高等数学(第七版)同济大学 习题12-5

1.利用函数的幂级数展开式求下列各数的近似值:\begin{aligned}&1. \ 利用函数的幂级数展开式求下列各数的近似值:&\end{aligned}​1. 利用函数的幂级数展开式求下列各数的近似值:​​

(1)ln3(误差不超过0.0001);(2)e(误差不超过0.001);(3)5229(误差不超过0.00001);(4)cos2∘(误差不超过0.0001).\begin{aligned} &\ \ (1)\ \ ln\ 3\ (误差不超过0.0001);\\\\ &\ \ (2)\ \ \sqrt{e}\ (误差不超过0.001);\\\\ &\ \ (3)\ \ \sqrt[9]{522}(误差不超过0.00001);\\\\ &\ \ (4)\ \ cos\ 2^{\circ}\ (误差不超过0.0001). & \end{aligned}​  (1)  ln 3 (误差不超过0.0001);  (2)  e​ (误差不超过0.001);  (3)  9522​(误差不超过0.00001);  (4)  cos 2∘ (误差不超过0.0001).​​

解:

(1)ln1+x1−x=2(x+x33+x55+⋅⋅⋅+x2n−12n−1+⋅⋅⋅),x∈(−1,1),令1+x1−x=3,得x=12,则ln3=ln1+121−12=2[12+13⋅23+15⋅25+⋅⋅⋅+1(2n−1)2n−1+⋅⋅⋅],∣rn∣=2[1(2n+1)22n+1+1(2n+3)22n+3+⋅⋅⋅]=2(2n+1)22n+1[1+(2n+1)22n+1(2n+3)22n+3+(2n+1)22n+1(2n+5)22n+5+⋅⋅⋅]<2(2n+1)22n+1(1+122+124+⋅⋅⋅)=2(2n+1)22n+1⋅11−14=13(2n+1)22n−2,∣r5∣<13⋅11⋅28≈0.00012,∣r6∣<13⋅13⋅210≈0.00003<10−4,取n=6,则ln3≈2(12+13⋅23+15⋅25+⋅⋅⋅+111⋅211),考虑到舍入误差,取五位小数,得ln3≈1.0986.(2)ex=1+x+x22!+⋅⋅⋅+xnn!+⋅⋅⋅,x∈(−∞,+∞),令x=12,得e=1+12+12!22+⋅⋅⋅+1n!2n+⋅⋅⋅,rn=1(n+1)!2n+1+1(n+2)!2n+2+⋅⋅⋅=1(n+1)!2n+1[1+1(n+2)⋅2+1(n+2)(n+3)⋅22+⋅⋅⋅]<1(n+1)!2n+1(1+12+122+⋅⋅⋅)=1(n+1)!2n+1⋅11−12=1(n+1)!2n,r4<15!24≈0.0005<10−3,取n=4,考虑到舍入误差,取四位小数,得e≈1+12+12!22+13!23+14!24≈1.648.(3)5229=29+109=2(1+1029)19,因为(1+x)m=1+mx+m(m−1)2!x2+⋅⋅⋅+m(m−1)⋅⋅⋅⋅⋅(m−n+1)n!xn+⋅⋅⋅(−1<x<1),所以5229=2(1+1029)19=2[1+19⋅1029+19(19−1)2!⋅102218+⋅⋅⋅+19(19−1)⋅⋅⋅⋅⋅(19−n+1)n!⋅10n29n+⋅⋅⋅]=2⋅(1+19⋅1029−19⋅892!⋅102218+⋅⋅⋅)=2+29⋅1029−19⋅89⋅102218+⋅⋅⋅,上式右端第2项起为一交错级数,则有∣r3∣≤u4=8⋅173⋅93⋅103227<10−6,取3项,取六位小数,得5229≈2+29⋅1029−892⋅102218≈2.00430.(4)cos2∘=cosπ90=1−12!(π90)2+14!(π90)4−⋅⋅⋅,上式为交错级数,∣r2∣≤u3=14!(π90)4<10−7,取2项,取五位小数,得cos2∘≈1−12!(π90)2≈0.9994.\begin{aligned} &\ \ (1)\ ln\frac{1+x}{1-x}=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\cdot\cdot\cdot+\frac{x^{2n-1}}{2n-1}+\cdot\cdot\cdot\right),x \in (-1, \ 1),令\frac{1+x}{1-x}=3,得x=\frac{1}{2},则\\\\ &\ \ \ \ \ \ \ \ ln\ 3=ln\ \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left[\frac{1}{2}+\frac{1}{3\cdot 2^3}+\frac{1}{5\cdot 2^5}+\cdot\cdot\cdot+\frac{1}{(2n-1)^{2n-1}}+\cdot\cdot\cdot\right],\\\\ &\ \ \ \ \ \ \ \ |r_n|=2\left[\frac{1}{(2n+1)2^{2n+1}}+\frac{1}{(2n+3)2^{2n+3}}+\cdot\cdot\cdot\right]=\frac{2}{(2n+1)2^{2n+1}}\left[1+\frac{(2n+1)2^{2n+1}}{(2n+3)2^{2n+3}}+\frac{(2n+1)2^{2n+1}}{(2n+5)2^{2n+5}}+\cdot\cdot\cdot\right] \lt \\\\ &\ \ \ \ \ \ \ \ \frac{2}{(2n+1)2^{2n+1}}\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\cdot\cdot\cdot\right)=\frac{2}{(2n+1)2^{2n+1}}\cdot\frac{1}{1-\frac{1}{4}}=\frac{1}{3(2n+1)2^{2n-2}},\\\\ &\ \ \ \ \ \ \ \ |r_5| \lt \frac{1}{3\cdot 11\cdot 2^8} \approx 0.00012,|r_6| \lt \frac{1}{3\cdot 13\cdot 2^{10}} \approx 0.00003 \lt 10^{-4},取n=6,\\\\ &\ \ \ \ \ \ \ \ 则ln\ 3 \approx 2\left(\frac{1}{2}+\frac{1}{3\cdot 2^3}+\frac{1}{5\cdot 2^5}+\cdot\cdot\cdot+\frac{1}{11\cdot 2^{11}}\right),考虑到舍入误差,取五位小数,得ln\ 3 \approx 1.0986.\\\\ &\ \ (2)\ e^x=1+x+\frac{x^2}{2!}+\cdot\cdot\cdot+\frac{x^n}{n!}+\cdot\cdot\cdot,x \in (-\infty, \ +\infty),令x=\frac{1}{2},得\sqrt{e}=1+\frac{1}{2}+\frac{1}{2!2^2}+\cdot\cdot\cdot+\frac{1}{n!2^n}+\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ \ r_n=\frac{1}{(n+1)!2^{n+1}}+\frac{1}{(n+2)!2^{n+2}}+\cdot\cdot\cdot=\frac{1}{(n+1)!2^{n+1}}\left[1+\frac{1}{(n+2)\cdot 2}+\frac{1}{(n+2)(n+3)\cdot 2^2}+\cdot\cdot\cdot\right] \lt \\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{(n+1)!2^{n+1}}\left(1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot\right)=\frac{1}{(n+1)!2^{n+1}}\cdot \frac{1}{1-\frac{1}{2}}=\frac{1}{(n+1)!2^n},r_4 \lt \frac{1}{5!2^4} \approx 0.0005 \lt 10^{-3},取n=4,\\\\ &\ \ \ \ \ \ \ \ \ 考虑到舍入误差,取四位小数,得\sqrt{e} \approx 1+\frac{1}{2}+\frac{1}{2!2^2}+\frac{1}{3!2^3}+\frac{1}{4!2^4} \approx 1.648.\\\\ &\ \ (3)\ \sqrt[9]{522}=\sqrt[9]{2^9+10}=2\left(1+\frac{10}{2^9}\right)^{\frac{1}{9}},因为(1+x)^m=\\\\ &\ \ \ \ \ \ \ \ 1+mx+\frac{m(m-1)}{2!}x^2+\cdot\cdot\cdot+\frac{m(m-1)\cdot\ \cdot\cdot\cdot\ \cdot(m-n+1)}{n!}x^n+\cdot\cdot\cdot\ (-1 \lt x \lt 1),\\\\ &\ \ \ \ \ \ \ \ 所以\sqrt[9]{522}=2\left(1+\frac{10}{2^9}\right)^{\frac{1}{9}}=2\left[1+\frac{1}{9}\cdot \frac{10}{2^9}+\frac{\frac{1}{9}\left(\frac{1}{9}-1\right)}{2!}\cdot \frac{10^2}{2^{18}}+\cdot\cdot\cdot+\frac{\frac{1}{9}\left(\frac{1}{9}-1\right)\cdot\ \cdot\cdot\cdot\ \cdot \left(\frac{1}{9}-n+1\right)}{n!}\cdot\frac{10^n}{2^{9n}}+\cdot\cdot\cdot\right]=\\\\ &\ \ \ \ \ \ \ \ 2\cdot \left(1+\frac{1}{9}\cdot \frac{10}{2^9}-\frac{\frac{1}{9}\cdot\frac{8}{9}}{2!}\cdot\frac{10^2}{2^{18}}+\cdot\cdot\cdot\right)=2+\frac{2}{9}\cdot\frac{10}{2^9}-\frac{1}{9}\cdot\frac{8}{9}\cdot\frac{10^2}{2^{18}}+\cdot\cdot\cdot,上式右端第2项起为一交错级数,\\\\ &\ \ \ \ \ \ \ \ 则有|r_3| \le u_4=\frac{8\cdot17}{3\cdot 9^3}\cdot \frac{10^3}{2^{27}} \lt 10^{-6},取3项,取六位小数,得\sqrt[9]{522} \approx 2+\frac{2}{9}\cdot \frac{10}{2^9}-\frac{8}{9^2}\cdot\frac{10^2}{2^{18}}\approx 2.00430.\\\\ &\ \ (4)\ cos\ 2^{\circ}=cos\ \frac{\pi}{90}=1-\frac{1}{2!}\left(\frac{\pi}{90}\right)^2+\frac{1}{4!}\left(\frac{\pi}{90}\right)^4-\cdot\cdot\cdot,上式为交错级数,|r_2|\le u_3=\frac{1}{4!}\left(\frac{\pi}{90}\right)^4 \lt 10^{-7},\\\\ &\ \ \ \ \ \ \ \ 取2项,取五位小数,得cos\ 2^{\circ} \approx 1-\frac{1}{2!}\left(\frac{\pi}{90}\right)^2 \approx 0.9994. & \end{aligned}​  (1) ln1−x1+x​=2(x+3x3​+5x5​+⋅⋅⋅+2n−1x2n−1​+⋅⋅⋅),x∈(−1, 1),令1−x1+x​=3,得x=21​,则        ln 3=ln 1−21​1+21​​=2[21​+3⋅231​+5⋅251​+⋅⋅⋅+(2n−1)2n−11​+⋅⋅⋅],        ∣rn​∣=2[(2n+1)22n+11​+(2n+3)22n+31​+⋅⋅⋅]=(2n+1)22n+12​[1+(2n+3)22n+3(2n+1)22n+1​+(2n+5)22n+5(2n+1)22n+1​+⋅⋅⋅]<        (2n+1)22n+12​(1+221​+241​+⋅⋅⋅)=(2n+1)22n+12​⋅1−41​1​=3(2n+1)22n−21​,        ∣r5​∣<3⋅11⋅281​≈0.00012,∣r6​∣<3⋅13⋅2101​≈0.00003<10−4,取n=6,        则ln 3≈2(21​+3⋅231​+5⋅251​+⋅⋅⋅+11⋅2111​),考虑到舍入误差,取五位小数,得ln 3≈1.0986.  (2) ex=1+x+2!x2​+⋅⋅⋅+n!xn​+⋅⋅⋅,x∈(−∞, +∞),令x=21​,得e​=1+21​+2!221​+⋅⋅⋅+n!2n1​+⋅⋅⋅,         rn​=(n+1)!2n+11​+(n+2)!2n+21​+⋅⋅⋅=(n+1)!2n+11​[1+(n+2)⋅21​+(n+2)(n+3)⋅221​+⋅⋅⋅]<         (n+1)!2n+11​(1+21​+221​+⋅⋅⋅)=(n+1)!2n+11​⋅1−21​1​=(n+1)!2n1​,r4​<5!241​≈0.0005<10−3,取n=4,         考虑到舍入误差,取四位小数,得e​≈1+21​+2!221​+3!231​+4!241​≈1.648.  (3) 9522​=929+10​=2(1+2910​)91​,因为(1+x)m=        1+mx+2!m(m−1)​x2+⋅⋅⋅+n!m(m−1)⋅ ⋅⋅⋅ ⋅(m−n+1)​xn+⋅⋅⋅ (−1<x<1),        所以9522​=2(1+2910​)91​=2[1+91​⋅2910​+2!91​(91​−1)​⋅218102​+⋅⋅⋅+n!91​(91​−1)⋅ ⋅⋅⋅ ⋅(91​−n+1)​⋅29n10n​+⋅⋅⋅]=        2⋅(1+91​⋅2910​−2!91​⋅98​​⋅218102​+⋅⋅⋅)=2+92​⋅2910​−91​⋅98​⋅218102​+⋅⋅⋅,上式右端第2项起为一交错级数,        则有∣r3​∣≤u4​=3⋅938⋅17​⋅227103​<10−6,取3项,取六位小数,得9522​≈2+92​⋅2910​−928​⋅218102​≈2.00430.  (4) cos 2∘=cos 90π​=1−2!1​(90π​)2+4!1​(90π​)4−⋅⋅⋅,上式为交错级数,∣r2​∣≤u3​=4!1​(90π​)4<10−7,        取2项,取五位小数,得cos 2∘≈1−2!1​(90π​)2≈0.9994.​​


2.利用被积函数的幂级数展开式求下列定积分的近似值:\begin{aligned}&2. \ 利用被积函数的幂级数展开式求下列定积分的近似值:&\end{aligned}​2. 利用被积函数的幂级数展开式求下列定积分的近似值:​​

(1)∫00.511+x4dx(误差不超过0.0001);(2)∫00.5arctanxxdx(误差不超过0.001).\begin{aligned} &\ \ (1)\ \ \int_{0}^{0.5}\frac{1}{1+x^4}dx(误差不超过0.0001);\\\\ &\ \ (2)\ \ \int_{0}^{0.5}\frac{arctan\ x}{x}dx\ (误差不超过0.001). & \end{aligned}​  (1)  ∫00.5​1+x41​dx(误差不超过0.0001);  (2)  ∫00.5​xarctan x​dx (误差不超过0.001).​​

解:

(1)∫00.511+x4dx=∫00.5[1−x4+x8−x12+⋅⋅⋅+(−1)nx4n+⋅⋅⋅]dx=(x−15x5+19x9−113x13+⋅⋅⋅)∣00.5=12−15⋅125+19⋅129−113⋅1213+⋅⋅⋅,上式右端为一交错级数,有∣r3∣≤u4=113⋅1213≈0.000009<10−4,取3项,取五位小数,得∫00.511+x4dx≈12−15⋅125+19⋅129≈0.4940.(2)因为arctanx=x−x33+x55−⋅⋅⋅+(−1)nx2n+12n+1+⋅⋅⋅(−1<x<1),所以∫00.5arctanxxdx=∫00.5[1−x33+x45−⋅⋅⋅+(−1)nx2n2n+1+⋅⋅⋅]dx=(x−x39+x525−x749+⋅⋅⋅)∣00.5=12−19⋅123+125⋅125−149⋅127+⋅⋅⋅,因为∣r3∣≤u4=149⋅127≈0.0002<10−3,取3项,取四位小数,得∫00.5arctanxxdx≈12−19⋅123+125⋅125≈0.487.\begin{aligned} &\ \ (1)\ \int_{0}^{0.5}\frac{1}{1+x^4}dx=\int_{0}^{0.5}[1-x^4+x^8-x^{12}+\cdot\cdot\cdot+(-1)^nx^{4n}+\cdot\cdot\cdot]dx=\left(x-\frac{1}{5}x^5+\frac{1}{9}x^9-\frac{1}{13}x^{13}+\cdot\cdot\cdot\right)\bigg|_{0}^{0.5}=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}-\frac{1}{5}\cdot \frac{1}{2^5}+\frac{1}{9}\cdot\frac{1}{2^9}-\frac{1}{13}\cdot\frac{1}{2^{13}}+\cdot\cdot\cdot,上式右端为一交错级数,有|r_3| \le u_4=\frac{1}{13}\cdot\frac{1}{2^{13}}\approx 0.000009 \lt 10^{-4},\\\\ &\ \ \ \ \ \ \ \ 取3项,取五位小数,得\int_{0}^{0.5}\frac{1}{1+x^4}dx\approx \frac{1}{2}-\frac{1}{5}\cdot \frac{1}{2^5}+\frac{1}{9}\cdot\frac{1}{2^9}\approx 0.4940.\\\\ &\ \ (2)\ 因为arctan\ x=x-\frac{x^3}{3}+\frac{x^5}{5}-\cdot\cdot\cdot+(-1)^n\frac{x^{2n+1}}{2n+1}+\cdot\cdot\cdot\ (-1 \lt x \lt 1),所以\int_{0}^{0.5}\frac{arctan\ x}{x}dx=\\\\ &\ \ \ \ \ \ \ \ \int_{0}^{0.5}\left[1-\frac{x^3}{3}+\frac{x^4}{5}-\cdot\cdot\cdot+(-1)^n\frac{x^{2n}}{2n+1}+\cdot\cdot\cdot\right]dx=\left(x-\frac{x^3}{9}+\frac{x^5}{25}-\frac{x^7}{49}+\cdot\cdot\cdot\right)\bigg|_{0}^{0.5}=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}-\frac{1}{9}\cdot\frac{1}{2^3}+\frac{1}{25}\cdot\frac{1}{2^5}-\frac{1}{49}\cdot\frac{1}{2^7}+\cdot\cdot\cdot,因为|r_3| \le u_4=\frac{1}{49}\cdot\frac{1}{2^7}\approx 0.0002 \lt 10^{-3},取3项,\\\\ &\ \ \ \ \ \ \ \ 取四位小数,得\int_{0}^{0.5}\frac{arctan\ x}{x}dx\approx \frac{1}{2}-\frac{1}{9}\cdot \frac{1}{2^3}+\frac{1}{2^5}\cdot\frac{1}{25}\approx 0.487. & \end{aligned}​  (1) ∫00.5​1+x41​dx=∫00.5​[1−x4+x8−x12+⋅⋅⋅+(−1)nx4n+⋅⋅⋅]dx=(x−51​x5+91​x9−131​x13+⋅⋅⋅)​00.5​=        21​−51​⋅251​+91​⋅291​−131​⋅2131​+⋅⋅⋅,上式右端为一交错级数,有∣r3​∣≤u4​=131​⋅2131​≈0.000009<10−4,        取3项,取五位小数,得∫00.5​1+x41​dx≈21​−51​⋅251​+91​⋅291​≈0.4940.  (2) 因为arctan x=x−3x3​+5x5​−⋅⋅⋅+(−1)n2n+1x2n+1​+⋅⋅⋅ (−1<x<1),所以∫00.5​xarctan x​dx=        ∫00.5​[1−3x3​+5x4​−⋅⋅⋅+(−1)n2n+1x2n​+⋅⋅⋅]dx=(x−9x3​+25x5​−49x7​+⋅⋅⋅)​00.5​=        21​−91​⋅231​+251​⋅251​−491​⋅271​+⋅⋅⋅,因为∣r3​∣≤u4​=491​⋅271​≈0.0002<10−3,取3项,        取四位小数,得∫00.5​xarctan x​dx≈21​−91​⋅231​+251​⋅251​≈0.487.​​


3.试用幂级数求下列各微分方程的解:\begin{aligned}&3. \ 试用幂级数求下列各微分方程的解:&\end{aligned}​3. 试用幂级数求下列各微分方程的解:​​

(1)y′−xy−x=1;(2)y′′+xy′+y=0;(3)(1−x)y′=x2−y.\begin{aligned} &\ \ (1)\ \ y'-xy-x=1;\\\\ &\ \ (2)\ \ y''+xy'+y=0;\\\\ &\ \ (3)\ \ (1-x)y'=x^2-y. & \end{aligned}​  (1)  y′−xy−x=1;  (2)  y′′+xy′+y=0;  (3)  (1−x)y′=x2−y.​​

解:

(1)设方程的解为y=a0+a1x+a2x2+⋅⋅⋅+anxn+⋅⋅⋅(a0为任意常数),代入方程,有y′=a1+2a2x+3a3x2+⋅⋅⋅+(n+1)an+1xn+⋅⋅⋅,−xy=−a0x−a1x2−⋅⋅⋅−an−1xn−⋅⋅⋅,−x=−x,1=a1+(2a2−a0−1)x+(3a3−a1)x2+⋅⋅⋅+[(n+1)an+1−an−1]xn+⋅⋅⋅,比较系数可得,a1=1,a2=a0+12,a3=13,a4=a24=a0+12⋅4,a5=a35=13⋅5,a6=a46=a0+12⋅4⋅6,⋅⋅⋅,a2n−1=13⋅5⋅⋅⋅⋅⋅(2n−1),a2n=a0+12⋅4⋅6⋅⋅⋅⋅⋅2n=a0+1n!2n,可知∑n=1∞a2n−1x2n−1,∑n=0∞a2nx2n的收敛域是(−∞,+∞),所以y=∑n=0∞anxn=∑n=1∞a2n−1x2n−1+∑n=0∞a2nx2n=∑n=1∞x2n−13⋅5⋅⋅⋅⋅⋅(2n−1)+(a0+1)∑n=0∞x2nn!2n−1=∑n=1∞x2n−13⋅5⋅⋅⋅⋅⋅(2n−1)+(a0+1)∑n=0∞1n!(x22)n−1,因为∑n=0∞1n!(x22)n=ex22,记a0+1=C,1⋅3⋅5⋅⋅⋅⋅⋅(2n−1)=(2n−1)!!,所以y=Cex22+∑n=1∞1(2n−1)!!x2n−1−1,x∈(−∞,+∞).(2)设方程的解y=∑n=0∞anxn,其中a0,a1是任意常数,则y′=∑n=1∞nanxn−1,y′′=∑n=2∞n(n−1)anxn−2=∑n=0∞(n+2)(n+1)an+2xn,代入方程y′′+xy′+y=0,得∑n=0∞[(n+2)(n+1)an+2+nan+an]xn=0,则有(n+2)(n+1)an+2+(n+1)an=0,an+2=−ann+1(n=0,1,2,⋅⋅⋅),当n=2(k−1)时,a2k=(−12k)a2k−2=(−12k)(−12k−2)⋅⋅⋅(−12)a0=a0(−1)kk!2k,当n=2k−1时,a2k+1=(−12k+1)a2k−1=(−12k+1)(−12k−1)⋅⋅⋅(−13)a1=a1(−1)k(2k+1)!!,因为∑n=0∞a2nx2n,∑n=0∞a2n+1x2n+1的收敛域为(−∞,+∞),所以y=∑n=0∞anxn=∑n=0∞a2nx2n+∑n=0∞a2n+1x2n+1=∑n=0∞a0(−1)nn!2nx2n+∑n=0∞a1(−1)n(2n+1)!!x2n+1,即y=a0e−x22+a1∑n=0∞(−1)n(2n+1)!!x2n+1,x∈(−∞,+∞).(3)设方程的解y=∑n=0∞anxn,代入方程,得(1−x)∑n=1∞nanxn−1=x2−∑n=0∞anxn,有∑n=1∞nanxn−1−∑n=1∞nanxn+∑n=0∞anxn=x2,上式第一个级数∑n=1∞nanxn−1=∑n=0∞(n+1)an+1xn,有∑n=0∞[(n+1)an+1+(1−n)an]xn=x2,比较系数,得a1+a0=0,2a2=0,3a3−a2=1,(n+1)an+1+(1−n)an=0(n≥3),即a1=−a0,a2=0,a3=13,an+1=n−1n+1an(n≥3),或an=n−2nan−1=n−2n⋅n−3n−1⋅n−4n−2⋅⋅⋅⋅⋅24⋅13=2n(n−1)(n≥4),于是y=a0−a0x+13x3+16x4+110x5+⋅⋅⋅+2n(n−1)xn+⋅⋅⋅,或y=a0(1−x)+x3[13+16x+110x2+⋅⋅⋅+2(n+2)(n+3)xn+⋅⋅⋅].\begin{aligned} &\ \ (1)\ 设方程的解为y=a_0+a_1x+a_2x^2+\cdot\cdot\cdot+a_nx^n+\cdot\cdot\cdot\ (a_0为任意常数),代入方程,\\\\ &\ \ \ \ \ \ \ \ 有y'=a_1+2a_2x+3a_3x^2+\cdot\cdot\cdot+(n+1)a_{n+1}x^n+\cdot\cdot\cdot,-xy=-a_0x-a_1x^2-\cdot\cdot\cdot-a_{n-1}x^n-\cdot\cdot\cdot,-x=-x,\\\\ &\ \ \ \ \ \ \ \ 1=a_1+(2a_2-a_0-1)x+(3a_3-a_1)x^2+\cdot\cdot\cdot+[(n+1)a_{n+1}-a_{n-1}]x^n+\cdot\cdot\cdot,比较系数可得,a_1=1,\\\\ &\ \ \ \ \ \ \ \ a_2=\frac{a_0+1}{2},a_3=\frac{1}{3},a_4=\frac{a_2}{4}=\frac{a_0+1}{2 \cdot 4},a_5=\frac{a_3}{5}=\frac{1}{3\cdot 5},a_6=\frac{a_4}{6}=\frac{a_0+1}{2\cdot 4\cdot 6},\ \cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ a_{2n-1}=\frac{1}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot(2n-1)},a_{2n}=\frac{a_0+1}{2\cdot 4\cdot 6 \cdot\ \cdot\cdot\cdot\ \cdot 2n}=\frac{a_0+1}{n!2^n},\\\\ &\ \ \ \ \ \ \ \ 可知\sum_{n=1}^{\infty}a_{2n-1}x^{2n-1},\sum_{n=0}^{\infty}a_{2n}x^{2n}的收敛域是(-\infty, \ +\infty),\\\\ &\ \ \ \ \ \ \ \ 所以y=\sum_{n=0}^{\infty}a_nx^n=\sum_{n=1}^{\infty}a_{2n-1}x^{2n-1}+\sum_{n=0}^{\infty}a_{2n}x^{2n}=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)}+(a_0+1)\sum_{n=0}^{\infty}\frac{x^{2n}}{n!2^n}-1=\\\\ &\ \ \ \ \ \ \ \ \sum_{n=1}^{\infty}\frac{x^{2n-1}}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)}+(a_0+1)\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{x^2}{2}\right)^n-1,因为\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{x^2}{2}\right)^n=e^{\frac{x^2}{2}},\\\\ &\ \ \ \ \ \ \ \ 记a_0+1=C,1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)=(2n-1)!!,所以y=Ce^{\frac{x^2}{2}}+\sum_{n=1}^{\infty}\frac{1}{(2n-1)!!}x^{2n-1}-1,x \in (-\infty, \ +\infty).\\\\ &\ \ (2)\ 设方程的解y=\sum_{n=0}^{\infty}a_nx^n,其中a_0,a_1是任意常数,则y'=\sum_{n=1}^{\infty}na_nx^{n-1},\\\\ &\ \ \ \ \ \ \ \ y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n,代入方程y''+xy'+y=0,\\\\ &\ \ \ \ \ \ \ \ 得\sum_{n=0}^{\infty}[(n+2)(n+1)a_{n+2}+na_n+a_n]x^n=0,则有(n+2)(n+1)a_{n+2}+(n+1)a_n=0,\\\\ &\ \ \ \ \ \ \ \ a_{n+2}=-\frac{a_n}{n+1}\ (n=0,1,2,\cdot\cdot\cdot),当n=2(k-1)时,a_{2k}=\left(-\frac{1}{2k}\right)a_{2k-2}=\\\\ &\ \ \ \ \ \ \ \ \left(-\frac{1}{2k}\right)\left(-\frac{1}{2k-2}\right)\cdot\cdot\cdot\left(-\frac{1}{2}\right)a_0=\frac{a_0(-1)^k}{k!2^k},\\\\ &\ \ \ \ \ \ \ \ 当n=2k-1时,a_{2k+1}=\left(-\frac{1}{2k+1}\right)a_{2k-1}=\left(-\frac{1}{2k+1}\right)\left(-\frac{1}{2k-1}\right)\cdot\cdot\cdot\left(-\frac{1}{3}\right)a_1=\frac{a_1(-1)^k}{(2k+1)!!},\\\\ &\ \ \ \ \ \ \ \ 因为\sum_{n=0}^{\infty}a_{2n}x^{2n},\sum_{n=0}^{\infty}a_{2n+1}x^{2n+1}的收敛域为(-\infty, \ +\infty),所以y=\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_{2n}x^{2n}+\sum_{n=0}^{\infty}a_{2n+1}x^{2n+1}=\\\\ &\ \ \ \ \ \ \ \ \ \sum_{n=0}^{\infty}\frac{a_0(-1)^n}{n!2^n}x^{2n}+\sum_{n=0}^{\infty}\frac{a_1(-1)^n}{(2n+1)!!}x^{2n+1},即y=a_0e^{-\frac{x^2}{2}}+a_1\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!!}x^{2n+1},x \in (-\infty, \ +\infty).\\\\ &\ \ (3)\ 设方程的解y=\sum_{n=0}^{\infty}a_nx^n,代入方程,得(1-x)\sum_{n=1}^{\infty}na_nx^{n-1}=x^2-\sum_{n=0}^{\infty}a_nx^n,\\\\ &\ \ \ \ \ \ \ \ 有\sum_{n=1}^{\infty}na_nx^{n-1}-\sum_{n=1}^{\infty}na_nx^n+\sum_{n=0}^{\infty}a_nx^n=x^2,上式第一个级数\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=0}^{\infty}(n+1)a_{n+1}x^n,\\\\ &\ \ \ \ \ \ \ \ 有\sum_{n=0}^{\infty}[(n+1)a_{n+1}+(1-n)a_n]x^n=x^2,比较系数,得a_1+a_0=0,2a_2=0,3a_3-a_2=1,\\\\ &\ \ \ \ \ \ \ \ (n+1)a_{n+1}+(1-n)a_n=0\ (n \ge 3),即a_1=-a_0,a_2=0,a_3=\frac{1}{3},a_{n+1}=\frac{n-1}{n+1}a_n\ (n \ge 3),\\\\ &\ \ \ \ \ \ \ \ 或a_n=\frac{n-2}{n}a_{n-1}=\frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\frac{n-4}{n-2}\cdot\ \cdot\cdot\cdot\ \cdot \frac{2}{4}\cdot\frac{1}{3}=\frac{2}{n(n-1)}\ (n \ge 4),\\\\ &\ \ \ \ \ \ \ \ 于是y=a_0-a_0x+\frac{1}{3}x^3+\frac{1}{6}x^4+\frac{1}{10}x^5+\cdot\cdot\cdot+\frac{2}{n(n-1)}x^n+\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ 或y=a_0(1-x)+x^3\left[\frac{1}{3}+\frac{1}{6}x+\frac{1}{10}x^2+\cdot\cdot\cdot+\frac{2}{(n+2)(n+3)}x^n+\cdot\cdot\cdot\right]. & \end{aligned}​  (1) 设方程的解为y=a0​+a1​x+a2​x2+⋅⋅⋅+an​xn+⋅⋅⋅ (a0​为任意常数),代入方程,        有y′=a1​+2a2​x+3a3​x2+⋅⋅⋅+(n+1)an+1​xn+⋅⋅⋅,−xy=−a0​x−a1​x2−⋅⋅⋅−an−1​xn−⋅⋅⋅,−x=−x,        1=a1​+(2a2​−a0​−1)x+(3a3​−a1​)x2+⋅⋅⋅+[(n+1)an+1​−an−1​]xn+⋅⋅⋅,比较系数可得,a1​=1,        a2​=2a0​+1​,a3​=31​,a4​=4a2​​=2⋅4a0​+1​,a5​=5a3​​=3⋅51​,a6​=6a4​​=2⋅4⋅6a0​+1​, ⋅⋅⋅,        a2n−1​=3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)1​,a2n​=2⋅4⋅6⋅ ⋅⋅⋅ ⋅2na0​+1​=n!2na0​+1​,        可知n=1∑∞​a2n−1​x2n−1,n=0∑∞​a2n​x2n的收敛域是(−∞, +∞),        所以y=n=0∑∞​an​xn=n=1∑∞​a2n−1​x2n−1+n=0∑∞​a2n​x2n=n=1∑∞​3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)x2n−1​+(a0​+1)n=0∑∞​n!2nx2n​−1=        n=1∑∞​3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)x2n−1​+(a0​+1)n=0∑∞​n!1​(2x2​)n−1,因为n=0∑∞​n!1​(2x2​)n=e2x2​,        记a0​+1=C,1⋅3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)=(2n−1)!!,所以y=Ce2x2​+n=1∑∞​(2n−1)!!1​x2n−1−1,x∈(−∞, +∞).  (2) 设方程的解y=n=0∑∞​an​xn,其中a0​,a1​是任意常数,则y′=n=1∑∞​nan​xn−1,        y′′=n=2∑∞​n(n−1)an​xn−2=n=0∑∞​(n+2)(n+1)an+2​xn,代入方程y′′+xy′+y=0,        得n=0∑∞​[(n+2)(n+1)an+2​+nan​+an​]xn=0,则有(n+2)(n+1)an+2​+(n+1)an​=0,        an+2​=−n+1an​​ (n=0,1,2,⋅⋅⋅),当n=2(k−1)时,a2k​=(−2k1​)a2k−2​=        (−2k1​)(−2k−21​)⋅⋅⋅(−21​)a0​=k!2ka0​(−1)k​,        当n=2k−1时,a2k+1​=(−2k+11​)a2k−1​=(−2k+11​)(−2k−11​)⋅⋅⋅(−31​)a1​=(2k+1)!!a1​(−1)k​,        因为n=0∑∞​a2n​x2n,n=0∑∞​a2n+1​x2n+1的收敛域为(−∞, +∞),所以y=n=0∑∞​an​xn=n=0∑∞​a2n​x2n+n=0∑∞​a2n+1​x2n+1=         n=0∑∞​n!2na0​(−1)n​x2n+n=0∑∞​(2n+1)!!a1​(−1)n​x2n+1,即y=a0​e−2x2​+a1​n=0∑∞​(2n+1)!!(−1)n​x2n+1,x∈(−∞, +∞).  (3) 设方程的解y=n=0∑∞​an​xn,代入方程,得(1−x)n=1∑∞​nan​xn−1=x2−n=0∑∞​an​xn,        有n=1∑∞​nan​xn−1−n=1∑∞​nan​xn+n=0∑∞​an​xn=x2,上式第一个级数n=1∑∞​nan​xn−1=n=0∑∞​(n+1)an+1​xn,        有n=0∑∞​[(n+1)an+1​+(1−n)an​]xn=x2,比较系数,得a1​+a0​=0,2a2​=0,3a3​−a2​=1,        (n+1)an+1​+(1−n)an​=0 (n≥3),即a1​=−a0​,a2​=0,a3​=31​,an+1​=n+1n−1​an​ (n≥3),        或an​=nn−2​an−1​=nn−2​⋅n−1n−3​⋅n−2n−4​⋅ ⋅⋅⋅ ⋅42​⋅31​=n(n−1)2​ (n≥4),        于是y=a0​−a0​x+31​x3+61​x4+101​x5+⋅⋅⋅+n(n−1)2​xn+⋅⋅⋅,        或y=a0​(1−x)+x3[31​+61​x+101​x2+⋅⋅⋅+(n+2)(n+3)2​xn+⋅⋅⋅].​​


4.试用幂级数求下列方程满足所给初值条件的特解:\begin{aligned}&4. \ 试用幂级数求下列方程满足所给初值条件的特解:&\end{aligned}​4. 试用幂级数求下列方程满足所给初值条件的特解:​​

(1)y′=y2+x3,y∣x=0=12;(2)(1−x)y′+y=1+x,y∣x=0=0.\begin{aligned} &\ \ (1)\ \ y'=y^2+x^3,y|_{x=0}=\frac{1}{2};\\\\ &\ \ (2)\ \ (1-x)y'+y=1+x,y|_{x=0}=0. & \end{aligned}​  (1)  y′=y2+x3,y∣x=0​=21​;  (2)  (1−x)y′+y=1+x,y∣x=0​=0.​​

解:

(1)因为y∣x=0=12,所以设方程特解为y=12+∑n=1∞anxn,有y′=∑n=1∞nanxn−1=a1+∑n=1∞(n+1)an+1xn,代入方程,有a1+∑n=1∞(n+1)an+1xn=x3+(12+∑n=1∞anxn)2=x3+14+∑n=1∞anxn+(∑n=1∞anxn)2=x3+14+∑n=1∞anxn+[a12x2+2a1a2x3+(a22+2a1a3)x4+⋅⋅⋅+(∑i+j=naiaj)xn+⋅⋅⋅],即a1+(2a2−a1)x+(3a3−a2−a12)x2+(4a4−a3−2a1a2)x3+⋅⋅⋅+[(n+1)an+1−an−∑i+j=naiaj]xn+⋅⋅⋅=14+x3,比较系数,得a1=14,2a2−a1=0,3a3−a2−a12=0,4a4−a3−2a1a2=1,⋅⋅⋅,(n+1)an+1−an−∑i+j=naiaj=0(n≥4),解得a1=14,a2=18,a3=116,a4=932,⋅⋅⋅,所以y=12+14x+18x2+116x3+932x4+⋅⋅⋅.(2)因为y∣x=0=0,所以设y=∑n=1∞anxn是方程的特解,则y′=∑n=1∞nanxn−1,代入方程,有(1−x)∑n=1∞nanxn−1+∑n=1∞anxn=1+x,即∑n=1∞nanxn−1−∑n=1∞nanxn+∑n=1∞anxn=1+x,或a1+∑n=1∞[(n+1)an+1+(1−n)an]xn=1+x,比较系数,得a1=1,a2=12,an+1=n−1n+1an(n≥2),或an=n−2nan−1=(n−2)(n−3)⋅⋅⋅1n(n−1)⋅⋅⋅3⋅12=1n(n−1)(n≥3),所以y=x+12x2+16x3+⋅⋅⋅+1n(n−1)xn+⋅⋅⋅.\begin{aligned} &\ \ (1)\ 因为y|_{x=0}=\frac{1}{2},所以设方程特解为y=\frac{1}{2}+\sum_{n=1}^{\infty}a_nx^n,有y'=\sum_{n=1}^{\infty}na_nx^{n-1}=a_1+\sum_{n=1}^{\infty}(n+1)a_{n+1}x^n,\\\\ &\ \ \ \ \ \ \ \ 代入方程,有a_1+\sum_{n=1}^{\infty}(n+1)a_{n+1}x^n=x^3+\left(\frac{1}{2}+\sum_{n=1}^{\infty}a_nx^n\right)^2=x^3+\frac{1}{4}+\sum_{n=1}^{\infty}a_nx^n+\left(\sum_{n=1}^{\infty}a_nx^n\right)^2=\\\\ &\ \ \ \ \ \ \ \ x^3+\frac{1}{4}+\sum_{n=1}^{\infty}a_nx^n+\left[a_1^2x^2+2a_1a_2x^3+(a_2^2+2a_1a_3)x^4+\cdot\cdot\cdot+\left(\sum_{i+j=n}a_ia_j\right)x^n+\cdot\cdot\cdot\right],即\\\\ &\ \ \ \ \ \ \ \ a_1+(2a_2-a_1)x+(3a_3-a_2-a_1^2)x^2+(4a_4-a_3-2a_1a_2)x^3+\cdot\cdot\cdot+\left[(n+1)a_{n+1}-a_n-\sum_{i+j=n}a_ia_j\right]x^n+\cdot\cdot\cdot=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{4}+x^3,比较系数,得a_1=\frac{1}{4},2a_2-a_1=0,3a_3-a_2-a_1^2=0,4a_4-a_3-2a_1a_2=1,\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ (n+1)a_{n+1}-a_n-\sum_{i+j=n}a_ia_j=0\ (n \ge 4),解得a_1=\frac{1}{4},a_2=\frac{1}{8},a_3=\frac{1}{16},a_4=\frac{9}{32},\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ 所以y=\frac{1}{2}+\frac{1}{4}x+\frac{1}{8}x^2+\frac{1}{16}x^3+\frac{9}{32}x^4+\cdot\cdot\cdot.\\\\ &\ \ (2)\ 因为y|_{x=0}=0,所以设y=\sum_{n=1}^{\infty}a_nx^n是方程的特解,则y'=\sum_{n=1}^{\infty}na_nx^{n-1},代入方程,有\\\\ &\ \ \ \ \ \ \ \ (1-x)\sum_{n=1}^{\infty}na_nx^{n-1}+\sum_{n=1}^{\infty}a_nx^n=1+x,即\sum_{n=1}^{\infty}na_nx^{n-1}-\sum_{n=1}^{\infty}na_nx^n+\sum_{n=1}^{\infty}a_nx^n=1+x,\\\\ &\ \ \ \ \ \ \ \ 或a_1+\sum_{n=1}^{\infty}[(n+1)a_{n+1}+(1-n)a_n]x^n=1+x,比较系数,得a_1=1,a_2=\frac{1}{2},a_{n+1}=\frac{n-1}{n+1}a_n\ (n \ge 2),\\\\ &\ \ \ \ \ \ \ \ 或a_n=\frac{n-2}{n}a_{n-1}=\frac{(n-2)(n-3)\cdot\cdot\cdot1}{n(n-1)\cdot\cdot\cdot3}\cdot\frac{1}{2}=\frac{1}{n(n-1)}\ (n \ge 3),\\\\ &\ \ \ \ \ \ \ \ 所以y=x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdot\cdot\cdot+\frac{1}{n(n-1)}x^n+\cdot\cdot\cdot. & \end{aligned}​  (1) 因为y∣x=0​=21​,所以设方程特解为y=21​+n=1∑∞​an​xn,有y′=n=1∑∞​nan​xn−1=a1​+n=1∑∞​(n+1)an+1​xn,        代入方程,有a1​+n=1∑∞​(n+1)an+1​xn=x3+(21​+n=1∑∞​an​xn)2=x3+41​+n=1∑∞​an​xn+(n=1∑∞​an​xn)2=        x3+41​+n=1∑∞​an​xn+[a12​x2+2a1​a2​x3+(a22​+2a1​a3​)x4+⋅⋅⋅+(i+j=n∑​ai​aj​)xn+⋅⋅⋅],即        a1​+(2a2​−a1​)x+(3a3​−a2​−a12​)x2+(4a4​−a3​−2a1​a2​)x3+⋅⋅⋅+[(n+1)an+1​−an​−i+j=n∑​ai​aj​]xn+⋅⋅⋅=        41​+x3,比较系数,得a1​=41​,2a2​−a1​=0,3a3​−a2​−a12​=0,4a4​−a3​−2a1​a2​=1,⋅⋅⋅,        (n+1)an+1​−an​−i+j=n∑​ai​aj​=0 (n≥4),解得a1​=41​,a2​=81​,a3​=161​,a4​=329​,⋅⋅⋅,        所以y=21​+41​x+81​x2+161​x3+329​x4+⋅⋅⋅.  (2) 因为y∣x=0​=0,所以设y=n=1∑∞​an​xn是方程的特解,则y′=n=1∑∞​nan​xn−1,代入方程,有        (1−x)n=1∑∞​nan​xn−1+n=1∑∞​an​xn=1+x,即n=1∑∞​nan​xn−1−n=1∑∞​nan​xn+n=1∑∞​an​xn=1+x,        或a1​+n=1∑∞​[(n+1)an+1​+(1−n)an​]xn=1+x,比较系数,得a1​=1,a2​=21​,an+1​=n+1n−1​an​ (n≥2),        或an​=nn−2​an−1​=n(n−1)⋅⋅⋅3(n−2)(n−3)⋅⋅⋅1​⋅21​=n(n−1)1​ (n≥3),        所以y=x+21​x2+61​x3+⋅⋅⋅+n(n−1)1​xn+⋅⋅⋅.​​


5.验证函数y(x)=1+x33!+x66!+⋅⋅⋅+x3n(3n)!+⋅⋅⋅(−∞<x<+∞)满足微分方程y′′+y′+y=ex,并利用此结果求幂级数∑n=0∞x3n(3n)!的和函数.\begin{aligned}&5. \ 验证函数y(x)=1+\frac{x^3}{3!}+\frac{x^6}{6!}+\cdot\cdot\cdot+\frac{x^{3n}}{(3n)!}+\cdot\cdot\cdot(-\infty \lt x \lt +\infty)满足微分方程y''+y'+y=e^x,并\\\\&\ \ \ \ 利用此结果求幂级数\sum_{n=0}^{\infty}\frac{x^{3n}}{(3n)!}的和函数.&\end{aligned}​5. 验证函数y(x)=1+3!x3​+6!x6​+⋅⋅⋅+(3n)!x3n​+⋅⋅⋅(−∞<x<+∞)满足微分方程y′′+y′+y=ex,并    利用此结果求幂级数n=0∑∞​(3n)!x3n​的和函数.​​

解:

因为y(x)=1+x33!+x66!+⋅⋅⋅+x3n(3n)!+⋅⋅⋅,y′(x)=x22!+x55!+⋅⋅⋅+x3n−1(3n−1)!+⋅⋅⋅,y′′(x)=x+x44!+⋅⋅⋅+x3n−2(3n−2)!+⋅⋅⋅,则y′′(x)+y′(x)+y(x)=∑n=0∞xnn!=ex,所以函数y(x)满足微分方程y′′+y′+y=ex,y′′+y′+y=ex对应的齐次方程y′′+y′+y=0的特征方程为r2+r+1=0,根为r1,r2=−12±32i,因此齐次方程的通解为Y=e−x2(C1cos32x+C2sin32x),设非齐次微分方程的特解为y∗=Aex,代入方程y′′+y′+y=ex,得A=13,则y∗=13ex,非齐次微分方程的通解为y=Y+y∗=e−x2(C1cos32x+C2sin32x)+13ex,幂级数的和函数y(x)满足,y(0)=1,y′(0)=0,则y(0)=1=C1+13,y′(0)=0=−12C1+32C2+13,得C1=23,C2=0,根据微分方程初值问题解的唯一性,可得幂级数的和函数为y(x)=23e−x2cos32x+13ex(−∞<x<+∞).\begin{aligned} &\ \ 因为y(x)=1+\frac{x^3}{3!}+\frac{x^6}{6!}+\cdot\cdot\cdot+\frac{x^{3n}}{(3n)!}+\cdot\cdot\cdot,\\\\ &\ \ y'(x)=\frac{x^2}{2!}+\frac{x^5}{5!}+\cdot\cdot\cdot+\frac{x^{3n-1}}{(3n-1)!}+\cdot\cdot\cdot,\\\\ &\ \ y''(x)=x+\frac{x^4}{4!}+\cdot\cdot\cdot+\frac{x^{3n-2}}{(3n-2)!}+\cdot\cdot\cdot,则y''(x)+y'(x)+y(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}=e^x,\\\\ &\ \ 所以函数y(x)满足微分方程y''+y'+y=e^x,\\\\ &\ \ y''+y'+y=e^x对应的齐次方程y''+y'+y=0的特征方程为r^2+r+1=0,根为r_1,r_2=-\frac{1}{2}\pm \frac{\sqrt{3}}{2}i,\\\\ &\ \ 因此齐次方程的通解为Y=e^{-\frac{x}{2}}\left(C_1cos\frac{\sqrt{3}}{2}x+C_2sin\frac{\sqrt{3}}{2}x\right),设非齐次微分方程的特解为y^*=Ae^x,\\\\ &\ \ 代入方程y''+y'+y=e^x,得A=\frac{1}{3},则y^*=\frac{1}{3}e^x,非齐次微分方程的通解为\\\\ &\ \ y=Y+y^*=e^{-\frac{x}{2}}\left(C_1cos\frac{\sqrt{3}}{2}x+C_2sin\frac{\sqrt{3}}{2}x\right)+\frac{1}{3}e^x,幂级数的和函数y(x)满足,y(0)=1,y'(0)=0,\\\\ &\ \ 则y(0)=1=C_1+\frac{1}{3},y'(0)=0=-\frac{1}{2}C_1+\frac{\sqrt{3}}{2}C_2+\frac{1}{3},得C_1=\frac{2}{3},C_2=0,根据微分方程初值问题解的唯一性,\\\\ &\ \ 可得幂级数的和函数为y(x)=\frac{2}{3}e^{-\frac{x}{2}}cos\frac{\sqrt{3}}{2}x+\frac{1}{3}e^x\ (-\infty \lt x \lt +\infty). & \end{aligned}​  因为y(x)=1+3!x3​+6!x6​+⋅⋅⋅+(3n)!x3n​+⋅⋅⋅,  y′(x)=2!x2​+5!x5​+⋅⋅⋅+(3n−1)!x3n−1​+⋅⋅⋅,  y′′(x)=x+4!x4​+⋅⋅⋅+(3n−2)!x3n−2​+⋅⋅⋅,则y′′(x)+y′(x)+y(x)=n=0∑∞​n!xn​=ex,  所以函数y(x)满足微分方程y′′+y′+y=ex,  y′′+y′+y=ex对应的齐次方程y′′+y′+y=0的特征方程为r2+r+1=0,根为r1​,r2​=−21​±23​​i,  因此齐次方程的通解为Y=e−2x​(C1​cos23​​x+C2​sin23​​x),设非齐次微分方程的特解为y∗=Aex,  代入方程y′′+y′+y=ex,得A=31​,则y∗=31​ex,非齐次微分方程的通解为  y=Y+y∗=e−2x​(C1​cos23​​x+C2​sin23​​x)+31​ex,幂级数的和函数y(x)满足,y(0)=1,y′(0)=0,  则y(0)=1=C1​+31​,y′(0)=0=−21​C1​+23​​C2​+31​,得C1​=32​,C2​=0,根据微分方程初值问题解的唯一性,  可得幂级数的和函数为y(x)=32​e−2x​cos23​​x+31​ex (−∞<x<+∞).​​


6.利用欧拉公式将函数excosx展开成x的幂级数.\begin{aligned}&6. \ 利用欧拉公式将函数e^xcos\ x展开成x的幂级数.&\end{aligned}​6. 利用欧拉公式将函数excos x展开成x的幂级数.​​

解:

根据欧拉公式eix=cosx+isinx可知,cosx=Re(eix),所以excosx=ex⋅Re(eix)=Re(ex⋅eix)=Re[e(1+i)x],因为e(1+i)x=∑n=0∞1n!(1+i)nxn=∑n=0∞[2(cosπ4+isinπ4)]nxnn!=∑n=0∞(cosnπ4+isinnπ4)2n2⋅xnn!,x∈(−∞,+∞),所以excosx=Re[e(1+i)x]=∑n=0∞cosnπ4⋅2n2⋅xnn!,x∈(−∞,+∞).\begin{aligned} &\ \ 根据欧拉公式e^{ix}=cos\ x+i\ sin\ x可知,cos\ x=Re(e^{ix}),所以e^xcos\ x=e^x\cdot Re(e^{ix})=Re(e^x\cdot e^{ix})=Re[e^{(1+i)x}],\\\\ &\ \ 因为e^{(1+i)x}=\sum_{n=0}^{\infty}\frac{1}{n!}(1+i)^nx^n=\sum_{n=0}^{\infty}\left[\sqrt{2}\left(cos\ \frac{\pi}{4}+i\ sin\ \frac{\pi}{4}\right)\right]^n\frac{x^n}{n!}=\sum_{n=0}^{\infty}\left(cos\frac{n\pi}{4}+i\ sin\frac{n\pi}{4}\right)2^{\frac{n}{2}}\cdot\frac{x^n}{n!},\\\\ &\ \ x \in (-\infty, \ +\infty),所以e^xcos\ x=Re[e^{(1+i)x}]=\sum_{n=0}^{\infty}cos\frac{n\pi}{4}\cdot2^{\frac{n}{2}}\cdot\frac{x^n}{n!},x \in (-\infty, \ +\infty). & \end{aligned}​  根据欧拉公式eix=cos x+i sin x可知,cos x=Re(eix),所以excos x=ex⋅Re(eix)=Re(ex⋅eix)=Re[e(1+i)x],  因为e(1+i)x=n=0∑∞​n!1​(1+i)nxn=n=0∑∞​[2​(cos 4π​+i sin 4π​)]nn!xn​=n=0∑∞​(cos4nπ​+i sin4nπ​)22n​⋅n!xn​,  x∈(−∞, +∞),所以excos x=Re[e(1+i)x]=n=0∑∞​cos4nπ​⋅22n​⋅n!xn​,x∈(−∞, +∞).​​

高等数学(第七版)同济大学 习题12-5 个人解答相关推荐

  1. 《高等数学》 第七版 同济大学

    <高等数学> 第七版 同济大学 上册 第一章 函数与极限 第一节 映射与函数 一 映射 映射概念 法则 像 原像 定义域 值域 构成映射的三要素 满射[映射] 单射 双射[一一映射] 逆映 ...

  2. 高等数学第七版-习题解答:总复习3

    习题解答:总复习3 18*. 已知f′′(x)f''(x)f′′(x)存在,证明 lim⁡x→x0f(x0+h)+f(x0−h)−2f(x0)h2=f′′(x0)\lim_{x \rightarrow ...

  3. 【课后习题】高等数学第七版下第十二章 无穷级数 第二节 常数项级数的审敛法

    习题12-2 1. 用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 1+13+15+⋯+1(2n−1)+⋯1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac ...

  4. 【课后习题】高等数学第七版上第三章 微分中值定理与导数的应用 第二节 洛必达法则

    习题3-2 1. 用洛必达法则求下列极限: (1) lim⁡x→0ln⁡(1+x)x\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}limx→0​xln(1+x) ...

  5. 【课后习题】高等数学第七版上第一章 函数与极限 第六节 极限存在准则 两个重要极限

    习题1-6 1. 计算下列极限: (1) lim⁡x→0sin⁡ωxx\lim _{x \rightarrow 0} \frac{\sin \omega x}{x}limx→0​xsinωx​; (2 ...

  6. 【课后习题】高等数学第七版下第九章 多元函数微分法及其应用 第九节 二元函数的泰勒公式

    习题9-9 1. 求函数 f(x,y)=2x2−xy−y2−6x−3y+5f(x, y)=2 x^2-x y-y^2-6 x-3 y+5f(x,y)=2x2−xy−y2−6x−3y+5 在点 (1,− ...

  7. 高等数学(上)(第七版 同济大学) 笔记 :函数

    第一章     函数与极限 第一节  映射与函数 二.函数 (1)函数是特殊的映射,只不过把X集合换成了实数R的子集,把集合Y换成了实数集合R. (2)分段函数是常见的函数. (3)函数的特性 有界性 ...

  8. 高等数学(上)(第七版 同济大学) 笔记 :映射

    第一章     函数与极限 第一节  映射与函数 一.映射 1.定义:两个非空集合X,Y,存在法则 f,使X中每个元素 x 按照法则 f 都有唯一确定的 y 与之对应,那么 f 称为从X到Y的映射, ...

  9. 计算机网络谢希仁第七版课后习题答案(第四章)

    4-1 网络层向上提供的服务有哪两种?是比较其优缺点. 网络层向运输层提供 "面向连接"虚电路(Virtual Circuit)服务或"无连接"数据报服务前者预 ...

  10. 《计算机网络》学习笔记----第七版课后习题参考答案 第四章

    1.网络层向上提供的服务有哪两种?是比较其优缺点.网络层向运输层提供 "面向连接"虚电路(Virtual Circuit)服务或"无连接"数据报服务前者预约了双 ...

最新文章

  1. Maven-atguigu
  2. SAP CRM市场营销表结构
  3. linux开机自动启动(自启动)脚本、程序(初始化脚本)(海康摄像头自启动程序)
  4. POJ-1459 Power Network 网络流
  5. [TJOI2018]智力竞赛 (匈牙利)
  6. Web前端笔记(1)
  7. ztree 异步展开节点显示不出来_用户管理、角色管理、模块管理、zTree的使用
  8. POJ 1330:Nearest Common Ancestors【lca】
  9. Caffe傻瓜系列(5):Blob,Layer and Net以及对应配置文件的编写
  10. ConcurrentHashMap源码(JDK1.8)
  11. android 微信搜索功能,[多图]等了N年的功能来了 Android微信8.0.3新版体验
  12. python正则判断邮箱_Python实现正则表达式匹配任意的邮箱方法
  13. 小福利,制作词云图的第三种方法---stylecloud库,两行代码制作词云图
  14. 《CMS后台系统》项目实战 详细分解
  15. 综述:基于影像基因组学的肺癌诊断治疗方法研究
  16. indesign照片放入太大_Indesign排版文件非常大,怎么解决
  17. 怎么运行php格式的文件
  18. MDCC 主题论坛:HTML5Web App
  19. 自学python编程笔记本推荐-适合编程的笔记本
  20. EasyExcel导出excel表格

热门文章

  1. 在 Linux 下开发和下载8051单片机程序
  2. 小程序Android分享朋友圈
  3. SCI论文类型及写作结构分析
  4. 【Python+数学】笛卡儿积
  5. matlab2017b的破解激活
  6. ToB 产品拆解—Temu 商家管理后台
  7. 架构整洁之道-学习笔记
  8. 2019 年全球云计算市场份额出炉
  9. MySQL第七讲 MySQL的高可用方案
  10. K_A04_001 基于单片机驱动LCD1602字符滚动显示(8位并行+IIC通信)