动态规划学习内容

  • 1. 动态规划理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
    • 动态规划应该如何debug
  • 2. 斐波那契数
    • 思路
  • 3. 爬楼梯
    • 思路
  • 4. 使用最小关系爬楼梯
    • 思路
  • 5. 不同路径
    • 思路
  • 6. 不同路径II
    • 思路
  • 7. 整数拆分
    • 思路
      • 动态规划
      • 贪心
  • 8. 不同的二叉搜索树
  • 9. 背包理论基础
    • 0-1背包
      • 二维dp数组01背包
      • 0-1背包滚动数组
  • 10. 分割等和子集
    • 思路
  • 11. 最后一块石头的重量 II
    • 思路
  • 12. 目标和
    • 思路
      • 回溯算法
      • 动态规划
  • 13. 一和零
    • 思路
  • 14. 完全背包理论
  • 15. 零钱兑换II
    • 思路
  • 16. 组合总和IV
    • 思路
  • 17. 爬楼梯(进阶版)
    • 思路
  • 18. 零钱兑换
    • 思路
  • 19. 完全平方数
    • 思路
  • 20. 拆分单词
    • 思路
  • 21. 打家劫舍
    • 思路
  • 22. 打家劫舍II
    • 思路
  • 23. 打家劫舍 III
    • 思路
      • 记忆化递归
      • 动态规划
  • 24. 买卖股票得最佳时机
    • 思路
      • 贪心算法
      • 动态规划
  • 25. 买卖股票最佳时机II
    • 思路
      • 贪心
      • 动态规划
  • 26. 买卖股票的最佳时机III
  • 27. 买卖股票的最佳时机 IV
    • 思路
  • 28. 最佳买卖股票时机含冷冻期
    • 思路
  • 29. 买卖股票的最佳时机含手续费
    • 思路
  • 30. 股票问题总结
  • 31. 最长递增子序列
    • 思路
      • 贪心+二分
  • 32. 最长连续递增序列
    • 思路
      • 贪心算法
      • 动态规划
  • 33. 最长重复子数组
    • 思路
    • 滚动数组(难理解)
  • 34. 最长公共子序列
    • 思路
  • 35. 最大子序和
    • 思路
      • 贪心算法
    • 动态规划
  • 36. 判断子序列
    • 思路
      • 双指针
      • 动态规划
  • 37. 不同的子序列
    • 思路
  • 38. 两个字符串的删除操作
    • 思路
  • 39. 编辑距离
    • 思路
  • 40. 回文子串
    • 思路
      • 双指针法
      • 动态规划
  • 41. 最长回文子序列
    • 思路
    • 总结

1. 动态规划理论基础

动态规划刷题大纲

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

在关于贪心算法,你该了解这些! (opens new window)中我举了一个背包问题的例子。

例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

所以贪心解决不了动态规划的问题。

其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了。

而且很多讲解动态规划的文章都会讲最优子结构啊和重叠子问题啊这些,这些东西都是教科书的上定义,晦涩难懂而且不实用。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

上述提到的背包问题,后序会详细讲解。

动态规划的解题步骤

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?

因为一些情况是递推公式决定了dp数组要如何初始化!

动态规划应该如何debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。

这是一个很不好的习惯!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了。

2. 斐波那契数

题目链接

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3: 输入:4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

0 <= n <= 30

思路

斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。

因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。

通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义
    dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  2. 确定递推公式
    为什么这是一道非常简单的入门题目呢?
    因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化

  4. 确定遍历顺序
    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

  5. 举例推导dp数组
    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

以上我们用动规的方法分析完了,C++代码如下:

class Solution {public:int fib(int n) {if (n < 2) return n;int arr[n+1];arr[0] = 0;arr[1] = 1;for (int i = 2; i <= n; i++){arr[i] = arr[i-1] + arr[i-2];}return arr[n];}
};

时间复杂度:O(n)
空间复杂度:O(n)

优化:

class Solution {public:int fib(int n) {if (n < 2) return n;int arr[2];arr[0] = 0;arr[1] = 1;int sum;for (int i = 2; i <= n; i++){sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return sum;}
};

时间复杂度:O(n)
空间复杂度:O(1)

3. 爬楼梯

题目链接

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

1 阶 + 1 阶
2 阶

示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

思路

本题大家如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律。

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

C++代码:

class Solution {public:int climbStairs(int n) {if (n < 3) return n;int arr[n+1];arr[1] = 1;arr[2] = 2;for (int i = 3; i <= n; i++){arr[i] = arr[i-1] + arr[i-2];}return arr[n];}
};

优化后:

class Solution {public:int climbStairs(int n) {if (n < 3) return n;int arr[2];arr[0] = 1;arr[1] = 2;int sum = 0;for (int i = 3; i <= n; i++){sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return sum;}
};

4. 使用最小关系爬楼梯

题目链接

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20] 输出:15 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。 示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出:6 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:

cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

思路

注意题目描述:每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯

所以示例1中只花费一个15 就可以到阶梯顶,最后一步可以理解为 不用花费。

读完题大家应该知道指定需要动态规划的,贪心是不可能了。

class Solution {public:int minCostClimbingStairs(vector<int>& cost) {vector<int> result(cost.size());result[0] = cost[0];result[1] = cost[1];for (int i = 2; i < cost.size(); i++){result[i] = min(result[i-1], result[i-2]) + cost[i];}return min(result[cost.size()-1], result[cost.size()-2]);}
};

时间复杂度:O(n)
空间复杂度:O(n)

class Solution {public:int minCostClimbingStairs(vector<int>& cost) {vector<int> result(2);result[0] = cost[0];result[1] = cost[1];int sum;for (int i = 2; i < cost.size(); i++){sum = min(result[0], result[1]) + cost[i];result[0] = result[1];result[1] = sum;}return min(result[0], result[1]);}
};

时间复杂度:O(n)
空间复杂度:O(1)

5. 不同路径

题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7 输出:28

示例 2: 输入:m = 2, n = 3 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。

向右 -> 向右 -> 向下
向右 -> 向下 -> 向右
向下 -> 向右 -> 向右
示例 3: 输入:m = 7, n = 3 输出:28

示例 4: 输入:m = 3, n = 3 输出:6

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10^9

思路

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  2. 确定递推公式
    想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
    此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。
    那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  3. dp数组的初始化
    如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

  4. 确定遍历顺序
    这里要看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
    这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  5. 举例推导dp数组
    如图所示:

class Solution {public:int uniquePaths(int m, int n) {int arr[m][n];for (int i = 0; i < m; i++) arr[i][0] = 1;for (int j = 0; j < n; j++) arr[0][j] = 1;for (int i = 1; i < m; i++){for (int j = 1; j < n; j++){arr[i][j] = arr[i-1][j] + arr[i][j-1];}}return arr[m-1][n-1];}
};

时间复杂度:O(m * n)
空间复杂度:O(m * n)

class Solution {public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};

优化:

class Solution {public:int uniquePaths(int m, int n) {int dp[n];for (int i = 0; i < n; i++) dp[i] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[j] += dp[j-1];}}return dp[n-1];}
};

了解vector类运行的时间效率比数组是低的,采用数组效率更高。

6. 不同路径II

题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] 输出:2 解释: 3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]] 输出:1

提示:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

思路

这道题相对于62.不同路径 (opens new window)就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 (opens new window)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

c++代码:

class Solution {public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++){dp[i][0] = 1;}for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++){dp[0][j] = 1;}for (int i = 1; i < m; i++){for (int j = 1; j < n; j++){if (obstacleGrid[i][j] != 1){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}
};

时间复杂度O(n∗m)O(n * m)O(n∗m) n m 分别为 obstacleGrid 长度和宽度
空间复杂度O(n∗m)O(n * m)O(n∗m)

7. 整数拆分

题目链接

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1: 输入: 2 输出: 1

解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于 58。

思路

看到这道题目,都会想拆成两个呢,还是三个呢,还是四个…

我们来看一下如何使用动规来解决。

动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。
    dp[i]的定义讲贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  2. 确定递推公式
    可以想 dp[i]最大乘积是怎么得到的呢?
    其实可以从1遍历j,然后有两种渠道得到dp[i].
    一个是j * (i - j) 直接相乘。
    一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。
    那有同学问了,j怎么就不拆分呢?
    j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。(j(i-j)的意义:dp[2] = 1, dp[3] = 2, dp[4] = (1x3, 2x2, 1xdp[3], 2xdp[2]),由于在底层元素只能分成2个,jxdp[i-j)相乘的结果难以并非是最优的,因此考虑j(i-j)**)
    如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。
    所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
    那么在取最大值的时候,为什么还要比较dp[i]呢?
    因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

  3. dp的初始化
    不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?
    有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。
    严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。
    拆分0和拆分1的最大乘积是多少?
    这是无解的。
    这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  4. 确定遍历顺序
    确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
    枚举j的时候,是从1开始的。i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

  5. 举例推导dp数组

    c++实现

class Solution {public:int integerBreak(int n) {vector<int> dp(n + 1);dp[2] = 1;for (int i = 3; i <= n ; i++) {for (int j = 1; j < i/2+1; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}}return dp[n];}
};

时间复杂度:O(n^2)
空间复杂度:O(n)

贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。

给出我的C++代码如下:

class Solution {public:int integerBreak(int n) {if (n == 2) return 1;if (n == 3) return 2;if (n == 4) return 4;int result = 1;while (n > 4) {result *= 3;n -= 3;}result *= n;return result;}
};

时间复杂度O(n)
空间复杂度O(1)

8. 不同的二叉搜索树

题目链接


n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2位头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到的重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

1.确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。

也可以理解是i的不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

2.确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

3.dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一颗二叉树,也是一颗二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

5.举例推导dp数组
n为5时候的dp数组状态如图:

当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题。

综上分析完毕,C++代码如下:

class Solution {public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
};

时间复杂度O(n^2)
空间复杂度O(n)

9. 背包理论基础

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

0-1背包

有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2n)O(2^n)O(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

1.确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2.确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j]=max(dp[i−1][j],dp[i−1][j−weight[i]]+value[i])dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])dp[i][j]=max(dp[i−1][j],dp[i−1][j−weight[i]]+value[i]);

3.dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:


在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

此时dp数组初始化情况如图所示:

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

4.确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量


那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量if (j < weight[i]) dp[i][j] = dp[i - 1][j]; else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}


5.举例推导dp数组
来看一下对应的dp数组的数值,如图:

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

完整C++代码:

#include<iostream>
using namespace std;
#include<vector>void test01() {vector<int> weight = { 1, 3, 4 };vector<int> value = { 15, 20, 30 };int baWeight = 4;//二维数组vector<vector<int>> dp(weight.size(), vector<int>(baWeight+1, 0));//初始化for (int j = weight[0]; j <= baWeight; j++) {dp[0][j] = value[0];}//动态规划for (int i = 1; i < weight.size(); i++) {for (int j = 1; j < baWeight + 1; j++) {if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], (dp[i][j - weight[i]] + value[i]));}}//打印矩阵//for (int i = 0; i < weight.size(); i++){// for (int j = 0; j < baWeight+1; j++){//      cout << dp[i][j] << " ";//    }// cout << endl;//}//cout << endl;cout << dp[weight.size() - 1][baWeight] << endl;
}int main() {test01();system("pause");return 0;
}

0-1背包滚动数组

例子如上:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

一维滚动数组:

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j]=max(dp[i−1][j],dp[i−1][j−weight[i]]+value[i])dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])dp[i][j]=max(dp[i−1][j],dp[i−1][j−weight[i]]+value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j]=max(dp[i][j],dp[i][j−weight[i]]+value[i])dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i])dp[i][j]=max(dp[i][j],dp[i][j−weight[i]]+value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

一定要时刻记住这里i和j的含义,要不然很容易看懵了。

动规五部曲分析如下:

1.确定dp数组的定义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式
dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

3.一维dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j]=max(dp[j],dp[j−weight[i]]+value[i])dp[j] = max(dp[j], dp[j - weight[i]] + value[i])dp[j]=max(dp[j],dp[j−weight[i]]+value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4.一维dp数组遍历顺序
代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒叙遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒叙遍历,就可以保证物品只放入一次呢?

倒叙就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒叙呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

(这里如果读不懂,就在回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

5.举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

一维dp01背包完整C++测试代码

#include<iostream>
using namespace std;
#include<vector>void test02() {vector<int> weight = { 1,3,4 };vector<int> value = { 15, 20, 30 };int beWeight = 4;vector<int> dp(beWeight + 1, 0);//初始化for (int i = 0; i < weight.size(); i++) {for (int j = beWeight; j >= weight[i]; j--) {dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}//遍历dp//for (int k = 0; k <= beWeight; k++) {//  cout << dp[k] << " ";//}//cout << endl;}cout << dp[beWeight] << endl;}int main() {//test01();test02();system("pause");return 0;
}

可以看出,一维dp 的01背包,要比二维简洁的多! 初始化 和 遍历顺序相对简单了。

所以我倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级!

在后面背包问题的讲解中,我都直接使用一维dp数组来进行推导。

10. 分割等和子集

题目链接

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1: 输入: [1, 5, 11, 5] 输出: true 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2: 输入: [1, 2, 3, 5] 输出: false 解释: 数组不能分割成两个元素和相等的子集.

提示:

1 <= nums.length <= 200
1 <= nums[i] <= 100

思路

这道题目初步看,是如下两题几乎是一样的,大家可以用回溯法,解决如下两题

698.划分为k个相等的子集
473.火柴拼正方形
这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

只有确定了如下四点,才能把01背包问题套到本题上来。

背包的体积为sum / 2
背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
背包如何正好装满,说明找到了总和为 sum / 2 的子集。
背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。

C++代码实现:

class Solution {public:bool canPartition(vector<int>& nums) {int sum = 0;for (int i : nums) sum += i;if (sum%2 != 0) return false;int beweight = sum / 2;vector<int> dp(beweight+1, 0);for (int i = 0; i < nums.size(); i++){for (int j = beweight; j >= nums[i]; j--){dp[j] = max(dp[j], dp[j-nums[i]]+nums[i]);if (dp[j] == beweight) return true;}//for (int k = 0; k <= beweight; k++){//   cout << dp[k] << " ";//}//cout << endl;}return false;}
};

时间复杂度:O(n^2)
空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

11. 最后一块石头的重量 II

题目链接

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎; 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。 最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例: 输入:[2,7,4,1,8,1] 输出:1 解释: 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1], 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1], 组合 2 和 1,得到 1,所以数组转化为 [1,1,1], 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

提示:

1 <= stones.length <= 30
1 <= stones[i] <= 1000

思路

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。

是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为store[i],物品的价值也为store[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。


最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

以上分析完毕,C++代码如下:

class Solution {public:int lastStoneWeightII(vector<int>& stones) {int sum = 0;for (int i : stones) sum += i;int target = sum / 2;vector<int> dp(target+1, 0);for (int i = 0; i < stones.size(); i++){for (int j = target; j >= stones[i]; j--){dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);if (dp[j] >= target) break;}if (dp[target] >= target) break;// for (int k = 0; k <= target; k++){//     cout << dp[k] << " ";// }// cout << endl;}// cout << "sum:" << sum << endl;// cout << "target:" << target << endl;return (sum - dp[target]) - dp[target];}
};

时间复杂度:O(m * n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
空间复杂度:O(m)

12. 目标和

题目链接

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5

解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下。

思路

回溯算法

动态规划

如何转化为01背包问题呢。

假设数字前面带+号的总和为x,那么数字前面带-号对应的总和就是sum - x。

所以我们要求的是正数-负数=target x - (sum - x) = S

可以得到正数的总和为: x = (S + sum) / 2

此时问题就转化为,装满容量为x背包,有几种方法。

大家看到(S + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,因为,正数之和没有小数,所以:

if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

考虑将正数之和即可,

1.确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[i]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。
下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来。

2.确定递推公式
有哪些来源可以推出dp[j]呢?

填满容量为j - nums[i]的背包,有dp[j - nums[i]]种方法。

那么只要搞到nums[i]的话,凑成dp[j]就有dp[j - nums[i]] 种方法。

举一个例子,nums[i] = 2: dp[3],填满背包容量为3的话,有dp[3]种方法。

那么只需要搞到一个2(nums[i]),有dp[3]方法可以凑齐容量为3的背包,相应的就有多少种方法可以凑齐容量为5的背包。

那么需要把 这些方法累加起来就可以了,dp[j] += dp[j - nums[i]]

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

4.dp数组如何初始化
从递归公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递归结果将都是0。

dp[0] = 1,理论上也很好解释,装满容量为0的背包,有1种方法,就是装0件物品。

dp[j]其他下标对应的数值应该初始化为0,从递归公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

4.确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

5.举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

C++代码如下:

class Solution {public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0;for (int i : nums) sum += i;if (abs(target) > sum) return 0;if ((sum + target) % 2 == 1) return 0;int bigSize = (sum+target) / 2;vector<int> dp(bigSize+1, 0);dp[0] = 1;for (int i = 0; i < nums.size(); i++){for (int j = bigSize; j >= nums[i]; j--){dp[j] += dp[j-nums[i]];}}return dp[bigSize];}
};

时间复杂度O(n * m),n为正数个数,m为背包容量
空间复杂度:O(m) m为背包容量

13. 一和零

题目链接

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3 输出:4

解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2: 输入:strs = [“10”, “0”, “1”], m = 1, n = 1 输出:2 解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示:

1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100

思路

来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。

其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

这不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

2.确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

3.dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

4.确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

5.举例推导dp数组
以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例

最后dp数组的状态如下所示:

以上动规五部曲分析完毕,C++代码如下:

class Solution {public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> dp(m+1, vector<int>(n+1, 0));for (string str: strs){int onesNum = 0, zeroNum = 0;for (char c : str){if (c == '0') zeroNum++;else onesNum++;}for (int i = m; i >= zeroNum; i--){for (int j = n; j >= onesNum; j--){dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-onesNum]+1);}}}return dp[m][n];}
};

14. 完全背包理论

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

dp状态图如下:

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序同样无所谓!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

先遍历被背包在遍历物品,代码如下:

// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}cout << endl;
}

C++完整测试代码

#include<iostream>
using namespace std;
#include<vector>//完全背包问题,每件物品的数量无穷
// 一维数组
void test01() {vector<int> weight{ 1,3,4 };vector<int> value{ 15, 20, 30 };int baweight = 4;vector<int> dp(baweight + 1, 0);//物品->背包for (int i = 0; i < weight.size(); i++) {for (int j = weight[i]; j <= baweight; j++) {dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}for (int k = 0; k <= baweight; k++) {cout << dp[k] << " ";}cout << endl;}// 背包->物品/*for (int j = 0; j <= baweight; j++) {for (int i = 0; i < weight.size(); i++) {if (j >= weight[i]) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}for (int k = 0; k <= baweight; k++) {cout << dp[k] << " ";}cout << endl;}*/cout << dp[baweight] << endl;
}// 二维数组
void test02() {vector<int> weight{ 1,3,4 };vector<int> value{ 15,20,30 };int baweight = 4;vector<vector<int>> dp(weight.size(), vector<int>(baweight + 1, 0));//与01背包的区别仅在于初始化设置for (int j = 1; j <= baweight; j++) {if (j >= weight[0])dp[0][j] = dp[0][j - weight[0]] + value[0];}for (int i = 1; i < weight.size(); i++) {for (int j = 1; j <= baweight; j++) {if (j >= weight[i])dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);elsedp[i][j] = dp[i - 1][j];}}for (int i = 0; i < weight.size(); i++) {for (int j = 0; j < baweight + 1; j++) {cout << dp[i][j] << " ";}cout << endl;}cout << endl;
}int main() {test01();test02();system("pause");return 0;
}

15. 零钱兑换II

题目链接

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5] 输出: 4 解释: 有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1

示例 2: 输入: amount = 3, coins = [2] 输出: 0 解释: 只用面额2的硬币不能凑成总金额3。

示例 3: 输入: amount = 10, coins = [10] 输出: 1

注意,你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

思路

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

但本题和纯完全背包不一样,纯完全背包是能否凑成总金额,而本题是要求凑成总金额的个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。

回归本题,动规五步曲来分析如下:

1.确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]

2.确定递推公式
dp[j] (考虑coins[i]的组合总和) 就是所有的dp[j - coins[i]](不考虑coins[i])相加。

所以递推公式:dp[j] += dp[j - coins[i]];

3.dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。

从dp[i]的含义上来讲就是,凑成总金额0的货币组合数为1。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

4.确定遍历顺序
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

因为纯完全背包求得是能否凑成总和,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量dp[j] += dp[j - coins[i]];}
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量for (int i = 0; i < coins.size(); i++) { // 遍历物品if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

class Solution {public:int change(int amount, vector<int>& coins) {vector<int> dp(amount+1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++){for (int j = coins[i]; j <= amount; j++){dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

16. 组合总和IV

题目链接

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

nums = [1, 2, 3] target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

思路

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜。

动规五部曲分析如下:

1.确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]

2.确定递推公式
dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

3.dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

4.确定遍历顺序
个数可以不限使用,说明这是一个完全背包。

得到的集合是排列,说明需要考虑元素之间的顺序。

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

5.举例来推导dp数组
我们再来用示例中的例子推导一下:

c++代码实现

class Solution {public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target+1, 0);dp[0] = 1;for(int i = 1; i <= target; i++){for (int j = 0; j < nums.size(); j++){if (i >= nums[j] && dp[i] < INT_MAX - dp[i-nums[j]])dp[i] += dp[i-nums[j]];}}return dp[target];}
};

17. 爬楼梯(进阶版)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

1 阶 + 1 阶
2 阶
示例 2: 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

思路

既然这么简单为什么还要讲呢,其实本题稍加改动就是一道面试好题。

改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

class Solution {public:int climbStairs(int n) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}return dp[n];}
};

代码中m表示最多可以爬m个台阶,代码中把m改成2就是本题70.爬楼梯可以AC的代码了。

18. 零钱兑换

题目链接

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1: 输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1

示例 2: 输入:coins = [2], amount = 3 输出:-1

示例 3: 输入:coins = [1], amount = 0 输出:0

示例 4: 输入:coins = [1], amount = 1 输出:1

示例 5: 输入:coins = [1], amount = 2 输出:2

提示:

1 <= coins.length <= 12
1 <= coins[i] <= 2^31 - 1
0 <= amount <= 10^4

思路

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

1.确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

2.确定递推公式
得到dp[j](考虑coins[i]),只有一个来源,dp[j - coins[i]](没有考虑coins[i])。

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

3.dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

4.确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。。

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

5.举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例

// 版本一
class Solution {public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};
// 版本二
class Solution {public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount+1, INT_MAX);dp[0] = 0;for (int i = 1; i <= amount; i++){for (int j = 0; j < coins.size(); j++){if (i >= coins[j] && dp[i-coins[j]] != INT_MAX)dp[i] = min(dp[i], dp[i-coins[j]]+1);}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};

19. 完全平方数

题目链接

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1: 输入:n = 12 输出:3 解释:12 = 4 + 4 + 4

示例 2: 输入:n = 13 输出:2 解释:13 = 4 + 9

提示:

1 <= n <= 10^4

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i]:和为i的完全平方数的最少数量为dp[i]

2.确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

3.dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[i]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

4.确定遍历顺序
我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

5.举例推导dp数组
已输入n为5例,dp状态图如下:


C++代码

// 版本一
class Solution {public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 0; i <= n; i++) { // 遍历背包for (int j = 1; j * j <= i; j++) { // 遍历物品dp[i] = min(dp[i - j * j] + 1, dp[i]);}}return dp[n];}
};
// 版本二
class Solution {public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) { // 遍历物品for (int j = 1; j <= n; j++) { // 遍历背包if (j - i * i >= 0) {dp[j] = min(dp[j - i * i] + 1, dp[j]);}}}return dp[n];}
};

20. 拆分单词

题目链接

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

拆分时可以重复使用字典中的单词。

你可以假设字典中没有重复的单词。

示例 1: 输入: s = “leetcode”, wordDict = [“leet”, “code”] 输出: true 解释: 返回 true 因为 “leetcode” 可以被拆分成 “leet code”。

示例 2: 输入: s = “applepenapple”, wordDict = [“apple”, “pen”] 输出: true 解释: 返回 true 因为 “applepenapple” 可以被拆分成 “apple pen apple”。 注意你可以重复使用字典中的单词。

示例 3: 输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”] 输出: fals

思路

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

动规五部曲分析如下:

1.确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

2.确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

3.dp数组如何初始化
从递归公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递归的根基,dp[0]一定要为true,否则递归下去后面都都是false了。

那么dp[0]有没有意义呢?

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

4.确定遍历顺序
题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

还要讨论两层for循环的前后循序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

本题最终要求的是是否都出现过,所以对出现单词集合里的元素是组合还是排列,并不在意!

那么本题使用求排列的方式,还是求组合的方式都可以。

即:外层for循环遍历物品,内层for遍历背包 或者 外层for遍历背包,内层for循环遍历物品 都是可以的。

但本题还有特殊性,因为是要求子串,最好是遍历背包放在外循环,将遍历物品放在内循环。

如果要是外层for循环遍历物品,内层for遍历背包,就需要把所有的子串都预先放在一个容器里。(如果不理解的话,可以自己尝试这么写一写就理解了)

所以最终我选择的遍历顺序为:遍历背包放在外循环,将遍历物品放在内循环。内循环从前到后。

5.举例推导dp[i]
以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

21. 打家劫舍

题目链接

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1: 输入:[1,2,3,1] 输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。

示例 2: 输入:[2,7,9,3,1] 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示:

0 <= nums.length <= 100
0 <= nums[i] <= 400

思路

打家劫舍是dp解决的经典问题,动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。

2.确定递推公式
决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

3.dp数组如何初始化
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

4.确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

5.举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。

红框dp[nums.size() - 1]为结果。

class Solution {public:int rob(vector<int>& nums) {if (nums.size() == 1) return nums[0];vector<int> dp(nums.size()+1);dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for (int i = 2; i < nums.size(); i++){dp[i] = max(dp[i-1], dp[i-2] + nums[i]);}return dp[nums.size()-1];}
};

22. 打家劫舍II

题目链接

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2: 输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 3: 输入:nums = [0] 输出:0

提示:

1 <= nums.length <= 100
0 <= nums[i] <= 1000

思路

对于一个数组,成环的话主要有如下三种情况:

情况一:考虑不包含首尾元素

情况二:考虑包含首元素,不包含尾元素

情况三:考虑包含尾元素,不包含首元素
其实,仔细看一下,就是情况二和情况三两种情况

class Solution {public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];int len = nums.size();int result1 = robRange(nums, 0, len-2);int result2 = robRange(nums, 1, len-1);return max(result1, result2);}int robRange(vector<int>& nums, int start, int end){//防止nums超出if (start == end) return nums[start];vector<int> dp(nums.size()+1, 0);dp[start] = nums[start];dp[start+1] = max(nums[start], nums[start+1]);for (int i = start+2; i <= end; i++){dp[i] = max(dp[i-1], dp[i-2]+nums[i]);}return dp[end];}
};

23. 打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

思路

这道题目和 198.打家劫舍 (opens new window),213.打家劫舍II (opens new window)也是如出一辙,只不过这个换成了树。

记忆化递归

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {public:unordered_map<TreeNode*, int> mp;int rob(TreeNode* root) {if (root == nullptr) return 0;if (root->left == nullptr && root->right == nullptr) return root->val;if (mp[root]) return mp[root];int val1 = root->val;if (root->left) val1 += rob(root->left->left) + rob(root->left->right);if (root->right) val1 += rob(root->right->left) + rob(root->right->right);int val2 = rob(root->left) + rob(root->right);mp[root] = max(val1, val2);return max(val1, val2);}
};

时间复杂度:O(n)
空间复杂度:O(logn) 算上递推系统栈的空间

动态规划

动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。

1.确定递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

参数为当前节点,代码如下:

vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数。

如果还不理解的话,就接着往下看,看到代码就理解了哈。

2.确定终止条件
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

3.确定遍历顺序
首先明确的是使用后序遍历。 因为通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中

确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就在回顾一下dp数组的含义)

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};

5.举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。

递归三部曲与动规五部曲分析完毕,C++代码如下:

class Solution {public:int rob(TreeNode* root) {vector<int> result = robTree(root);return max(result[0], result[1]);}// 长度为2的数组,0:不偷,1:偷vector<int> robTree(TreeNode* cur) {if (cur == NULL) return vector<int>{0, 0};vector<int> left = robTree(cur->left);vector<int> right = robTree(cur->right);// 偷curint val1 = cur->val + left[0] + right[0];// 不偷cur, 注意,结点不一定是隔一个偷一个,可能是隔两个投一个,取决于值int val2 = max(left[0], left[1]) + max(right[0], right[1]);return {val2, val1};}
};

时间复杂度:O(n) 每个节点只遍历了一次
空间复杂度:O(logn) 算上递推系统栈的空间

24. 买卖股票得最佳时机

题目链接

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

思路

贪心算法

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

C++代码如下:

class Solution {public:int maxProfit(vector<int>& prices) {int left = INT_MAX;int result = INT_MIN;for (int i = 0; i < prices.size(); i++){left = min(left, prices[i]);result = max(result, prices[i]-left);}return result;}
};

时间复杂度:O(n)
空间复杂度:O(1)

动态规划

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没分区分清楚。

在下面递推公式分析中,我会进一步讲解。

2.确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递归公式我们就分析完了

3.dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

4.确定遍历顺序
从递推公式可以看出dp[i]都是有dp[i - 1]推导出来的,那么一定是从前向后遍历。

5.举例推导dp数组
以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

class Solution {public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
};
class Solution {public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len+1, vector<int>(2));dp[0][0] = prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++){dp[i][0] = min(dp[i-1][0], prices[i]);dp[i][1] = max(dp[i-1][1], prices[i] - dp[i-1][0]);}return dp[len-1][1];}
};

时间复杂度:O(n)
空间复杂度:O(n)

优化:

// 版本二
class Solution {public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

时间复杂度:O(n)
空间复杂度:O(1)

优化为一维数组:

class Solution {public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<int> dp(2);dp[0] = prices[0];dp[1] = 0;for (int i = 1; i < len; i++){dp[1] = max(dp[1], prices[i]-dp[0]);dp[0] = min(dp[0], prices[i]);}return dp[1];}
};

时间复杂度:O(n)
空间复杂度:O(1)

25. 买卖股票最佳时机II

题目链接

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

思路

贪心

Leetcode学习之贪心算法已经讲解过了,这里直接给出代码

class Solution {public:int maxProfit(vector<int>& prices) {int sum = 0;for (int i = 1; i < prices.size(); i++){if (prices[i]-prices[i-1] > 0){sum += prices[i]-prices[i-1];}}return sum;}
};

动态规划

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没分区分清楚。

在下面递推公式分析中,我会进一步讲解。

2.确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递归公式我们就分析完了

3.dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

4.确定遍历顺序
从递推公式可以看出dp[i]都是有dp[i - 1]推导出来的,那么一定是从前向后遍历。

5.举例推导dp数组
以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:


整体思路就是收益累加,如上图所示

class Solution {public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(2));dp[0][0] = -prices[0]; // 购买成本dp[0][1] = 0;   // 持有收益for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);}return dp[prices.size()-1][1];}
};

26. 买卖股票的最佳时机III

题目链接

这道题目相对 121.买卖股票的最佳时机 (opens new window)和 122.买卖股票的最佳时机II (opens new window)难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

1.确定dp数组以及下标的含义

一天一共就有五个状态:

0.没有操作(可以看成是一种运算的补充)
1.第一次买入
2.第一次卖出
3.第二次买入
4.第二次卖出

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

2.确定递推公式

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

其实设置两个重复模板主要是利用第一个数据产生第一个阶段求和结果,再求解第二个阶段的结果

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

首先卖出的操作一定是收获利润,整个股票买卖最差情况也就是没有盈利即全程无操作现金为0,

从递推公式中可以看出每次是取最大值,那么既然是收获利润如果比0还小了就没有必要收获这个利润了。

所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例


大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i][1] = max(dp[i-1][1], -prices[i]+dp[i-1][0]);dp[i][2] = max(dp[i-1][2], prices[i]+dp[i-1][1]);dp[i][3] = max(dp[i-1][3], -prices[i]+dp[i-1][2]);dp[i][4] = max(dp[i-1][4], prices[i]+dp[i-1][3]);// 查看结果// cout << "dp1: " << dp[i][1] << " , dp2: " << dp[i][2] << " , dp3:" << dp[i][3] << " , dp4: " << dp[i][4] << endl;}return dp[prices.size()-1][4];}
};

时间复杂度O(n)O(n)O(n);
空间复杂度O(n∗5)O(n*5)O(n∗5);

class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size()==0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(4, 0));dp[0][0] = -prices[0];dp[0][2] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], -prices[i]);dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);dp[i][2] = max(dp[i-1][2], -prices[i] + dp[i-1][1]);dp[i][3] = max(dp[i-1][3], prices[i] + dp[i-1][2]);}return dp[prices.size()-1][3];}
};

优化一下

class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[1] = max(dp[1], -prices[i]+dp[0]);dp[2] = max(dp[2], prices[i]+dp[1]);dp[3] = max(dp[3], -prices[i]+dp[2]);dp[4] = max(dp[4], prices[i]+dp[3]);// cout << "dp1: " << dp[i][1] << " , dp2: " << dp[i][2] << " , dp3:" << dp[i][3] << " , dp4: " << dp[i][4] << endl;}return dp[4];}
};
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size()==0) return 0;vector<int> dp(4, 0);dp[0] = -prices[0];dp[2] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[0] = max(dp[0], -prices[i]);dp[1] = max(dp[1], prices[i] + dp[0]);dp[2] = max(dp[2], -prices[i] + dp[1]);dp[3] = max(dp[3], prices[i] + dp[2]);}return dp[3];}
};

时间复杂度O(n);
空间复杂度O(1);

27. 买卖股票的最佳时机 IV

题目链接

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

示例 2: 输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000

思路

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

0 表示不操作
1 第一次买入
2 第一次卖出
3 第二次买入
4 第二次卖出

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。

其实就是将上面的方法进行规则化:

c++代码实现:

class Solution {public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2*k+1, 0));for (int i = 1; i < 2*k+1; i += 2){dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); i++){for (int j = 1; j < 2*k+1; j++){if (j % 2 == 1)dp[i][j] = max(dp[i-1][j], -prices[i]+dp[i-1][j-1]);elsedp[i][j] = max(dp[i-1][j], prices[i]+dp[i-1][j-1]);}}return dp[prices.size()-1][2*k];}
};
class Solution {public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0 || k == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2*k, 0));for (int i = 0; i < 2*k; i += 2){dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], -prices[i]);for (int j = 1; j < 2*k; j++){if (j % 2 == 1)dp[i][j] = max(dp[i-1][j], prices[i] + dp[i-1][j-1]);elsedp[i][j] = max(dp[i-1][j], -prices[i] + dp[i-1][j-1]);}}return dp[prices.size()-1][2*k-1];}
};

时间复杂度O(n);
空间复杂度O(n*k);

优化:

class Solution {public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(2*k+1, 0);for (int i = 1; i < 2*k+1; i += 2){dp[i] = -prices[0];}for (int i = 1; i < prices.size(); i++){for (int j = 1; j < 2*k+1; j++){if (j % 2 == 1)dp[j] = max(dp[j], -prices[i]+dp[j-1]);elsedp[j] = max(dp[j], prices[i]+dp[j-1]);}}return dp[2*k];}
};
class Solution {public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0 || k == 0) return 0;vector<int> dp(2*k, 0);for (int i = 0; i < 2*k; i += 2){dp[i] = -prices[0];}for (int i = 1; i < prices.size(); i++){dp[0] = max(dp[0], -prices[i]);for (int j = 1; j < 2*k; j++){if (j % 2 == 1)dp[j] = max(dp[j], prices[i] + dp[j-1]);elsedp[j] = max(dp[j], -prices[i] + dp[j-1]);}}return dp[2*k-1];}
};

时间复杂度O(n);
空间复杂度O(k);

28. 最佳买卖股票时机含冷冻期

题目链接

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例: 输入: [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期

在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。

动规五部曲,分析如下:

1.确定dp数组以及下标的含义
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。 具体可以区分出如下四个状态:

  • 状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
  • 卖出股票状态,这里就有两种卖出股票状态
    • 状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
    • 状态三:今天卖出了股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。

从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

注意这里的每一个状态,例如状态一,是买入股票状态并不是说今天已经就买入股票,而是说保存买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。

2.确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]

所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]

那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

  • 操作一:昨天一定是买入股票状态(状态一),今天卖出
    即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

  • 操作一:昨天卖出了股票(状态三)
    p[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];

3.dp数组如何初始化
这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],买入股票所省现金为负数。

保持卖出股票状态(状态二),第0天没有卖出dp[0][1]初始化为0就行,

今天卖出了股票(状态三),同样dp[0][2]初始化为0,因为最少收益就是0,绝不会是负数。

同理dp[0][3]也初始为0。

4.确定遍历顺序
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5.举例推导dp数组
以 [1,2,3,0,2] 为例,dp数组如下:

最后结果去是 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

代码如下:

class Solution {public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(4, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][3]);dp[i][2] = dp[i-1][0] + prices[i];dp[i][3] = dp[i-1][2];}return max(dp[prices.size()-1][1], max(dp[prices.size()-1][2], dp[prices.size()-1][3]));}
};
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.empty()) return 0;// dp[0] 手上持有股票, 累积最大收益// dp[1] 手上没有持有股票,且在冷冻期的累积最大收益// dp[2] 手上没有持有股票,不在冷冻期的累积最大收益vector<vector<int>> dp(prices.size(), vector<int>(3, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], -prices[i] + dp[i-1][2]);dp[i][1] = prices[i] + dp[i-1][0];dp[i][2] = max(dp[i-1][1], dp[i-1][2]);}return max(dp[prices.size()-1][1], dp[prices.size()-1][2]);}
};

时间复杂度:O(n)
空间复杂度:O(n)
当然,空间复杂度可以优化,定义一个dp[2][4]大小的数组就可以了,就保存前一天的当前的状态,感兴趣的同学可以自己去写一写,思路是一样的。

class Solution {public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(2, vector<int>(4, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i%2][0] = max(dp[(i-1)%2][0], max(dp[(i-1)%2][3], dp[(i-1)%2][1]) - prices[i]);dp[i%2][1] = max(dp[(i-1)%2][1], dp[(i-1)%2][3]);dp[i%2][2] = dp[(i-1)%2][0] + prices[i];dp[i%2][3] = dp[(i-1)%2][2];}return max(dp[(prices.size()-1)%2][1], max(dp[(prices.size()-1)%2][2], dp[(prices.size()-1)%2][3]));}
};
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.empty()) return 0;// dp[0] 手上持有股票, 累积最大收益// dp[1] 手上没有持有股票,且在冷冻期的累积最大收益// dp[2] 手上没有持有股票,不在冷冻期的累积最大收益vector<vector<int>> dp(2, vector<int>(3, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i%2][0] = max(dp[(i-1)%2][0], -prices[i] + dp[(i-1)%2][2]);dp[i%2][1] = prices[i] + dp[(i-1)%2][0];dp[i%2][2] = max(dp[(i-1)%2][1], dp[(i-1)%2][2]);}return max(dp[(prices.size()-1)%2][1], dp[(prices.size()-1)%2][2]);}
};

时间复杂度O(n);
空间复杂度O(1);

29. 买卖股票的最佳时机含手续费

题目链接

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1: 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2 输出: 8
解释: 能够达到的最大利润: 在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

注意:

0 < prices.length <= 50000.
0 < prices[i] < 50000.
0 <= fee < 50000.

思路

在讲解贪心专题的时候,我们已经讲过本题了贪心算法:买卖股票的最佳时机含手续费(opens new window)

使用贪心算法的性能是:

class Solution {public:int maxProfit(vector<int>& prices, int fee) {int minNum = INT_MAX;int result = 0;for (int i = 0; i < prices.size(); i++){minNum = min(minNum, prices[i]);if (prices[i] - minNum - fee > 0){result += prices[i] - minNum - fee;minNum = prices[i] - fee;}}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

那么我们再来看看是使用动规的方法如何解题。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作。

以上分析完毕,C++代码如下:

class Solution {public:int maxProfit(vector<int>& prices, int fee) {vector<vector<int>> dp(prices.size(), vector<int>(2, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[i][0] = max(dp[i-1][0], -prices[i] + dp[i-1][1]);dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0] - fee);}return max(dp[prices.size()-1][0], dp[prices.size()-1][1]);}
};

时间复杂度O(n);
空间复杂度O(n);

优化:

class Solution {public:int maxProfit(vector<int>& prices, int fee) {vector<int> dp(2, 0);dp[0] = -prices[0];for (int i = 1; i < prices.size(); i++){dp[0] = max(dp[0], -prices[i] + dp[1]);dp[1] = max(dp[1], prices[i] + dp[0] - fee);}return max(dp[0], dp[1]);}
};

时间复杂度O(n);
空间复杂度O(1);

30. 股票问题总结


动态规划:121.买卖股票的最佳时机(opens new window)
动态规划:122.买卖股票的最佳时机II(opens new window)
动态规划:123.买卖股票的最佳时机III(opens new window)
动态规划:188.买卖股票的最佳时机IV(opens new window)
动态规划:309.最佳买卖股票时机含冷冻期(opens new window)
动态规划:714.买卖股票的最佳时机含手续费(opens new window)

31. 最长递增子序列

题目链接

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2: 输入:nums = [0,1,0,3,2,3] 输出:4

示例 3: 输入:nums = [7,7,7,7,7,7,7] 输出:1

提示:

1 <= nums.length <= 2500
-10^4 <= nums[i] <= 104

思路

最长上升子序列是动规的经典题目,这里dp[i]是可以根据dp[j] (j < i)推导出来的,那么依然用动规五部曲来分析详细一波:

1.dp[i]的定义

dp[i]表示i之前包括i的最长上升子序列的长度。

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。

3.dp[i]的初始化

每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是是1.

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。

j其实就是0到i-1,遍历i的循环里外层,遍历j则在内层,代码如下:

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

5.举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:


如果代码写出来,但一直AC不了,那么就把dp数组打印出来,看看对不对!

以上五部分析完毕,C++代码如下:

class Solution {public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++){for (int j = 0; j < i; j++){if (nums[i] > nums[j])dp[i] = max(dp[i], dp[j]+1);                }result = result > dp[i]? result: dp[i];}return result;}
};

时间复杂度O(n∗2)O(n*2)O(n∗2);
空间复杂度O(n)O(n)O(n);

贪心+二分

图解

class Solution {public:int lengthOfLIS(vector<int>& nums) {int len = 1, n = nums.size();if (n == 0) return 0;vector<int> dp(n+1, 0);dp[len] = nums[0];for (int i = 1; i < n; i++){if (nums[i] > dp[len]){dp[++len] = nums[i];}else{int l = 1, r = len, pos = 0;while (l <= r){int mid = l + ((r-l)>>1);if  (dp[mid] < nums[i]){pos = mid;l = mid+1;}elser = mid-1;}dp[pos+1] = nums[i];}}return len;}
};

时间复杂度 O(NlogN)O(NlogN) : 遍历 numsnums 列表需 O(N),在每个 nums[i] 二分法需 O(logN)O(logN)。
空间复杂度 O(N)O(N) : 占用线性大小额外空间。

32. 最长连续递增序列

题目链接

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1: 输入:nums = [1,3,5,4,7] 输出:3 解释:最长连续递增序列是 [1,3,5], 长度为3。 尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2: 输入:nums = [2,2,2,2,2] 输出:1 解释:最长连续递增序列是 [2], 长度为1。

提示:

0 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9
#思路
本题相对于昨天的动态规划:300.最长递增子序列 (opens new window)最大的区别在于“连续”。

本题要求的是最长连续递增序列

思路

贪心算法

class Solution {public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();int count = 1;int result = 0;for (int i = 1; i < nums.size(); i++){if (nums[i] > nums[i-1]){count++;}else{result = result > count? result : count;count = 1;}result = result > count? result : count;}return result;}
};

时间复杂度O(n);
空间复杂度O(1);

动态规划

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]。

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

2.确定递推公式

如果 nums[i + 1] > nums[i],那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。

即:dp[i + 1] = dp[i] + 1;

注意这里就体现出和动态规划:300.最长递增子序列 (opens new window)的区别!

因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。

这里大家要好好体会一下!

dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

        for (int i = 1; i < nums.size(); i++){if (nums[i] > nums[i-1]){dp[i] = dp[i-1]+1;result = result > dp[i]? result: dp[i];}}

5.举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:


注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

以上分析完毕,C++代码如下:

class Solution {public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++){if (nums[i] > nums[i-1]){dp[i] = dp[i-1]+1;result = result > dp[i]? result: dp[i];}}return result;}
};

时间复杂度:O(n)
空间复杂度:O(n)

33. 最长重复子数组

题目链接

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入: A: [1,2,3,2,1] B: [3,2,1,4,7] 输出:3 解释: 长度最长的公共子数组是 [3, 2, 1] 。

提示:

1 <= len(A), len(B) <= 1000
0 <= A[i], B[i] < 100

思路

注意题目中说的子数组,其实就是连续子序列。这种问题动规最拿手,动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

行倒是行! 但实现起来就麻烦一点,大家看下面的dp数组状态图就明白了。

2.确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3.dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

4.确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A,不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= A.size(); i++) {for (int j = 1; j <= B.size(); j++) {if (A[i - 1] == B[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}

5.举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

以上五部曲分析完毕,C++代码如下:

class Solution {public:int findLength(vector<int>& A, vector<int>& B) {vector<vector<int>> dp (A.size() + 1, vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = 1; j <= B.size(); j++) {if (A[i - 1] == B[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

时间复杂度O(n * m) n 为A长度,m为B长度
空间复杂度O(n * m)

滚动数组(难理解)

在如下图中:


我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。

也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。

此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。

class Solution {public:int findLength(vector<int>& A, vector<int>& B) {vector<int> dp(vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = B.size(); j > 0; j--) {if (A[i - 1] == B[j - 1]) {dp[j] = dp[j - 1] + 1;} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作if (dp[j] > result) result = dp[j];}}return result;}
};

时间复杂度O(n * m) n 为A长度,m为B长度
空间复杂度O(m)

34. 最长公共子序列

题目链接

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。

示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。

示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

思路

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

继续动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为为长度为[0, i]的字符串text1也可以,大家可以试一试!

2.确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:


那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

5.举例推导dp数组

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:


最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size()+1, vector<int>(text2.size()+1, 0));for (int i = 1; i <= text1.size(); i++){for (int j = 1; j <= text2.size(); j++){if (text1[i-1] == text2[j-1]){dp[i][j] = dp[i-1][j-1] + 1;}else {dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}}return dp[text1.size()][text2.size()];}
};

35. 最大子序和

题目链接

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路

贪心算法

class Solution {public:int maxSubArray(vector<int>& nums) {int sum = 0;int result = INT_MIN;for (int i = 0; i < nums.size(); i++){sum += nums[i];result = max(result, sum);if (sum < 0) sum = 0;}return result;}
};

时间复杂度O(n);
空间复杂度O(1);

动态规划

动规五部曲如下:

1.确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i之前的最大连续子序列和为dp[i]。

2.确定递推公式
dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

更具dp[i]的定义,很明显dp[0]因为为nums[0]即dp[0] = nums[0]。

4.确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。

以上动规五部曲分析完毕,完整代码如下:

class Solution {public:int maxSubArray(vector<int>& nums) {vector<int> dp(nums.size(), 0);dp[0] = nums[0];int result = nums[0];for (int i = 1; i < nums.size(); i++){dp[i] = max(nums[i], dp[i-1] + nums[i]);result = max(result, dp[i]);}return result;}
};

时间复杂度:O(n)
空间复杂度:O(n)

36. 判断子序列

题目链接

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1: 输入:s = “abc”, t = “ahbgdc” 输出:true

示例 2: 输入:s = “axc”, t = “ahbgdc” 输出:false

提示:

0 <= s.length <= 100
0 <= t.length <= 10^4
两个字符串都只由小写字符组成。

思路

双指针

class Solution {public:bool isSubsequence(string s, string t) {int left1 = 0, left2 = 0;while (left1 < s.size() && left2 < t.size()){if (s[left1] == t[left2]){++left1;++left2;}else{++left2;}}if (left1 == s.size()) return true;return false;}
};

时间复杂度O(n+m)
空间复杂度O(1)

动态规划

class Solution {public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size()+1, vector<int>(t.size()+1, 0));for (int i = 1; i <= s.size(); i++){for (int j = 1; j <= t.size(); j++){if (s[i-1] == t[j-1]) dp[i][j] = dp[i-1][j-1] + 1;else dp[i][j] = dp[i][j-1];}}return (dp[s.size()][t.size()] == s.size());}
};

时间复杂度O(n*m);
空间复杂度O(n*m);

37. 不同的子序列

题目链接

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)

题目数据保证答案符合 32 位带符号整数范围。


提示:

0 <= s.length, t.length <= 1000 s 和 t 由英文字母组成

思路

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了,来看看动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

2.确定递推公式
这一类问题,基本是要分析两种情况

s[i - 1] 与 t[j - 1]相等
s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

3.dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][0] 和dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

4.确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

5.举例推导dp数组
以s:“baegg”,t:"bag"为例,推导dp数组状态如下:

如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。

动规五部曲分析完毕,代码如下:

class Solution {public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size()+1, vector<uint64_t>(t.size()+1, 0));for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;for (int i = 1; i <= s.size(); i++){for (int j = 1; j <= t.size(); j++){if (s[i-1] == t[j-1]){dp[i][j] = dp[i-1][j-1] + dp[i-1][j];}else{dp[i][j] = dp[i-1][j];}}}return dp[s.size()][t.size()];}
};

时间复杂度O(nm);
空间复杂度O(n
m);

38. 两个字符串的删除操作

题目链接

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

输入: “sea”, “eat”
输出: 2 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"

思路

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

2.确定递推公式

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

3.dp数组如何初始化
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

4.确定遍历顺序
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

5.举例推导dp数组
以word1:“sea”,word2:"eat"为例,推导dp数组状态图如下:

代码实现:

class Solution {public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++){for (int j = 1; j <= word2.size(); j++){if (word1[i-1] == word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min({dp[i-1][j-1]+2, dp[i-1][j]+1, dp[i][j-1]+1});}}}return dp[word1.size()][word2.size()];}
};

时间复杂度O(n*m);
空间复杂度O(n*m);

39. 编辑距离

题目链接

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1: 输入:word1 = “horse”, word2 = “ros” 输出:3 解释: horse -> rorse (将 ‘h’ 替换为 ‘r’) rorse -> rose (删除 ‘r’) rose -> ros (删除 ‘e’)

示例 2: 输入:word1 = “intention”, word2 = “execution” 输出:5 解释: intention -> inention (删除 ‘t’) inention -> enention (将 ‘i’ 替换为 ‘e’) enention -> exention (将 ‘n’ 替换为 ‘x’) exention -> exection (将 ‘n’ 替换为 ‘c’) exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来我依然使用动规五部曲,对本题做一个详细的分析:

1.确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

2.确定递推公式
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样!

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。

即 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

3.dp数组如何初始化
再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4.确定遍历顺序
从如下四个递推公式:

dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:


所以在dp矩阵中一定是从左到右从上到下去遍历。

  1. 举例推导dp数组
    以示例1为例,输入:word1 = “horse”, word2 = "ros"为例,dp矩阵状态图如下:


以上动规五部分析完毕,C++代码如下:

class Solution {public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++){for (int j = 1; j <= word2.size(); j++){if (word1[i-1] == word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min({dp[i-1][j-1], dp[i-1][j], dp[i][j-1]})+1;}}}return dp[word1.size()][word2.size()];}
};

时间复杂度O(n*m)
空间复杂度O(n*m)

40. 回文子串

题目链接

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:“abc” 输出:3 解释:三个回文子串: “a”, “b”, “c”

示例 2:

输入:“aaa” 输出:6 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

提示:

输入的字符串长度不会超过 1000 。

思路

双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后想两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况。

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {public:int countSubstrings(string s) {int result = 0;for (int i = 0; i < s.size(); i++){result += count(s, i, i,  s.size());result += count(s, i, i+1, s.size());}return result;}int count(string& s, int i, int j, int end){int cnt = 0;while (i>=0 && j<end && s[i] == s[j]){++cnt;--i;++j;}return cnt;}
};

时间复杂度O(n2)O(n^2)O(n2)
空间复杂度O(1)O(1)O(1)

动态规划

动规五部曲:

1.确定dp数组(dp table)以及下标的含义
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

2.确定递推公式
在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
情况二:下标i 与 j相差为1,例如aa,也是文子串
情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

3.dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

4.确定遍历顺序
遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}
}

5.举例推导dp数组
举例,输入:“aaa”,dp[i][j]状态如下:

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。

以上分析完毕,C++代码如下:

class Solution {public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--){for (int j = i; j < s.size(); j++){if (s[i] == s[j] && (j-i<= 1 || dp[i+1][j-1])){++result;dp[i][j] = true;}}}return result;}
};

时间复杂度:O(n2)O(n^2)O(n2)
空间复杂度:O(n2)O(n^2)O(n2)

41. 最长回文子序列

题目链接

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: “bbbab” 输出: 4 一个可能的最长回文子序列为 “bbbb”。

示例 2: 输入:“cbbd” 输出: 2 一个可能的最长回文子序列为 “bb”。

提示:

1 <= s.length <= 1000
s 只包含小写英文字母

思路

我们刚刚做过了 动态规划:回文子串 (opens new window),求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

647.回文子串
5.最长回文子串
思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。

2.确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图:

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);


代码如下:

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; , j >i可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

4.确定遍历顺序
从递推公式dp[i][j] = dp[i + 1][j - 1] + 2 和 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 可以看出,dp[i][j]是依赖于dp[i + 1][j - 1] 和 dp[i + 1][j],

也就是从矩阵的角度来说,dp[i][j] 下一行的数据。 所以遍历i的时候一定要从下到上遍历,这样才能保证,下一行的数据是经过计算的。

递推公式:dp[i][j] = dp[i + 1][j - 1] + 2,dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 分别对应着下图中的红色箭头方向,如图:


代码如下:

for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}
}

5.举例推导dp数组
输入s:“cbbd” 为例,dp数组状态如图:

红色框即:dp[0][s.size() - 1]; 为最终结果。

以上分析完毕,C++代码如下:

class Solution {public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));for (int i = 0; i < s.size(); i++) dp[i][i] = 1;for (int i = s.size()-1; i >= 0; i--){for (int j = i+1; j < s.size(); j++){if (s[i] == s[j]){dp[i][j] = dp[i+1][j-1] + 2;}else{dp[i][j] = max(dp[i+1][j], dp[i][j-1]);}}}return dp[0][s.size()-1];}
};

总结

动态规划是学习的难点,今后必须多复习,多学习!!!

Leetcode学习之动态规划相关推荐

  1. php算法学习,php算法学习之动态规划

    动态规划程序设计是对解最优化问题的一种途径.一种方法,最终问题的最优解可以通过前面子问题的最优解推导出来. 对于动态规划这个算法,自己学习的还不是很透彻,简单的总结自己学习的感受是: 动态规划思想中融 ...

  2. 【leetcode】【动态规划】股票买卖

    leetcode 股票买卖(动态规划) 这位大佬四种题型总结的很好:link 一共只有三种状态:买.卖.冷冻 buy[i]buy[i]buy[i] 表示第i天之前最后一次行为是buy时,最大的收益 s ...

  3. LeetCode学习-查找2-合并版

    LeetCode学习-查找 几个基本数据结构 一,查找表 349,求公共元素 242,判断两字符串是否字母相同 202,快乐数问题 290,模式匹配(需理清思路) 205,同构 451,对出现频率排序 ...

  4. 算法学习之- 动态规划

    自己对动态规划一直都是盲点,在这个北风呼啸的日子里打算精心学习一下动态规划:同样的在CSDN上看到一篇特别好的文章,顺着文章就写下来mark了. 链接如下: http://blog.csdn.net/ ...

  5. leetcode学习记录5——53.最大子序和

    leetcode学习记录 leetcode学习记录五 最大子序和 解题思路 代码 leetcode学习记录五 最大子序和 难度:简单 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数 ...

  6. LeetCode Counting Bits(动态规划)

    问题:给出数字n,求0-n这些数的1的位数. 思路:方法一使用x&(x-1)统计数字1的位数. 方法二[0,1) [2,3)表示形式为[10,11) [4,8)表示形式为[100,101, 1 ...

  7. 动态规划算法php,php算法学习之动态规划

    动态规划程序设计是对解最优化问题的一种途径.一种方法,最终问题的最优解可以通过前面子问题的最优解推导出来.下面小编为大家整理了,希望能帮到大家! 对于动态规划这个算法,自己学习的还不是很透彻,简单的总 ...

  8. 动态规划算法实验报告_强化学习之动态规划算法

    如今的强化学习研究大体分为了两个研究学派:一个是以Sutton,Sliver等人为代表的value-based学派,他们主要从值函数近似角度入手去研究强化学习,这也是强化学习早期最初发展起来时沿用的路 ...

  9. C#LeetCode刷题-动态规划

    动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串 22.4% 中等 10 正则表达式匹配 18.8% 困难 32 最长有效括号 23.3% 困难 44 通配符匹配 17.7% 困难 53 最 ...

最新文章

  1. C语言标准库函数qsort具体解释
  2. ubuntu 新增mysql用户_Ubuntu中给mysql添加新用户并分配权限
  3. P4149-[IOI2011]Race【点分治】
  4. 《React Native 精解与实战》书籍连载「React Native 网络请求与列表绑定」
  5. java编程int和byte的用法_Java中的Byte Array和Int转换
  6. pycharm -- 小技巧1 (显示文件的代码结构以及错误提示)
  7. Android JNI学习(五)——Java与Native之间如何实现相互调用
  8. 最佳ASP.net之LINQ学习资料
  9. java 枚举与泛型_Java枚举和泛型
  10. 三个javascript动态输入列表
  11. Python Shutil模块
  12. python导入第三方库dlib报错解决
  13. HTML表格外边框双线,HTML table 边框双线变单线
  14. 添加源显示未找到使用主机服务器,未能找到主机指定使用服务器
  15. 于娟的忠告----生命只有一次,活着才是王道啊!!!
  16. 一个中专生:我在华为面试的真实经历,转
  17. Halcon入门(1)——选取ROI区域
  18. 函数最值题目及答案_关于函数的习题及答案
  19. 每日程序C语言37-圈子报数问题
  20. 计算机组成原理——输入/输出系统の选择题整理

热门文章

  1. 学生成绩管理系统(C语言实现)大作业不会?快来看看吧!
  2. php10501 怎么解决,龙三公子博客-win10不能兼容GTX1050以上显卡驱动提示nvidia驱动程序与此windows版本不兼容的解决方案...
  3. Node.js快速入门之基础模块及常用api
  4. 防火墙、IDS和IPS之间有什么区别?
  5. 常用Linux内核调试手段介绍 02——— 内核笔记
  6. Project2007操作手册(原创)
  7. 多态在android中(利用接口调用服务中方法)的应用
  8. Windows利用easyBCD装Ubuntu双系统
  9. 关于人工智能(AI)
  10. 论文阅读2018-Deep Convolutional Neural Networks for breast cancer screening 重点:利用迁移学习三个网络常规化进行分类