time where the interference distorts the baseband signal.
有了干扰抑制器,复杂基带信号看起来非常相似,只是在短时间内干扰会使基带信号失真
The distorted signal is shown in the lower right plot, whereas in this example, the interferer is relatively weak compared to the regular baseband signal.
失真的信号显示在右下角的曲线图中,而在本例中,与常规基带信号相比,干扰源相对较弱。
The time period during interference is marked with the rectangular dashed line box.
干扰器件的时间段用矩形虚线框标记。
In the signal and image band energy report shown in the upper right plot, the image band shows a clear sign of interference in the impacted time slices.
在右上角所示的信号和图像频带能量报告中,图像频带在受影响的事件片中显示出明显的干扰迹象
So signal band is similar to the non-interfering case, whereas a stronger interferer would also create a time-shifted peak in the signal band.
因此,信号带类似于非干扰情况,而更强的干扰源也会在信号带中产生时移峰值。
With signal and image band monitor of the AWR1x band devices, the presence and the location of interferers can be easily determined.
利用AWR1x波段设备的信号和图像波段监视器,可以很容易地确定干扰源地存在和位置。
Based on this information, effective mitigation techniques can be applied.
基于这些信息,可以应用有效地缓解技术。
This should be applied before the spectral analysis of the baseband signal starts.
这应该是在基带信号的频谱分析开始之前应用。
There can be found many mitigation techniques in literature, from very simple means like zeroing out impacted samples to more complex means like trying to reconstruct the interfered segment by extrapolation, interpolation, or by trying to cancel that interferer signal.
在文献中可以发现许多缓解技术,从非常简单的方法(如将受影响的样本归零)到更复杂的方法(如尝试通过外推、内插或通过尝试取消干扰信号来重建干扰段)
Due to the nature of FMCW, an interferer does not impact only one chirp, but multiple successive chirps.
由于FMCW的特性,一个干扰源不仅影响一个chirp,而且影响多个连续的chirp
To reduce the probability of multiple chirps being systematically impacted by one aggressor, pseudorandom modulation in the time and frequency domain can be introduced-- for example, by varying inter-chirp idle time, start frequency, or chirp slope.
为了降低多个chirp被一个侵略者系统地影响地概率,可以在时域和频域引入伪随机机制,例如通过改变chirp间的空闲时间、起始频率或chirp斜率
The AWR1x devices support this variability on a chirp-to-chirp basis for up to 512 chirps right radar frame.
AWR1x设备在chirp-to-chirp的基础上支持这种变化,右雷达帧最多可以有512个chirp
Moreover, AWR1x devices support binary phase modulation, which can be used to apply chirp-to-chirp phase coding.
此外,AWR1x器件支持二进制相位调制,可以将chirp应用到chirp相位编码中
Often, automotive radar sensor vendors are applying a mix of direct and indirect mitigation techniques that are optimized for a specific implementation and use case.
通常,汽车雷达传感器供应商正在应用直接和间接缓解技术组合,这些技术针对特定的实现和用例进行了优化。
In summary, the complex baseband architecture of the AWR1x devices is a foundation to distinguish signal and image band.
总上所述,AWR1X设备的复杂基带结构是区分信号和图像频带的基础
The signal and image band energy monitor creates a report every chirp, which is provided as part of the CQ information through the high-speed interface or via the CQ buffer.
信号和图像带能量监视器创建每个chirp的报告,该报告通过高速结构或通过CQ缓冲器作为CQ信息的一部分提供。
The report simplifies the detection and localisation of an interferer, which is the crucial first step to enable effective mitigation techniques.
报告简化了干扰源的检测和定位,这是实现有效缓解技术的关键第一步。
For further reading, please consult the AWR1x radar interface control document, which is included in the device firmware package available on TI.com.
如需进一步阅读,请参阅AWR1x雷达接口控制文档,该文档包含在TI官网上提供的设备固件包
If you want to get an overview on our automotive millimeter wave offering, please consult TI.com/awr1x.
如果您想了解我们的汽车毫米波产品。请咨询TI.com/awr1x
If you have a specific technical question, you might also want to consult the corresponding e2e forum.
如果您有具体的问题技术,您可能还想咨询相应的e2e论坛。
Thanks for watching.
感谢收看

mmWave AWR1x Interference Detection - A crucial step to effective mitigation相关推荐

  1. 车载毫米波雷达信号处理中的干扰问题

    说明 雷达干扰及其解决或利用是一个极其宽泛且复杂的话题,本篇博文并不企图将各种内容做详细叙述,而是试图搭建一个囊括尽可能多内容的框架.基于作者的积累做一些有细有略的概述.并收集和丰富相关资料.  本篇 ...

  2. 【论文总结】Towards Open World Object Detection(附翻译)

    Towards Open World Object Detection 开放世界的目标检测 论文地址:https://arxiv.org/abs/2103.02603 代码地址:GitHub - Jo ...

  3. 一、 毫米波(mmWave) 上手TI IWR1443——mmWave Vital Signs (生命体征实验)

    一.前言 本人第一次写博文,如有纰漏请大家谅解! 由于这个板子的资料相对较少,我在完成生命体征实验的时候也掉了不少头发.在这里纪录一下完成实验的过程 官方教程视频:https://edu.21ic.c ...

  4. Object Detection(目标检测神文)

    目标检测神文,非常全而且持续在更新.转发自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html,如 ...

  5. 文本检测最近文章检索(1)

    期刊 1)Evaluating and improving lexical resources for detecting signs of depression in text 评价和改进词汇资源, ...

  6. 今日arXiv精选 | 12篇EMNLP 2021最新论文

     关于 #今日arXiv精选  这是「AI 学术前沿」旗下的一档栏目,编辑将每日从arXiv中精选高质量论文,推送给读者. You should evaluate your language mode ...

  7. 卷积网络和卷积神经网络_卷积神经网络的眼病识别

    卷积网络和卷积神经网络 关于这个项目 (About this project) This project is part of the Algorithms for Massive Data cour ...

  8. 使用Optuna的XGBoost模型的高效超参数优化

    介绍 : (Introduction :) Hyperparameter optimization is the science of tuning or choosing the best set ...

  9. win10下安装ubuntu14.04双系统(UEFI固件)

    2019独角兽企业重金招聘Python工程师标准>>> 在windows10环境下安装双系统,遇到了很多坑.作为一个用惯了虚拟机的人,本想通过安装双系统来充分利用计算机本身的硬件资源 ...

  10. 人工智能/数据科学比赛汇总 2019.6

    内容来自 DataSciComp,人工智能/数据科学比赛整理平台. Github:iphysresearch/DataSciComp 本项目由 ApacheCN 强力支持. 微博 | 知乎 | CSD ...

最新文章

  1. 大华嵌入式硬盘录像机数据恢复工具
  2. [YTU]_2922(Shape系列-8)
  3. ctf(pwn)栈溢出介绍
  4. android 读取manifest的数据
  5. Codeforces Round #446 (Div. 1) B. Gluttony 构造 + 补集思想
  6. Java数据库篇2——数据库基本操作
  7. 信息学奥赛一本通(2056:【例3.7】最大的数)
  8. [转载] Python round四舍五入精度缺失的解决
  9. Atitit 音频资料与音乐库管理系统功能 目录 1. 通用功能区 2 1.1. 批量处理功能文件夹遍历 2 1.2. Zip文件遍历与读取 2 1.3. Rar文件遍历与读取 2 1.4. She
  10. 中调用view_在 View 上使用挂起函数
  11. htc328d屏幕排线怎么换_HTC T328D解锁详细图文教程
  12. 百度杀毒,360安全卫士的那些私下的功夫 。
  13. 积分形式的詹森不等式_均值不等式及其积分形式
  14. 电桥的原理,及非线性误差
  15. 使用Arcgis制作的专题地图
  16. 横向扩展 纵向扩展 数据库_理解数据库扩展模式的指南
  17. ThinkPad-T480-OpenCore0.7.5-黑苹果EFI
  18. Unity-TCP-网络聊天功能(一): API、客户端服务器、数据格式、粘包拆包
  19. 开源项目eladmin--笔记
  20. 【转自牛客网】C++类职位校招

热门文章

  1. 超详细的Django面试题
  2. 【Verilog基础】Verilog语法之标量(Scalar)与向量(Vector)
  3. linux添加phoenix引导,Phoenix OS安装方法
  4. Modem2G/3G/4G/5G:高通平台SUPL配置方法总结
  5. c# winform人脸识别
  6. matlab转换为函数表达式,matlab中将符号表达式转换为函数
  7. SDRAM控制器仿真
  8. 什么是测地线(geodesic)?【讲解清晰生动,深入浅出,通俗易懂】
  9. en60204标准_《EN_60204_机械产品电气安全标准介绍》.pdf
  10. Android语言切换原理