项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM)。事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment。

得出一个概率有很多好处,因为它的信息量比简单的一个结果要多,比如,我可以把这个概率转换为一个 score ,表示算法对自己得出的这个结果的把握。也许我可以对同一个任务,用多个方法得到结果,最后选取“把握”最大的那个结果;另一个很常见的方法是在诸如疾病诊断之类的场所,机器对于那些很容易分辨的情况(患病或者不患病的概率很高)可以自动区分,而对于那种很难分辨的情况,比如,49% 的概率患病,51% 的概率正常,如果仅仅简单地使用 50% 的阈值将患者诊断为“正常”的话,风险是非常大的,因此,在机器对自己的结果把握很小的情况下,会“拒绝发表评论”,而把这个任务留给有经验的医生去解决。

废话说了一堆,不过,在回到 GMM 之前,我们再稍微扯几句。我们知道,不管是机器还是人,学习的过程都可以看作是一种“归纳”的过程,在归纳的时候你需要有一些假设的前提条件,例如,当你被告知水里游的那个家伙是鱼之后,你使用“在同样的地方生活的是同一种东西”这类似的假设,归纳出“在水里游的都是鱼”这样一个结论。当然这个过程是完全“本能”的,如果不仔细去想,你也不会了解自己是怎样“认识鱼”的。另一个值得注意的地方是这样的假设并不总是完全正确的,甚至可以说总是会有这样那样的缺陷的,因此你有可能会把虾、龟、甚至是潜水员当做鱼。也许你觉得可以通过修改前提假设来解决这个问题,例如,基于“生活在同样的地方并且穿着同样衣服的是同一种东西”这个假设,你得出结论:在水里有并且身上长有鳞片的是鱼。可是这样还是有问题,因为有些没有长鳞片的鱼现在又被你排除在外了。

在这个问题上,机器学习面临着和人一样的问题,在机器学习中,一个学习算法也会有一个前提假设,这里被称作“归纳偏执 (bias)”(bias 这个英文词在机器学习和统计里还有其他许多的意思)。例如线性回归,目的是要找一个函数尽可能好地拟合给定的数据点,它的归纳偏执就是“满足要求的函数必须是线性函数”。一个没有归纳偏执的学习算法从某种意义上来说毫无用处,就像一个完全没有归纳能力的人一样,在第一次看到鱼的时候有人告诉他那是鱼,下次看到另一条鱼了,他并不知道那也是鱼,因为两条鱼总有一些地方不一样的,或者就算是同一条鱼,在河里不同的地方看到,或者只是看到的时间不一样,也会被他认为是不同的,因为他无法归纳,无法提取主要矛盾、忽略次要因素,只好要求所有的条件都完全一样──然而哲学家已经告诉过我们了:世界上不会有任何样东西是完全一样的,所以这个人即使是有无比强悍的记忆力,也绝学不到任何一点知识。

这个问题在机器学习中称作“过拟合 (Overfitting)”,例如前面的回归的问题,如果去掉“线性函数”这个归纳偏执,因为对于 N 个点,我们总是可以构造一个 N-1 次多项式函数,让它完美地穿过所有的这 N 个点,或者如果我用任何大于 N-1 次的多项式函数的话,我甚至可以构造出无穷多个满足条件的函数出来。如果假定特定领域里的问题所给定的数据个数总是有个上限的话,我可以取一个足够大的 N ,从而得到一个(或者无穷多个)“超级函数”,能够 fit 这个领域内所有的问题。然而这个(或者这无穷多个)“超级函数”有用吗?只要我们注意到学习的目的(通常)不是解释现有的事物,而是从中归纳出知识,并能应用到新的事物上,结果就显而易见了。

没有归纳偏执或者归纳偏执太宽泛会导致 Overfitting ,然而另一个极端──限制过大的归纳偏执也是有问题的:如果数据本身并不是线性的,强行用线性函数去做回归通常并不能得到好结果。难点正在于在这之间寻找一个平衡点。不过人在这里相对于(现在的)机器来说有一个很大的优势:人通常不会孤立地用某一个独立的系统和模型去处理问题,一个人每天都会从各个来源获取大量的信息,并且通过各种手段进行整合处理,归纳所得的所有知识最终得以统一地存储起来,并能有机地组合起来去解决特定的问题。这里的“有机”这个词很有意思,搞理论的人总能提出各种各样的模型,并且这些模型都有严格的理论基础保证能达到期望的目的,然而绝大多数模型都会有那么一些“参数”(例如 K-means 中的 k ),通常没有理论来说明参数取哪个值更好,而模型实际的效果却通常和参数是否取到最优值有很大的关系,我觉得,在这里“有机”不妨看作是所有模型的参数已经自动地取到了最优值。另外,虽然进展不大,但是人们也一直都期望在计算机领域也建立起一个统一的知识系统(例如语意网就是这样一个尝试)。

废话终于说完了,回到 GMM 。按照我们前面的讨论,作为一个流行的算法,GMM 肯定有它自己的一个相当体面的归纳偏执了。其实它的假设非常简单,顾名思义,Gaussian Mixture Model ,就是假设数据服从 Mixture Gaussian Distribution ,换句话说,数据可以看作是从数个 Gaussian Distribution 中生成出来的。实际上,我们在 K-means 和 K-medoids 两篇文章中用到的那个例子就是由三个 Gaussian 分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian 分布(也叫做正态 (Normal) 分布)这个假设其实是比较合理的,除此之外,Gaussian 分布在计算上也有一些很好的性质,所以,虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是还是 GMM 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。

每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

\begin{align}
p(x) & = \sum_{k=1}^K p(k)p(x|k) \
& = \sum_{k=1}^K \pi_kN(x|\mu_k, \Sigma_k)
\end{align}

根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K 个 Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 \pi_k ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。

现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 πk\pi_kπk​、$\mu_k $和 Σk\Sigma_kΣk​ 这些参数。我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于 ∏i=1Np(xi)\prod_{i=1}^N p(x_i)∏i=1N​p(xi​) ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 ∑i=1Nlog⁡p(xi)\sum_{i=1}^N \log p(x_i)∑i=1N​logp(xi​),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

下面让我们来看一看 GMM 的 log-likelihood function :

∑i=1Nlog⁡{∑k=1KπkN(xi∣μk,Σk)}\sum_{i=1}^N \log \left\{\sum_{k=1}^K \pi_k \mathcal{N}(x_i|\mu_k, \Sigma_k)\right\}i=1∑N​log{k=1∑K​πk​N(xi​∣μk​,Σk​)}

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于 K-means 的两步。

1.估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 xix_ixi​ 来说,它由第 k 个 Component 生成的概率为
γ(i,k)=πkN(xi∣μk,Σk)∑j=1KπjN(xi∣μj,Σj)\gamma(i, k) = \frac{\pi_k \mathcal{N}(x_i|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j\mathcal{N}(x_i|\mu_j, \Sigma_j)} γ(i,k)=∑j=1K​πj​N(xi​∣μj​,Σj​)πk​N(xi​∣μk​,Σk​)​

2.估计每个 Component 的参数:现在我们假设上一步中得到的 γ(i,k)\gamma(i, k)γ(i,k) 就是正确的“数据 $x_i $由 Component k 生成的概率”,亦可以当做该 Component 在生成这个数据上所做的贡献,或者说,我们可以看作 $x_i $这个值其中有 $\gamma(i, k)x_i $这部分是由 Component k 所生成的。集中考虑所有的数据点,现在实际上可以看作 Component 生成了 γ(1,k)x1,…,γ(N,k)xN\gamma(1, k)x_1, \ldots, \gamma(N, k)x_Nγ(1,k)x1​,…,γ(N,k)xN​ 这些点。由于每个 Component 都是一个标准的 Gaussian 分布,可以很容易分布求出最大似然所对应的参数值:
\begin{aligned}
\mu_k & = \frac{1}{N_k}\sum_{i=1}^N\gamma(i, k)x_i \
\Sigma_k & = \frac{1}{N_k}\sum_{i=1}^N\gamma(i,
k)(x_i-\mu_k)(x_i-\mu_k)^T
\end{aligned}
其中 $N_k = \sum_{i=1}^N \gamma(i, k) ,并且,并且,并且\pi_k$也顺理成章地可以估计为 Nk/NN_k/NNk​/N 。

3.重复迭代前面两步,直到似然函数的值收敛为止。

另外,从上面的分析中我们可以看到 GMM 和 K-means 的迭代求解法其实非常相似(都可以追溯到 EM 算法,下一次会详细介绍),因此也有和 K-means 同样的问题──并不能保证总是能取到全局最优,如果运气比较差,取到不好的初始值,就有可能得到很差的结果。对于 K-means 的情况,我们通常是重复一定次数然后取最好的结果,不过 GMM 每一次迭代的计算量比 K-means 要大许多,一个更流行的做法是先用 K-means (已经重复并取最优值了)得到一个粗略的结果,然后将其作为初值(只要将 K-means 所得的 centroids 传入 gmm 函数即可),再用 GMM 进行细致迭代。

如我们最开始所讨论的,GMM 所得的结果(Px)不仅仅是数据点的 label ,而包含了数据点标记为每个 label 的概率,很多时候这实际上是非常有用的信息。最后,需要指出的是,GMM 本身只是一个模型,我们这里给出的迭代的办法并不是唯一的求解方法。感兴趣的同学可以自行查找相关资料。

注:原文应该是来自pluskid大牛,但是找不到原文的出处,所以就没法给出原文的链接了。

漫谈Clustering:高斯混合模型(GMM)相关推荐

  1. 一维(多维)高斯模型(One(Multi)-dimensional Gaussian Model) 高斯混合模型GMM(Gaussian Mixture Model)

    一维高斯模型(One-dimensional Gaussian Model) 若随机变量X服从一个数学期望为,标准方差为的高斯分布,记为: x~N(,). 则概率密度函数为: 高斯分布的期望值决定了其 ...

  2. 混合高斯模型_大数据小白入门高斯混合模型(GMM)聚类算法

    导读 高斯混合模型(Gaussian Mixture Model)通常简称GMM,是一种业界广泛使用的聚类算法,属于生成式模型,它假设所有的数据样本都是由某一个给定参数的 多元高斯分布 所生成的.从中 ...

  3. 高斯混合模型GMM、核心参数、高斯混合模型GMM的数学形式

    高斯混合模型GMM.核心参数.高斯混合模型GMM的数学形式 高斯混合模型GMM 混合模型是一个可以用来表示在总体分布(distribution)中含有 K 个子分布的概率模型,换句话说,混合模型表示了 ...

  4. 高斯混合模型--GMM(Gaussian Mixture Model)

    参考:http://blog.sina.com.cn/s/blog_54d460e40101ec00.html 概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率 ...

  5. 高斯混合模型--GMM

    原文:http://blog.sina.com.cn/s/blog_54d460e40101ec00.html   高斯混合模型--GMM(Gaussian Mixture Model)     统计 ...

  6. 单高斯分布模型GSM,高斯混合模型GMM

    本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程. 单高斯分布 ...

  7. EM算法应用:k均值聚类(k-means)和高斯混合模型(GMM)

    文章目录 k-means聚类 EM角度的理解 算法流程 特点 k值选择 局限性 高斯混合模型 GMM的问题描述 1,明确隐变量 2.EM算法的E步:确定Q函数 3. EM算法的E步 4. 停止条件 上 ...

  8. 高斯混合模型GMM的理解

    高斯混合模型(Gaussian Mixture Model,简称GMM)是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型.通俗点 ...

  9. 使用高斯混合模型(GMM)近似未知分布:EM算法的应用

    该篇博客是对邱锡鹏老师<神经网络与深度学习>的学习笔记.在阅读本博文之前,建议读者先阅读上一篇博客EM算法. 高斯混合模型(Gaussian Mixture Model) 如果一个连续随机 ...

  10. EM算法及高斯混合模型GMM详述

    1.最大似然估计 最大似然估计(Maximum Likelihood Estimation,MLE)就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程.直白来讲,就是给定了 ...

最新文章

  1. LCA ---- E. Tree Queries[LCA或者dfs序的解法]
  2. 设备树的具体使用方法
  3. c 语言简单的聊天程序,写一个C-S程序,实现简单的聊天功能。(tcp/ip)
  4. nunjucks渲染富文本解析错误输出字符串而不是元素
  5. mysql+查询新的一条记录表_Mysql 查询表中每个类别最新的一条记录
  6. 一篇带你完全掌握线程的博客
  7. How to make .dmg install for Mac
  8. C++内存机制中内存溢出、内存泄露、内存越界和栈溢出的区别和联系
  9. 语音识别芯片的工作原理和分类
  10. 集群提交HBase代码报错:Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.HBaseConfiguratio
  11. scala function从入门到理解
  12. 查找重复代码_word高效操作:如何快速删除重复段落
  13. BP神经网络预测模型
  14. Ubuntu安装谷歌浏览器
  15. 安装多个电脑杀毒软件
  16. 《GAMES104-现代游戏引擎:从入门到实践》-05 学习笔记
  17. 柏拉图与苏格拉底的对话----爱情;婚姻;外遇;生活
  18. 浏览器ocx控件安装 IE浏览器可用
  19. 观察者模式在游戏开发中的应用
  20. Spring AOP中的静态代理和动态代理的原理和实践

热门文章

  1. 爬虫入门到精通-headers的详细讲解(模拟登录知乎)
  2. Vue.js 系列教程 5:动画
  3. 从一个组件的实现来深刻理解 JS 中的继承
  4. 精益企业中架构师的角色
  5. MySQL之Lock探索(二)
  6. mysql优化--避免数据类型的隐式转换
  7. 安装realmedia多路分配器
  8. [转]虚函数实现原理
  9. Java基础知识总结二(2)
  10. buildroot 文件系统添加telnet, ssh, 以及制作注意事项