目录

  • 二分查找算法(非递归)
    • 二分查找算法(非递归)介绍
    • 二分查找算法(非递归)代码实现
  • 分治算法
    • 分治算法介绍
    • 分治算法的基本步骤
    • 分治算法最佳实践-汉诺塔
    • 汉诺塔游戏的代码实现:
  • 动态规划算法
    • 动态规划算法介绍
    • 应用场景-背包问题
      • 思路分析和图解
      • 图解分析
      • 代码实现
  • KMP算法
    • KMP算法介绍
    • KMP算法最佳应用-字符串匹配问题
      • 字符串匹配问题
      • 思路分析图解
      • 代码实现
  • 贪心算法
    • 贪心算法介绍
    • 贪心算法最佳应用-集合覆盖
      • 代码实现
    • 贪心算法注意事项和细节
  • 普里姆算法
    • 普里姆算法介绍
    • 普里姆算法最佳实践(修路问题)
  • 克鲁斯卡尔算法
    • 克鲁斯卡尔算法介绍
    • 克鲁斯卡尔算法图解说明
    • 代码实现
  • 迪杰斯特拉算法
    • 迪杰斯特拉(Dijkstra)算法介绍
    • 迪杰斯特拉(Dijkstra)算法过程
    • 迪杰斯特拉(Dijkstra)算法最佳应用-最短路径
  • 弗洛伊德算法
    • 弗洛伊德(Floyd)算法介绍
    • 弗洛伊德(Floyd)算法图解分析
    • 弗洛伊德(Floyd)算法最佳应用-最短路径
  • 马踏棋盘算法
    • 马踏棋盘算法介绍和游戏演示
    • 马踏棋盘游戏代码实现

二分查找算法(非递归)

二分查找算法(非递归)介绍

  1. 前面我们讲过了二分查找算法,是使用递归的方式,下面我们讲解二分查找算法的非递归方式
  2. 二分查找法只适用于从有序的数列中进行查找(比如数字和字母等),将数列排序后再进行查找
  3. 二分查找法的运行时间为对数时间O(㏒₂n),即查找到需要的目标位置最多只需要㏒₂n步,假设从[0,99]的队列(100个数,即n=100)中寻到目标数30,则需要查找步数为㏒₂100, 即最多需要查找7次( 2^6 < 100 < 2^7)

二分查找算法(非递归)代码实现

数组 {1,3, 8, 10, 11, 67, 100}, 编程实现二分查找, 要求使用非递归的方式完成

public class BinarySearchNoRecur {public static void main(String[] args) {//测试int[] arr = {1,3, 8, 10, 11, 67, 100};int index = binarySearch(arr, 100);System.out.println("index=" + index);//}//二分查找的非递归实现/*** * @param arr 待查找的数组, arr是升序排序* @param target 需要查找的数* @return 返回对应下标,-1表示没有找到*/public static int binarySearch(int[] arr, int target) {int left = 0;int right = arr.length - 1;while(left <= right) { //说明继续查找int mid = (left + right) / 2;if(arr[mid] == target) {return mid;} else if ( arr[mid] > target) {right = mid - 1;//需要向左边查找} else {left = mid + 1; //需要向右边查找}}return -1;}
}

分治算法

分治算法介绍

  1. 分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
  2. 分治算法可以求解的一些经典问题
    - 二分搜索
    - 大整数乘法
    - 棋盘覆盖
    - 合并排序
    - 快速排序
    - 线性时间选择
    - 最接近点对问题
    - 循环赛日程表
    - 汉诺塔

分治算法的基本步骤

分治法在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  2. 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  3. 合并:将各个子问题的解合并为原问题的解

分治算法最佳实践-汉诺塔

汉诺塔游戏的演示和思路分析:

  1. 如果是有一个盘, A->C,如果我们有 n >= 2 情况,我们总是可以看做是两个盘 1.最下边的盘 2. 上面的盘
  2. 先把最上面的盘 A->B
  3. 把最下边的盘 A->C
  4. 把B塔的所有盘 从 B->C

汉诺塔游戏的代码实现:

public class Hanoitower {public static void main(String[] args) {hanoiTower(10, 'A', 'B', 'C');}//汉诺塔的移动的方法//使用分治算法public static void hanoiTower(int num, char a, char b, char c) {//如果只有一个盘if(num == 1) {System.out.println("第1个盘从 " + a + "->" + c);} else {//如果我们有 n >= 2 情况,我们总是可以看做是两个盘 1.最下边的一个盘 2. 上面的所有盘//1. 先把 最上面的所有盘 A->B, 移动过程会使用到 chanoiTower(num - 1, a, c, b);//2. 把最下边的盘 A->CSystem.out.println("第" + num + "个盘从 " + a + "->" + c);//3. 把B塔的所有盘 从 B->C , 移动过程使用到 a塔  hanoiTower(num - 1, b, a, c);    }}
}

动态规划算法

动态规划算法介绍

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
  2. 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
  3. 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
  4. 动态规划可以通过填表的方式来逐步推进,得到最优解.

应用场景-背包问题

有一个背包,容量为4磅 , 现有如下物品

思路分析和图解

  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不能重复
  3. 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
  4. 这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。
  5. 算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设v[i]、w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值。则我们有下面的结果
    (1) v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是0
    (2) 当w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
    (3) 当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}

    //当准备加入的新增的商品的容量小于等于当前背包的容量,装入的方式:
    v[i-1][j]: 就是上一个单元格的装入的最大值
    v[i] : 表示当前商品的价值
    v[i-1][j-w[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值
    当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]}

图解分析

代码实现

public class KnapsackProblem {public static void main(String[] args) {// TODO Auto-generated method stubint[] w = {1, 4, 3};//物品的重量int[] val = {1500, 3000, 2000}; //物品的价值 这里val[i] 就是前面讲的v[i]int m = 4; //背包的容量int n = val.length; //物品的个数//创建二维数组,//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值int[][] v = new int[n+1][m+1];//为了记录放入商品的情况,我们定一个二维数组int[][] path = new int[n+1][m+1];//初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0for(int i = 0; i < v.length; i++) {v[i][0] = 0; //将第一列设置为0}for(int i=0; i < v[0].length; i++) {v[0][i] = 0; //将第一行设置0}//根据前面得到公式来动态规划处理for(int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的for(int j=1; j < v[0].length; j++) {//不处理第一列, j是从1开始的//公式if(w[i-1]> j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1]v[i][j]=v[i-1][j];} else {//说明://因为我们的i 从1开始的, 因此公式需要调整成//v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);//为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式if(v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];//把当前的情况记录到pathpath[i][j] = 1;} else {v[i][j] = v[i - 1][j];}}}}//输出一下v 看看目前的情况for(int i =0; i < v.length;i++) {for(int j = 0; j < v[i].length;j++) {System.out.print(v[i][j] + " ");}System.out.println();}System.out.println("============================");//输出最后我们是放入的哪些商品//遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入
//      for(int i = 0; i < path.length; i++) {//          for(int j=0; j < path[i].length; j++) {//              if(path[i][j] == 1) {//                  System.out.printf("第%d个商品放入到背包\n", i);
//              }
//          }
//      }//动脑筋int i = path.length - 1; //行的最大下标int j = path[0].length - 1;  //列的最大下标while(i > 0 && j > 0 ) { //从path的最后开始找if(path[i][j] == 1) {System.out.printf("第%d个商品放入到背包\n", i); j -= w[i-1]; //w[i-1]}i--;}  }
}

KMP算法

KMP算法介绍

  1. KMP是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
  2. Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP算法”,常用于在一个文本串S内查找一个模式串P 的出现位置,这个算法由Donald Knuth、Vaughan Pratt、James H. Morris三人于1977年联合发表,故取这3人的姓氏命名此算法.
  3. KMP方法算法就利用之前判断过信息,通过一个next数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过next数组找到,前面匹配过的位置,省去了大量的计算时间
  4. 参考资料:https://www.cnblogs.com/ZuoAndFutureGirl/p/9028287.html

KMP算法最佳应用-字符串匹配问题

字符串匹配问题

  1. 有一个字符串 str1= “BBC ABCDAB ABCDABCDABDE”,和一个子串 str2=“ABCDABD”
  2. 现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1

思路分析图解

举例来说,有一个字符串Str1= “BBC ABCDAB ABCDABCDABDE”,判断,里面是否包含另一个字符串Str2= “ABCDABD”?

  1. 首先, 用Str1的第一个字符和Str2的第一 个字符去比较,不符合,关键词向后移动一位
  2. 重复第一步,还是不符合,再后移
  3. 一直重复,直到Str1有一个字符与Str2的第一个字符符合为止
  4. 接着比较字符串和搜索词的下一个字符,还是符合。
  5. 遇到Str1有一个字符与Str2对应的字符不符合。
  6. 这时候,想到的是继续遍历Str1的下一个字符,重复第1步。(其实是很不明智的,因为此时BCD已经比较过了,没有必要再做重复的工作,一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP算法的想法是,设法利用这个已知信息,不要把“搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。)
  7. 怎么做到把刚刚重复的步骤省略掉?可以对Str2计算出一张《部分匹配表》,这张表的产生在后面介绍。
  8. 已知空格与D不匹配时,前面六个字符“ABCDAB”是匹配的。查表可知,最后一个匹配字符B对应的“部分匹配值”为2,因此按照下面的公式算出向后移动的位数:
    移动位数=已匹配的字符数-对应的部分匹配值。
    因为6-2等于4,所以将搜索词向后移动4位。
  9. 因为空格与C不匹配,搜索词还要继续往后移。这时,己匹配的字符数为2 (”AB”),对应的”部分匹配值”为0。所以,移动位数=2-0, 结果为2,于是将搜索词向后移2位。
  10. 因为空格与A不匹配,继续后移一位。
  11. 逐位比较,直到发现C与D不匹配。于是,移动位数=6-2,继续将搜索词向后移动4位。
  12. 逐位比较, 直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配) ,移动位数=7-0, 再将搜索词向后移动7位,这里就不再重复了。
  13. 介绍《部分匹配表》怎么产生的。先介绍前缀,后缀是什么。

“部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例

  • ”A”的前缀和后缀都为空集,共有元素的长度为0;
  • ”AB”的前缀为[A],后缀为[B], 共有元素的长度为0;
  • “ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
  • ”ABCD”的前缀为[A. AB, ABC],后缀为[BCD. CD. D],共有元素的长度为0; .
  • ”ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为1:
  • ”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB",长度为2:
  • ”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD,D],共有元素的长度为0.
  1. ”部分匹配”的实质是,有时候,字符串头部和尾部会有重复。比如“ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是2 (”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动4位(字符串长度-部分匹配值),就可以来到第二个”AB”的位置。

代码实现

import java.util.Arrays;public class KMPAlgorithm {public static void main(String[] args) {// TODO Auto-generated method stubString str1 = "BBC ABCDAB ABCDABCDABDE";String str2 = "ABCDABD";//String str2 = "BBC";int[] next = kmpNext("ABCDABD"); //[0, 1, 2, 0]System.out.println("next=" + Arrays.toString(next));int index = kmpSearch(str1, str2, next);System.out.println("index=" + index); // 15了}//写出我们的kmp搜索算法/*** * @param str1 源字符串* @param str2 子串* @param next 部分匹配表, 是子串对应的部分匹配表* @return 如果是-1就是没有匹配到,否则返回第一个匹配的位置*/public static int kmpSearch(String str1, String str2, int[] next) {//遍历 for(int i = 0, j = 0; i < str1.length(); i++) {//需要处理 str1.charAt(i) != str2.charAt(j), 去调整j的大小//KMP算法核心点, 可以验证...while( j > 0 && str1.charAt(i) != str2.charAt(j)) {j = next[j-1]; }if(str1.charAt(i) == str2.charAt(j)) {j++;}            if(j == str2.length()) {//找到了 // j = 3 i return i - j + 1;}}return  -1;}//获取到一个字符串(子串) 的部分匹配值表public static  int[] kmpNext(String dest) {//创建一个next 数组保存部分匹配值int[] next = new int[dest.length()];next[0] = 0; //如果字符串是长度为1 部分匹配值就是0for(int i = 1, j = 0; i < dest.length(); i++) {//当dest.charAt(i) != dest.charAt(j) ,我们需要从next[j-1]获取新的j//直到我们发现 有  dest.charAt(i) == dest.charAt(j)成立才退出//这时kmp算法的核心点while(j > 0 && dest.charAt(i) != dest.charAt(j)) {j = next[j-1];}//当dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是+1if(dest.charAt(i) == dest.charAt(j)) {j++;}next[i] = j;}return next;}
}

贪心算法

贪心算法介绍

  1. 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
  2. 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果

贪心算法最佳应用-集合覆盖

  1. 假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号
  2. 思路分析:
    1)遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
    2)将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
    3)重复第1步直到覆盖了全部的地区

代码实现

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;public class GreedyAlgorithm {public static void main(String[] args) {//创建广播电台,放入到MapHashMap<String,HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();//将各个电台放入到broadcastsHashSet<String> hashSet1 = new HashSet<String>();hashSet1.add("北京");hashSet1.add("上海");hashSet1.add("天津");HashSet<String> hashSet2 = new HashSet<String>();hashSet2.add("广州");hashSet2.add("北京");hashSet2.add("深圳");HashSet<String> hashSet3 = new HashSet<String>();hashSet3.add("成都");hashSet3.add("上海");hashSet3.add("杭州");HashSet<String> hashSet4 = new HashSet<String>();hashSet4.add("上海");hashSet4.add("天津");HashSet<String> hashSet5 = new HashSet<String>();hashSet5.add("杭州");hashSet5.add("大连");//加入到mapbroadcasts.put("K1", hashSet1);broadcasts.put("K2", hashSet2);broadcasts.put("K3", hashSet3);broadcasts.put("K4", hashSet4);broadcasts.put("K5", hashSet5);//allAreas 存放所有的地区HashSet<String> allAreas = new HashSet<String>();allAreas.add("北京");allAreas.add("上海");allAreas.add("天津");allAreas.add("广州");allAreas.add("深圳");allAreas.add("成都");allAreas.add("杭州");allAreas.add("大连");//创建ArrayList, 存放选择的电台集合ArrayList<String> selects = new ArrayList<String>();//定义一个临时的集合, 在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集HashSet<String> tempSet = new HashSet<String>();//定义给maxKey , 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key//如果maxKey 不为null , 则会加入到 selectsString maxKey = null;while(allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区//每进行一次while,需要maxKey = null;//遍历 broadcasts, 取出对应keyfor(String key : broadcasts.keySet()) {//每进行一次fortempSet.clear();//当前这个key能够覆盖的地区HashSet<String> areas = broadcasts.get(key);tempSet.addAll(areas);//求出tempSet 和   allAreas 集合的交集, 交集会赋给 tempSettempSet.retainAll(allAreas);//如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多//就需要重置maxKey// tempSet.size() >broadcasts.get(maxKey).size()) 体现出贪心算法的特点,每次都选择最优的if(tempSet.size() > 0 && (maxKey == null || tempSet.size() >broadcasts.get(maxKey).size())){maxKey = key;}}//maxKey != null, 就应该将maxKey 加入selectsif(maxKey != null) {selects.add(maxKey);//将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉allAreas.removeAll(broadcasts.get(maxKey));}   }System.out.println("得到的选择结果是" + selects);//[K1,K2,K3,K5]}
}

贪心算法注意事项和细节

  1. 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
  2. 比如上题的算法选出的是K1, K2, K3, K5,符合覆盖了全部的地区。
  3. 但是我们发现 K2, K3,K4,K5 也可以覆盖全部地区,如果K2 的使用成本低于K1,那么我们上题的 K1, K2, K3, K5 虽然是满足条件,但是并不是最优的。

普里姆算法

普里姆算法介绍

  1. 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
  2. 普利姆的算法如下:
    1)设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
    2)若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
    3)若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
    4)重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
    5)提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解

普里姆算法最佳实践(修路问题)

  1. 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?

代码实现

import java.util.Arrays;public class PrimAlgorithm {public static void main(String[] args) {//测试看看图是否创建okchar[] data = new char[]{'A','B','C','D','E','F','G'};int verxs = data.length;//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通int [][]weight=new int[][]{{10000,5,7,10000,10000,10000,2},{5,10000,10000,9,10000,10000,3},{7,10000,10000,10000,8,10000,10000},{10000,9,10000,10000,10000,4,10000},{10000,10000,8,10000,10000,5,4},{10000,10000,10000,4,5,10000,6},{2,3,10000,10000,4,6,10000},};//创建MGraph对象MGraph graph = new MGraph(verxs);//创建一个MinTree对象MinTree minTree = new MinTree();minTree.createGraph(graph, verxs, data, weight);//输出minTree.showGraph(graph);//测试普利姆算法minTree.prim(graph, 1);// }}//创建最小生成树->村庄的图
class MinTree {//创建图的邻接矩阵/*** * @param graph 图对象* @param verxs 图对应的顶点个数* @param data 图的各个顶点的值* @param weight 图的邻接矩阵*/public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {int i, j;for(i = 0; i < verxs; i++) {//顶点graph.data[i] = data[i];for(j = 0; j < verxs; j++) {graph.weight[i][j] = weight[i][j];}}}//显示图的邻接矩阵public void showGraph(MGraph graph) {for(int[] link: graph.weight) {System.out.println(Arrays.toString(link));}}//编写prim算法,得到最小生成树/*** * @param graph 图* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...*/public void prim(MGraph graph, int v) {//visited[] 标记结点(顶点)是否被访问过int visited[] = new int[graph.verxs];//visited[] 默认元素的值都是0, 表示没有访问过
//      for(int i =0; i <graph.verxs; i++) {//          visited[i] = 0;
//      }//把当前这个结点标记为已访问visited[v] = 1;//h1 和 h2 记录两个顶点的下标int h1 = -1;int h2 = -1;int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边//这个是确定每一次生成的子图 ,和哪个结点的距离最近for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)minWeight = graph.weight[i][j];h1 = i;h2 = j;}}}//找到一条边是最小System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);//将当前这个结点标记为已经访问visited[h2] = 1;//minWeight 重新设置为最大值 10000minWeight = 10000;}}
}class MGraph {int verxs; //表示图的节点个数char[] data;//存放结点数据int[][] weight; //存放边,就是我们的邻接矩阵public MGraph(int verxs) {this.verxs = verxs;data = new char[verxs];weight = new int[verxs][verxs];}
}

克鲁斯卡尔算法

克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

克鲁斯卡尔算法图解说明

以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤:

  1. 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

代码实现

import java.util.Arrays;public class KruskalCase {private int edgeNum; //边的个数private char[] vertexs; //顶点数组private int[][] matrix; //邻接矩阵//使用 INF 表示两个顶点不能连通private static final int INF = Integer.MAX_VALUE;public static void main(String[] args) {char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};//克鲁斯卡尔算法的邻接矩阵  int matrix[][] = {/*A*//*B*//*C*//*D*//*E*//*F*//*G*//*A*/ {   0,  12, INF, INF, INF,  16,  14},/*B*/ {  12,   0,  10, INF, INF,   7, INF},/*C*/ { INF,  10,   0,   3,   5,   6, INF},/*D*/ { INF, INF,   3,   0,   4, INF, INF},/*E*/ { INF, INF,   5,   4,   0,   2,   8},/*F*/ {  16,   7,   6, INF,   2,   0,   9},/*G*/ {  14, INF, INF, INF,   8,   9,   0}}; //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.//创建KruskalCase 对象实例KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);//输出构建的kruskalCase.print();kruskalCase.kruskal();}//构造器public KruskalCase(char[] vertexs, int[][] matrix) {//初始化顶点数和边的个数int vlen = vertexs.length;//初始化顶点, 复制拷贝的方式this.vertexs = new char[vlen];for(int i = 0; i < vertexs.length; i++) {this.vertexs[i] = vertexs[i];}//初始化边, 使用的是复制拷贝的方式this.matrix = new int[vlen][vlen];for(int i = 0; i < vlen; i++) {for(int j= 0; j < vlen; j++) {this.matrix[i][j] = matrix[i][j];}}//统计边的条数for(int i =0; i < vlen; i++) {for(int j = i+1; j < vlen; j++) {if(this.matrix[i][j] != INF) {edgeNum++;}}}}public void kruskal() {int index = 0; //表示最后结果数组的索引int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点//创建结果数组, 保存最后的最小生成树EData[] rets = new EData[edgeNum];//获取图中 所有的边的集合 , 一共有12边EData[] edges = getEdges();System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12//按照边的权值大小进行排序(从小到大)sortEdges(edges);//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入for(int i=0; i < edgeNum; i++) {//获取到第i条边的第一个顶点(起点)int p1 = getPosition(edges[i].start); //p1=4//获取到第i条边的第2个顶点int p2 = getPosition(edges[i].end); //p2 = 5//获取p1这个顶点在已有最小生成树中的终点int m = getEnd(ends, p1); //m = 4//获取p2这个顶点在已有最小生成树中的终点int n = getEnd(ends, p2); // n = 5//是否构成回路if(m != n) { //没有构成回路ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]rets[index++] = edges[i]; //有一条边加入到rets数组}}//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。//统计并打印 "最小生成树", 输出  retsSystem.out.println("最小生成树为");for(int i = 0; i < index; i++) {System.out.println(rets[i]);}}//打印邻接矩阵public void print() {System.out.println("邻接矩阵为: \n");for(int i = 0; i < vertexs.length; i++) {for(int j=0; j < vertexs.length; j++) {System.out.printf("%12d", matrix[i][j]);}System.out.println();//换行}}/*** 功能:对边进行排序处理, 冒泡排序* @param edges 边的集合*/private void sortEdges(EData[] edges) {for(int i = 0; i < edges.length - 1; i++) {for(int j = 0; j < edges.length - 1 - i; j++) {if(edges[j].weight > edges[j+1].weight) {//交换EData tmp = edges[j];edges[j] = edges[j+1];edges[j+1] = tmp;}}}}/*** * @param ch 顶点的值,比如'A','B'* @return 返回ch顶点对应的下标,如果找不到,返回-1*/private int getPosition(char ch) {for(int i = 0; i < vertexs.length; i++) {if(vertexs[i] == ch) {//找到return i;}}//找不到,返回-1return -1;}/*** 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组* 是通过matrix 邻接矩阵来获取* EData[] 形式 [['A','B', 12], ['B','F',7], .....]* @return*/private EData[] getEdges() {int index = 0;EData[] edges = new EData[edgeNum];for(int i = 0; i < vertexs.length; i++) {for(int j=i+1; j <vertexs.length; j++) {if(matrix[i][j] != INF) {edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);}}}return edges;}/*** 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成* @param i : 表示传入的顶点对应的下标* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解*/private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]while(ends[i] != 0) {i = ends[i];}return i;}}//创建一个类EData ,它的对象实例就表示一条边
class EData {char start; //边的一个点char end; //边的另外一个点int weight; //边的权值//构造器public EData(char start, char end, int weight) {this.start = start;this.end = end;this.weight = weight;}//重写toString, 便于输出边信息@Overridepublic String toString() {return "EData [<" + start + ", " + end + ">= " + weight + "]";}
}

迪杰斯特拉算法

迪杰斯特拉(Dijkstra)算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

迪杰斯特拉(Dijkstra)算法过程

设置出发顶点为v,顶点集合V{v1,v2,vi…},v到V中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis集合记录着v到图中各顶点的距离(到自身可以看作0,v到vi距离对应为di)

  1. 从Dis中选择值最小的di并移出Dis集合,同时移出V集合中对应的顶点vi,此时的v到vi即为最短路径
  2. 更新Dis集合,更新规则为:比较v到V集合中顶点的距离值,与v通过vi到V集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为vi,表明是通过vi到达的)
  3. 重复执行两步骤,直到最短路径顶点为目标顶点即可结束

迪杰斯特拉(Dijkstra)算法最佳应用-最短路径

  1. 战争时期,胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要分别把邮件分别送到 A, B, C , D, E, F 六个村庄
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何计算出G村庄到 其它各个村庄的最短距离?
  4. 如果从其它点出发到各个点的最短距离又是多少?

代码实现

import java.util.Arrays;public class DijkstraAlgorithm {public static void main(String[] args) {char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };//邻接矩阵int[][] matrix = new int[vertex.length][vertex.length];final int N = 65535;// 表示不可以连接matrix[0]=new int[]{N,5,7,N,N,N,2};  matrix[1]=new int[]{5,N,N,9,N,N,3};  matrix[2]=new int[]{7,N,N,N,8,N,N};  matrix[3]=new int[]{N,9,N,N,N,4,N};  matrix[4]=new int[]{N,N,8,N,N,5,4};  matrix[5]=new int[]{N,N,N,4,5,N,6};  matrix[6]=new int[]{2,3,N,N,4,6,N};//创建 Graph对象Graph graph = new Graph(vertex, matrix);//测试, 看看图的邻接矩阵是否okgraph.showGraph();//测试迪杰斯特拉算法graph.dsj(2);//Cgraph.showDijkstra();}}class Graph {private char[] vertex; // 顶点数组private int[][] matrix; // 邻接矩阵private VisitedVertex vv; //已经访问的顶点的集合// 构造器public Graph(char[] vertex, int[][] matrix) {this.vertex = vertex;this.matrix = matrix;}//显示结果public void showDijkstra() {vv.show();}// 显示图public void showGraph() {for (int[] link : matrix) {System.out.println(Arrays.toString(link));}}//迪杰斯特拉算法实现/*** * @param index 表示出发顶点对应的下标*/public void dsj(int index) {vv = new VisitedVertex(vertex.length, index);update(index);//更新index顶点到周围顶点的距离和前驱顶点for(int j = 1; j <vertex.length; j++) {index = vv.updateArr();// 选择并返回新的访问顶点update(index); // 更新index顶点到周围顶点的距离和前驱顶点} }//更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点,private void update(int index) {int len = 0;//根据遍历我们的邻接矩阵的  matrix[index]行for(int j = 0; j < matrix[index].length; j++) {// len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和 len = vv.getDis(index) + matrix[index][j];// 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新if(!vv.in(j) && len < vv.getDis(j)) {vv.updatePre(j, index); //更新j顶点的前驱为index顶点vv.updateDis(j, len); //更新出发顶点到j顶点的距离}}}
}// 已访问顶点集合
class VisitedVertex {// 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新public int[] already_arr;// 每个下标对应的值为前一个顶点下标, 会动态更新public int[] pre_visited;// 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dispublic int[] dis;//构造器/*** * @param length :表示顶点的个数 * @param index: 出发顶点对应的下标, 比如G顶点,下标就是6*/public VisitedVertex(int length, int index) {this.already_arr = new int[length];this.pre_visited = new int[length];this.dis = new int[length];//初始化 dis数组Arrays.fill(dis, 65535);this.already_arr[index] = 1; //设置出发顶点被访问过this.dis[index] = 0;//设置出发顶点的访问距离为0}/*** 功能: 判断index顶点是否被访问过* @param index* @return 如果访问过,就返回true, 否则访问false*/public boolean in(int index) {return already_arr[index] == 1;}/*** 功能: 更新出发顶点到index顶点的距离* @param index* @param len*/public void updateDis(int index, int len) {dis[index] = len;}/*** 功能: 更新pre这个顶点的前驱顶点为index顶点* @param pre* @param index*/public void updatePre(int pre, int index) {pre_visited[pre] = index;}/*** 功能:返回出发顶点到index顶点的距离* @param index*/public int getDis(int index) {return dis[index];}/*** 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点)* @return*/public int updateArr() {int min = 65535, index = 0;for(int i = 0; i < already_arr.length; i++) {if(already_arr[i] == 0 && dis[i] < min ) {min = dis[i];index = i;}}//更新 index 顶点被访问过already_arr[index] = 1;return index;}//显示最后的结果//即将三个数组的情况输出public void show() {System.out.println("==========================");//输出already_arrfor(int i : already_arr) {System.out.print(i + " ");}System.out.println();//输出pre_visitedfor(int i : pre_visited) {System.out.print(i + " ");}System.out.println();//输出disfor(int i : dis) {System.out.print(i + " ");}System.out.println();//为了好看最后的最短距离,我们处理char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };int count = 0;for (int i : dis) {if (i != 65535) {System.out.print(vertex[count] + "("+i+") ");} else {System.out.println("N ");}count++;}System.out.println();}
}

弗洛伊德算法

弗洛伊德(Floyd)算法介绍

  1. 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
  2. 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径。
  3. 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
  4. 弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。

弗洛伊德(Floyd)算法图解分析

  1. 设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径。
  2. 至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得。

弗洛伊德(Floyd)算法最佳应用-最短路径


1)胜利乡有7个村庄(A, B, C, D, E, F, G)
2)各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
3)问:如何计算出各村庄到 其它各村庄的最短距离?
代码实现

import java.util.Arrays;public class FloydAlgorithm {public static void main(String[] args) {// 测试看看图是否创建成功char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };//创建邻接矩阵int[][] matrix = new int[vertex.length][vertex.length];final int N = 65535;matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };matrix[2] = new int[] { 7, N, 0, N, 8, N, N };matrix[3] = new int[] { N, 9, N, 0, N, 4, N };matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };//创建 Graph 对象Graph graph = new Graph(vertex.length, matrix, vertex);//调用弗洛伊德算法graph.floyd();graph.show();}}// 创建图
class Graph {private char[] vertex; // 存放顶点的数组private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组private int[][] pre;// 保存到达目标顶点的前驱顶点// 构造器/*** * @param length*            大小* @param matrix*            邻接矩阵* @param vertex*            顶点数组*/public Graph(int length, int[][] matrix, char[] vertex) {this.vertex = vertex;this.dis = matrix;this.pre = new int[length][length];// 对pre数组初始化, 注意存放的是前驱顶点的下标for (int i = 0; i < length; i++) {Arrays.fill(pre[i], i);}}// 显示pre数组和dis数组public void show() {//为了显示便于阅读,我们优化一下输出char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };for (int k = 0; k < dis.length; k++) {// 先将pre数组输出的一行for (int i = 0; i < dis.length; i++) {System.out.print(vertex[pre[k][i]] + " ");}System.out.println();// 输出dis数组的一行数据for (int i = 0; i < dis.length; i++) {System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") ");}System.out.println();System.out.println();}}//弗洛伊德算法, 比较容易理解,而且容易实现public void floyd() {int len = 0; //变量保存距离//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G] for(int k = 0; k < dis.length; k++) { // //从i顶点开始出发 [A, B, C, D, E, F, G]for(int i = 0; i < dis.length; i++) {//到达j顶点 // [A, B, C, D, E, F, G]for(int j = 0; j < dis.length; j++) {len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离if(len < dis[i][j]) {//如果len小于 dis[i][j]dis[i][j] = len;//更新距离pre[i][j] = pre[k][j];//更新前驱顶点}}}}}
}

马踏棋盘算法

马踏棋盘算法介绍和游戏演示

  1. 马踏棋盘算法也被称为骑士周游问题
  2. 将马随机放在国际象棋的8×8棋盘Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格
  3. 游戏演示: http://www.4399.com/flash/146267_2.htm

马踏棋盘游戏代码实现

  1. 马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。
  2. 如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的回溯…… ,思路分析+代码实现
    对第一种方式的思路图解
  3. 分析第一种方式的问题,并使用贪心算法(greedyalgorithm)进行优化。解决马踏棋盘问题.
  4. 使用前面的游戏来验证算法是否正确。

代码实现

import java.awt.Point;
import java.util.ArrayList;
import java.util.Comparator;public class HorseChessboard {private static int X; // 棋盘的列数private static int Y; // 棋盘的行数//创建一个数组,标记棋盘的各个位置是否被访问过private static boolean visited[];//使用一个属性,标记是否棋盘的所有位置都被访问private static boolean finished; // 如果为true,表示成功public static void main(String[] args) {System.out.println("骑士周游算法,开始运行~~");//测试骑士周游算法是否正确X = 8;Y = 8;int row = 1; //马儿初始位置的行,从1开始编号int column = 1; //马儿初始位置的列,从1开始编号//创建棋盘int[][] chessboard = new int[X][Y];visited = new boolean[X * Y];//初始值都是false//测试一下耗时long start = System.currentTimeMillis();traversalChessboard(chessboard, row - 1, column - 1, 1);long end = System.currentTimeMillis();System.out.println("共耗时: " + (end - start) + " 毫秒");//输出棋盘的最后情况for(int[] rows : chessboard) {for(int step: rows) {System.out.print(step + "\t");}System.out.println();}}/*** 完成骑士周游问题的算法* @param chessboard 棋盘* @param row 马儿当前的位置的行 从0开始 * @param column 马儿当前的位置的列  从0开始* @param step 是第几步 ,初始位置就是第1步 */public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {chessboard[row][column] = step;//row = 4 X = 8 column = 4 = 4 * 8 + 4 = 36visited[row * X + column] = true; //标记该位置已经访问//获取当前位置可以走的下一个位置的集合 ArrayList<Point> ps = next(new Point(column, row));//对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序sort(ps);//遍历 pswhile(!ps.isEmpty()) {Point p = ps.remove(0);//取出下一个可以走的位置//判断该点是否已经访问过if(!visited[p.y * X + p.x]) {//说明还没有访问过traversalChessboard(chessboard, p.y, p.x, step + 1);}}//判断马儿是否完成了任务,使用   step 和应该走的步数比较 , //如果没有达到数量,则表示没有完成任务,将整个棋盘置0//说明: step < X * Y  成立的情况有两种//1. 棋盘到目前位置,仍然没有走完//2. 棋盘处于一个回溯过程if(step < X * Y && !finished ) {chessboard[row][column] = 0;visited[row * X + column] = false;} else {finished = true;}}/*** 功能: 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList), 最多有8个位置* @param curPoint* @return*/public static ArrayList<Point> next(Point curPoint) {//创建一个ArrayListArrayList<Point> ps = new ArrayList<Point>();//创建一个PointPoint p1 = new Point();//表示马儿可以走5这个位置if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) {ps.add(new Point(p1));}//判断马儿可以走6这个位置if((p1.x = curPoint.x - 1) >=0 && (p1.y=curPoint.y-2)>=0) {ps.add(new Point(p1));}//判断马儿可以走7这个位置if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {ps.add(new Point(p1));}//判断马儿可以走0这个位置if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {ps.add(new Point(p1));}//判断马儿可以走1这个位置if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));}//判断马儿可以走2这个位置if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));}//判断马儿可以走3这个位置if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));}//判断马儿可以走4这个位置if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));}return ps;}//根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数public static void sort(ArrayList<Point> ps) {ps.sort(new Comparator<Point>() {@Overridepublic int compare(Point o1, Point o2) {// TODO Auto-generated method stub//获取到o1的下一步的所有位置个数int count1 = next(o1).size();//获取到o2的下一步的所有位置个数int count2 = next(o2).size();if(count1 < count2) {return -1;} else if (count1 == count2) {return 0;} else {return 1;}} });}
}

学习连接:
https://www.bilibili.com/video/BV1E4411H73v

数据结构学习笔记-常用十大算法相关推荐

  1. PowerDesigner 15学习笔记:十大模型及五大分类

    原文:PowerDesigner 15学习笔记:十大模型及五大分类 个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企 ...

  2. 常用十大算法_回溯算法

    回溯算法 回溯算法已经在前面详细的分析过了,详见猛击此处. 简单的讲: 回溯算法是一种局部暴力的枚举算法 循环中,若条件满足,进入递归,开启下一次流程,若条件不满足,就不进行递归,转而进行上一次流程. ...

  3. 常用十大算法_KMP算法

    KMP算法 FBI提示:KMP算法不好理解, 建议视频+本文+其他博客,别走马观花 KMP算法是用于文本匹配的算法,属于模式搜索(pattern Searching)问题的一种算法,在讲KMP算法之前 ...

  4. 常用十大算法(七)— 克鲁斯卡尔算法

    常用十大算法(七)- 克鲁斯卡尔算法 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 介绍 克鲁斯卡尔(Kruskal)算法,是 ...

  5. 常用十大算法 非递归二分查找、分治法、动态规划、贪心算法、回溯算法(骑士周游为例)、KMP、最小生成树算法:Prim、Kruskal、最短路径算法:Dijkstra、Floyd。

    十大算法 学完数据结构该学什么?当然是来巩固算法,下面介绍了十中比较常用的算法,希望能帮到大家. 包括:非递归二分查找.分治法.动态规划.贪心算法.回溯算法(骑士周游为例).KMP.最小生成树算法:P ...

  6. (学习笔记)十大经典算法——K-means聚类算法

    概述 聚类算法是在无监督的情况下将对象自动分组的一种分析方法,典型的聚类算法分为三个阶段:特征选择和特征提取,数据对象间相似度计算,根据相似度将数据对象分组.聚类算法的目标是将数据集合分成若干簇,使得 ...

  7. Python数据结构学习笔记——搜索与排序算法

    目录 一.搜索 (一)搜索的方法 (二)顺序搜索 (三)二分搜索 二.排序 内排序和外排序 (一)冒泡排序 (二)选择排序 (三)插入排序 (四)希尔排序 (五)归并排序 (六)快速排序 总结 一.搜 ...

  8. 程序员常用十大算法(上)

    1.二分查找算法(非递归实现) 1.1 二分查找算法(非递归)介绍 我们以前了解过二分查找算法,但是使用的是递归实现,下面我们了解二分查找算法的非递归实现 (注意) :二分查找算法只适用于有序的数列. ...

  9. 迪杰斯特拉c++_常用十大算法之 其九·迪杰斯特拉算法【日后详细补充】

    介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 问题-最短路径 ...

  10. 程序员常用十大算法(四):KMP算法 与 暴力匹配算法 解决字符串匹配问题

    给出如下两字符串: String str1="lovilovilovloveiloveyou"; String str2="ilove"; 要求从 str1 中 ...

最新文章

  1. 【青少年编程】【一级】森林的一天
  2. perconadb mysql_是时候用PerconaDB替换MySQL了
  3. 服务信息块协议 SMB(Server Message Block protocol)
  4. 隐藏Nginx和PHP版本号
  5. NIO详解(二): BIO 浅谈 同步 异步与阻塞 非阻塞
  6. Hbase之protobuf的使用
  7. ldap odbc mysql_Mysql+ODBC+OpenLDAP
  8. 第三次学JAVA再学不好就吃翔(part19)--二维数组
  9. 巧识滤波、稳压、比较、运放电路
  10. 有一种爱情叫永不改变_设计就像爱情一样,总是在寻找一种方式
  11. Gitlab的develop角色的人没有权限无法提交的问题解决方案
  12. 两个序列的中位数c语言,小白在线求教 用归并排序实现查找两个有序序列的中位数...
  13. 古希腊的五大数学巨匠
  14. Error:npm WARN enoent ENOENT: no such file or directory, open ‘C:\Users\XX\package.json‘son‘
  15. Log4j框架配置文件log4j.properties配置使用详解
  16. SQLite Developer破解 cmd 运行 reg delete HKEY_CURRENT_USER\SharpPlus\SqliteDev /v StartDate /f
  17. 用QtCreator创建控制台应用程序
  18. Markdown表情关键字大全
  19. 关于js函数传参的问题
  20. Spring实战第五章

热门文章

  1. MySQL中GA、RC、Alpha的区别
  2. 多线程1-Thread
  3. android源码AOSP AOKP CM及下载
  4. dnf剑魂buff等级上限_DNF:剑魂最强武器,比星之海伤害更高,无神话红10都能8000亿...
  5. 计算机的e盘 f盘找不到,求助:急!我的电脑中D盘和E盘不见了
  6. 洛谷P2000 拯救世界(NTT+生成函数)
  7. docke网络之bridge、host、none
  8. React+Antd兼容ie浏览器,360安全浏览器兼容模式
  9. 关于kali出现乱码问题
  10. 接口自动化测试框架介绍