以下全文转载自 http://www.cnblogs.com/372465774y/archive/2012/10/16/2726282.html

Update:本人根据评论进行了一些小修改。

函数的积性即:若m,n互质,则φ(mn)=φ(m)φ(n)。//  下面是百度上找的错误证明
由“m,n互质”可知m,n无公因数,所以φ(m)φ(n)=m(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)·n(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),//这里已经用了计算公式,而计算公式是需要先有积性前提才推导的其中p1,p2,p3...pn为m的质因数,p1',p2',p3'...pn'为n的质因数,而m,n无公因数,
所以p1,p2,p3...pn,p1',p2',p3'...pn'互不相同,
所以p1,p2,p3...pn,p1',p2',p3'...pn'均为mn的质因数且为mn质因数的全集,
所以φ(mn)=mn(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),
所以φ(mn)=φ(m)φ(n)。查了很多资料会证明了:
// 证明:在证明前先了解下以下知识:(a,b)代表最大公约数,[a,b]代表最小公倍数m|(a-b) <=> a≡b (mod m)a=pm+r  (0<=r<m)b=qm+r  (0<=r<m)由此可以推出:性质1:a≡a(mod m),(反身性) 这个性质很显然.因为a-a=0=m·0。 性质2:若a≡b(mod m),那么b≡a(mod m),(对称性)。性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。证明 :m|(a-b) , m|(c-d) 设 a-b=km c-d=lm (ac-bd)=klm^2+(b+d)m =>m|(ac-bd)  性质6:若a≡b(mod m),那么an≡bn(mod m),(其中n为自然数)。证明 : m|(a-b) => m|n*(a-b) 性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。证明 : m|c(a-b) d=(m,c)=>m/d|(a-b) => a≡b(mod m/d)=>当 d=1时 即(c,m)=1上面结论成立性质8:若a≡b(mod m),那么a的n次方和b的n次方也对于m同余   证明 :a^n-b^k=(a-b)(a^(n-1)+a^(n-2)b.....b^(n-1)) +m|(a-b) ==>m|(a^n-b^n)性质9:若 a≡b(mod m1) a≡b(mod m2).... a≡b(mod mi) 则 a≡b(mod [m1,m2,..mi])证明:m1 |(a-b) m2|(a-b) ..mi|(a-b)  =>[m1,m2...mi]|(a-b) (因为 a-b里面含了 m集合的所有因子和每个因子的最大个数)推论 m1,m2..mi两两互质 则 a≡b(mod m1m2..mi);定义 : X 代表 M 简化剩余系  个数φ(M)  (简化剩余系的含义,请另查资料)Y 代表 N 简化剩余系   个数φ(N)xi 代表X的元素 yj代表Y的元素 下面证明: φ(MN)=φ(M)φ(N) 其中(M,N)=1我们需要证明
  A: (xiN+yjM,MN)=1, 且当i,j取遍所有值时,xiN+yjM 均不在 MN 的同一剩余类中这可以说明 xiN+yjM 能表示 MN 的 φ(M)φ(N) 个不同的剩余类
  B: xiN+yjM 确实可以代表 MN 的简化剩余系的每个元素这可以说明 MN 的简化剩余系大小就是 φ(M)φ(N)A 的证明:
Step 1,
(xi,M)=1; => (xiN,M)=1; => (xiN+yiM,M)=1; ....1
(yi,N)=1; => (yiM,N)=1; => (yiM+xiN,N)=1; ....2
由 1,2 => (xiN+yiM,MN)=1; Step 2,
使用反证法,我们假设:
存在两个有序二元组 (i,j) ≠ (k,l),使得 xiN+yjM 和 xkN+ylM 落在 MN 的同一剩余类中,即 xiN+yjM≡xkN+ylM (mod MN) 。
由 xiN+yjM≡xkN+ylM (mod MN)
=> xiN+yjM≡xkN+ylM (mod M)
=> xiN≡xkN (mod M)
由性质 7 => xi≡xk (mod M)
因为在 M 的简化剩余系中,不存在两个对 M 同余的数,所以 i=k 。同理,j=l。
即(i,j) = (k,l),与假设矛盾,所以,当i,j取遍所有值时,xiN+yjM 均不在 MN 的同一剩余类中 B 的证明:
设 Z 是 MN 的简化剩余系的集合的任意某个元素
由 (N,M)=1 => 存在 x0,y0,使得 Mx0+Ny0=1 => Mx0Z+Ny0Z=Z
=> 存在 p,q,使得 Mp+Nq=Z
由 (Z,MN)=1; => (Mp+Nq,M)=1; => (Nq,M)=1; => (q,M)=1
=> 存在i,使得 xi≡q (mod M) => xiN=Nq (mod MN)   ....1
同理可得 (p,N)=1 => 存在j,使得 yj≡p (mod N) => yjM=Mp (mod MN)   ....2
两式相加可得,Mp+Nq≡xiN+yjM (mod MN) => Z≡xiN+yjM (mod MN)
所以 MN 的简化剩余系每个元素都可以用 xiN+yjM 表示。综上, φ(MN)=φ(M)φ(N) 成立。
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=adminE(x)表示比x小的且与x互质的正整数的个数。
*若p是素数,E(p)=p-1。
*E(p^k)=p^k-p^(k-1)=(p-1)*P^(k-1)
证:令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中与p不质的数共[p^(k-1)-1]个(分别为1*p,2*p,3*p...p(p^(k-1)-1))。
所以E(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1).得证。
*若ab互质,则E(a*b)=E(a)*E(b),欧拉函数是积性函数.
*对任意数n都可以唯一分解成n=p1^a1*p2^a2*p3^a3*...*pn^an(pi为素数).
则E(n)=E(p1^a1)*E(p2^a2)*E(p3^a3)*...*E(pn^an)     =(p1-1)*p1^(a1-1)*(p2-1)*p2^(a2-1)*...*(pn-1)*pn^(an-1)=(p1^a1*p2^a2*p3^a3*...*pn^an)*[(p1-1)*(p2-1)*(p3-1)*...*(pn-1)]/(p1*p2*p3*...*pn)=n*(1-1/p1)*(1-1/p2)*...*(1-1/pn)
* E(p^k)    =(p-1)*p^(k-1)=(p-1)*p^(k-2)*pE(p^(k-1))=(p-1)*p^(k-2)
->当k>1时,E(p^k)=E(p*p^(k-1))=E(p^(k-1))*p.(当k=1时,E(p)=p-1.)由上式: 设P是素数,若p是x的约数,则E(x*p)=E(x)*p.若p不是x的约数,则E(x*p)=E(x)*E(p)=E(x)*(p-1). 
小记:d=gcd(a,b);  a'd=a b'd=b (a',b')=1
要 d=gcd (b,a-qb) 要成立  则(b',a'-qb')=1
证明 (b',a'-qb')=1;
假设 b',a'-qb' 不互质 则 设 b'=kd' a'-qb'=ld' d'>1
则 a'-q(kd')=ld' a'=(qk+l)d' 与 (a',b')矛盾 问题描述:
给出一个N,求1..N中与N互质的数的和if gcd(n,i)=1 then gcd(n,n-i)=1 (1<=i<=n)反证法:
如果存在K!=1使gcd(n,n-i)=k,那么(n-i)%k==0
而n%k=0
那么必须保证i%k=0
k是n的因子,如果i%k=0那么gcd(n,i)=k,矛盾出现;
于是问题变的非常简单
ANS=N*phi(N)/2
i,n-i总是成对出现,并且和是n
于是可能就有人问了,如果存在n-i=i那不是重复计算?
答案是不会
因为:
n=2*i->i=n/2
1.如果n是奇数,那么n!=2*i,自然也不存在n-i=i和重复计算之说
2.如果n是偶数,n=2*i成立,gcd(n,n/2)必然为n的一个因子,这个因子为1当且仅当n==2
于是对于n>2的偶数,绝对不存在gcd(n,n/2)=1所以更别说什么重复计算了
对于n==2
ans=2*1/2=1
正好也满足

欧拉函数为什么是积性函数相关推荐

  1. 欧拉心算(反演 + 积性函数筛)

    欧拉心算 推式子 ∑i=1n∑j=1nϕ(gcd(i,j))=∑d=1nϕ(d)∑i=1nd∑j=1nd[gcd(i,j)==1]=∑d=1nϕ(d)∑k=1ndμ(k)(⌊nkd⌋)2另t=kd=∑ ...

  2. 专题·莫比乌斯函数与欧拉函数【including 整除分块,积性函数,狄利克雷卷积,欧拉函数,莫比乌斯函数,莫比乌斯反演

    初见安~又是好久没写博客了--加上CSP才炸了一波. 目录 一.整除分块 题解 二.积性函数 三.狄利克雷卷积 四.欧拉函数 五.莫比乌斯函数(mu) 六.莫比乌斯反演 一.整除分块 看个例题:洛谷P ...

  3. 《算法竞赛中的初等数论》(三)正文 0x30 积性函数(ACM / OI / MO)(十五万字符数论书)

    整理的算法模板合集: ACM模板 点我看算法全家桶系列!!! 实际上是一个全新的精炼模板整合计划 写在最前面:本文部分内容来自网上各大博客或是各类图书,由我个人整理,增加些许见解,仅做学习交流使用,无 ...

  4. HDU 6134 2017 多校训练:Battlestation Operational(莫比乌斯反演+积性函数)

    实在太长了直接放题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6134 这题就是求 考虑当Gcd(i, j)==1时,除了j为1的情况,其它时候i/j一 ...

  5. 狄利克雷卷积_积性函数和狄利克雷卷积小结

    1.积性函数:对于函数$f(n)$,若满足对任意互质的数字a,b,a*b=n且$f(n)=f(a)f(b)$,那么称函数f为积性函数.显然f(1)=1. 2.狄利克雷卷积:对于函数f,g,定义它们的卷 ...

  6. (数论一)积性函数与狄利克雷卷积

    ​ 今天做的一道题就是有关积性函数与狄利克雷卷积的,很懵逼.觉得有必要学一手了 一. 积性函数是什么呢? ​ 对于函数f,对于任意的a,b互质,都有: f(a * b) = f(a) * f(b) ​ ...

  7. 从积性函数到莫比乌斯反演

    积性函数 积性函数:对于数论函数 fff ,若任意互质的 p,qp,\ qp, q 都有 f(pq)=f(p)f(q)f(pq)=f(p)f(q)f(pq)=f(p)f(q) ,则称 fff 是积性函 ...

  8. 【算法讲7:积性函数(下)】⌈ 加性函数 ⌋ 与 ⌈ 积性函数 ⌋ 与 ⌈ 狄利克雷卷积 ⌋ 详细介绍

    [算法讲7:积性函数(下)] 前置 补充 ⌈\lceil⌈积性函数⌋\rfloor⌋ (乘性函数) 四个最基本的定义 关于积性函数的基本性质 性质一:f(1) 性质二:积性函数的各种传递 性质三:整数 ...

  9. 《算法设计编程实验:大学程序设计课程与竞赛训练教材》——3.3 积性函数的实验范例...

    3.3 积性函数的实验范例 首先,我们必须弄清楚什么是积性函数: 在非数论领域,积性函数是指所有对于任何a和b都有性质f(ab)=f(a)f(b)的函数. 在数论领域,考虑一个函数值为正整数的函数f, ...

  10. 积性函数的性质及证明 + 线性筛

    引言 在数论问题中,积性函数有着广泛的应用. 如在莫比乌斯反演问题中,函数变换之后如何快速维护前缀和往往是最重要也是最难的一步.如果维护的函数具有积性,那就可以尝试利用线性筛在O(n)O(n)O(n) ...

最新文章

  1. 走近“颠覆性技术”:量子通信能否取代传统通信?
  2. .Net Discovery系列之十一-深入理解平台机制与性能影响 (中)
  3. centos nfs端口固定
  4. python添加、修改、删除、访问类对象属性的2种方法
  5. C语言实现heap sort堆排序的算法(附完整源码)
  6. 【市场调研与分析】Intel发力移动安全领域——By Me at 20140613
  7. python爬取百度文库_利用Python语言轻松爬取数据
  8. D语言/dlang 2.085.0 发布,GC、Objective-C 混编增强
  9. 很火的仿soul交友盲盒1.0全开源源码
  10. 用Docker容器自带的tensorflow serving部署模型对外服务(成功率100%)
  11. 学习vue3系列watch
  12. java构造函数的执行顺序,java构造函数和初始化函数的执行顺序
  13. Atitit session机制的实现web目录1. Sessionid的发送 11.1. session大部分情况下基于cookie实现。 11.2. 基于url的session 11.
  14. linux中 qt安装教程视频,Linux 下QT安装教程
  15. linux下载tftpd服务,Linux tftpd服务安装与配置
  16. 启发式搜索解决八数码问题
  17. Qt6 tesseract-ocr 截图识字
  18. Hive(二):with as用法
  19. ValueError: Cannot have number of splits n_splits=3 greater than the number of samples: 1
  20. 动态规划石子排序java_动态规划之石子归并

热门文章

  1. 系统测试和验收测试的区别
  2. TRC病毒-宿主融合抑制剂研究丨4-氨基-1-叔丁基说明书
  3. Cesium场景导出为图片功能
  4. 一本书读懂大数据 读书笔记(1)
  5. java左手画圆右手画方_左手画圆右手画方可以同时进行吗?
  6. Haproxy集群配置
  7. 用python实现监听微信撤回消息
  8. 战略分析师/商业分析师需要掌握的技能
  9. web前端期末大作业:云南旅游网页主题网站设计——云南城市旅游5页HTML+CSS+JavaScript
  10. php网站系统说明,PHP电影网站系统光线CMS(GXCMS)模板制作标签说明