目录

基础理论

一、训练CNN卷积神经网络

1、载入数据

2、改变数据维度

3、归一化

4、独热编码

5、搭建CNN卷积神经网络

5-1、第一层:第一个卷积层

5-2、第二层:第二个卷积层

5-3、扁平化

5-4、第三层:第一个全连接层

5-5、第四层:第二个全连接层(输出层)

6、编译

7、训练

8、保存模型

代码

二、识别自己的手写数字(图像)

1、载入数据

2、载入训练好的模型

3、载入自己写的数字图片并设置大小

4、转灰度图

5、转黑底白字、数据归一化

6、转四维数据

7、预测

8、显示图像

效果展示

代码


基础理论

第一层:卷积层。

第二层:卷积层。

第三层:全连接层。

第四层:输出层。

图中原始的手写数字的图片是一张 28×28 的图片,并且是黑白的,所以图片的通道数是1,输入数据是 28×28×1 的数据,如果是彩色图片,图片的通道数就为 3。
        该网络结构是一个 4 层的卷积神经网络(计算神经网络层数的时候,有权值的才算是一层,池化层就不能单独算一层)(池化的计算是在卷积层中进行的)。
对多张特征图求卷积,相当于是同时对多张特征图进行特征提取

        特征图数量越多说明卷积网络提取的特征数量越多,如果特征图数量设置得太少容易出现欠拟合,如果特征图数量设置得太多容易出现过拟合,所以需要设置为合适的数值。

一、训练CNN卷积神经网络

1、载入数据

# 1、载入数据
mnist = tf.keras.datasets.mnist
(train_data, train_target), (test_data, test_target) = mnist.load_data()

2、改变数据维度

注:在TensorFlow中,在做卷积的时候需要把数据变成4维的格式。
这4个维度分别是:数据数量,图片高度,图片宽度,图片通道数。
# 2、改变数据维度
train_data = train_data.reshape(-1, 28, 28, 1)
test_data = test_data.reshape(-1, 28, 28, 1)
# 注:在TensorFlow中,在做卷积的时候需要把数据变成4维的格式
# 这4个维度分别是:数据数量,图片高度,图片宽度,图片通道数

3、归一化

# 3、归一化(有助于提升训练速度)
train_data = train_data/255.0
test_data = test_data/255.0

4、独热编码

# 4、独热编码
train_target = tf.keras.utils.to_categorical(train_target, num_classes=10)
test_target = tf.keras.utils.to_categorical(test_target, num_classes=10)    #10种结果

5、搭建CNN卷积神经网络

model = Sequential()

5-1、第一层:第一个卷积层

第一个卷积层:卷积层+池化层

# 5-1、第一层:卷积层+池化层
# 第一个卷积层
model.add(Convolution2D(input_shape = (28,28,1), filters = 32, kernel_size = 5, strides = 1, padding = 'same', activation = 'relu'))
#         卷积层         输入数据                  滤波器数量      卷积核大小        步长          填充数据(same padding)  激活函数
# 第一个池化层 # pool_size
model.add(MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',))
#         池化层(最大池化) 池化窗口大小   步长          填充方式

5-2、第二层:第二个卷积层

# 5-2、第二层:卷积层+池化层
# 第二个卷积层
model.add(Convolution2D(64, 5, strides=1, padding='same', activation='relu'))
# 64:滤波器个数      5:卷积窗口大小
# 第二个池化层
model.add(MaxPooling2D(2, 2, 'same'))

5-3、扁平化

把(64,7,7,64)数据变成:(64,7*7*64)。 

flatten扁平化:

# 5-3、扁平化 (相当于把(64,7,7,64)数据->(64,7*7*64))
model.add(Flatten())

5-4、第三层:第一个全连接层

# 5-4、第三层:第一个全连接层
model.add(Dense(1024,activation = 'relu'))
model.add(Dropout(0.5))

5-5、第四层:第二个全连接层(输出层)

# 5-5、第四层:第二个全连接层(输出层)
model.add(Dense(10, activation='softmax'))
# 10:输出神经元个数

6、编译

设置优化器、损失函数、标签。

# 6、编译
model.compile(optimizer=Adam(lr=1e-4), loss='categorical_crossentropy', metrics=['accuracy'])
#            优化器(adam)               损失函数(交叉熵损失函数)            标签

7、训练

# 7、训练
model.fit(train_data, train_target, batch_size=64, epochs=10, validation_data=(test_data, test_target))

8、保存模型

# 8、保存模型
model.save('mnist.h5')

效果:

Epoch 1/10
938/938 [==============================] - 142s 151ms/step - loss: 0.3319 - accuracy: 0.9055 - val_loss: 0.0895 - val_accuracy: 0.9728
Epoch 2/10
938/938 [==============================] - 158s 169ms/step - loss: 0.0911 - accuracy: 0.9721 - val_loss: 0.0515 - val_accuracy: 0.9830
Epoch 3/10
938/938 [==============================] - 146s 156ms/step - loss: 0.0629 - accuracy: 0.9807 - val_loss: 0.0389 - val_accuracy: 0.9874
Epoch 4/10
938/938 [==============================] - 120s 128ms/step - loss: 0.0498 - accuracy: 0.9848 - val_loss: 0.0337 - val_accuracy: 0.9889
Epoch 5/10
938/938 [==============================] - 119s 127ms/step - loss: 0.0424 - accuracy: 0.9869 - val_loss: 0.0273 - val_accuracy: 0.9898
Epoch 6/10
938/938 [==============================] - 129s 138ms/step - loss: 0.0338 - accuracy: 0.9897 - val_loss: 0.0270 - val_accuracy: 0.9907
Epoch 7/10
938/938 [==============================] - 124s 133ms/step - loss: 0.0302 - accuracy: 0.9904 - val_loss: 0.0234 - val_accuracy: 0.9917
Epoch 8/10
938/938 [==============================] - 132s 140ms/step - loss: 0.0264 - accuracy: 0.9916 - val_loss: 0.0240 - val_accuracy: 0.9913
Epoch 9/10
938/938 [==============================] - 139s 148ms/step - loss: 0.0233 - accuracy: 0.9926 - val_loss: 0.0235 - val_accuracy: 0.9919
Epoch 10/10
938/938 [==============================] - 139s 148ms/step - loss: 0.0208 - accuracy: 0.9937 - val_loss: 0.0215 - val_accuracy: 0.9924

可以发现训练10次以后,效果达到了99%+,还是比较不错的。

代码

# 手写数字识别 -- CNN神经网络训练
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from tensorflow.keras.optimizers import Adam# 1、载入数据
mnist = tf.keras.datasets.mnist
(train_data, train_target), (test_data, test_target) = mnist.load_data()# 2、改变数据维度
train_data = train_data.reshape(-1, 28, 28, 1)
test_data = test_data.reshape(-1, 28, 28, 1)
# 注:在TensorFlow中,在做卷积的时候需要把数据变成4维的格式
# 这4个维度分别是:数据数量,图片高度,图片宽度,图片通道数# 3、归一化(有助于提升训练速度)
train_data = train_data/255.0
test_data = test_data/255.0# 4、独热编码
train_target = tf.keras.utils.to_categorical(train_target, num_classes=10)
test_target = tf.keras.utils.to_categorical(test_target, num_classes=10)    #10种结果# 5、搭建CNN卷积神经网络
model = Sequential()
# 5-1、第一层:卷积层+池化层
# 第一个卷积层
model.add(Convolution2D(input_shape = (28,28,1), filters = 32, kernel_size = 5, strides = 1, padding = 'same', activation = 'relu'))
#         卷积层         输入数据                  滤波器数量      卷积核大小        步长          填充数据(same padding)  激活函数
# 第一个池化层 # pool_size
model.add(MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',))
#         池化层(最大池化) 池化窗口大小   步长          填充方式# 5-2、第二层:卷积层+池化层
# 第二个卷积层
model.add(Convolution2D(64, 5, strides=1, padding='same', activation='relu'))
# 64:滤波器个数      5:卷积窗口大小
# 第二个池化层
model.add(MaxPooling2D(2, 2, 'same'))# 5-3、扁平化 (相当于把(64,7,7,64)数据->(64,7*7*64))
model.add(Flatten())# 5-4、第三层:第一个全连接层
model.add(Dense(1024, activation = 'relu'))
model.add(Dropout(0.5))# 5-5、第四层:第二个全连接层(输出层)
model.add(Dense(10, activation='softmax'))
# 10:输出神经元个数# 6、编译
model.compile(optimizer=Adam(lr=1e-4), loss='categorical_crossentropy', metrics=['accuracy'])
#            优化器(adam)               损失函数(交叉熵损失函数)            标签# 7、训练
model.fit(train_data, train_target, batch_size=64, epochs=10, validation_data=(test_data, test_target))# 8、保存模型
model.save('mnist.h5')

二、识别自己的手写数字(图像)

1、载入数据

# 1、载入数据
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

数据集的图片(之一):

2、载入训练好的模型

# 2、载入训练好的模型
model = load_model('mnist.h5')

3、载入自己写的数字图片并设置大小

# 3、载入自己写的数字图片并设置大小
img = Image.open('6.jpg')
# 设置大小(和数据集的图片一致)
img = img.resize((28, 28))

4、转灰度图

# 4、转灰度图
gray = np.array(img.convert('L'))       #.convert('L'):转灰度图

可以发现和数据集中的白底黑字差别很大,所以我们把它反转一下:

5、转黑底白字、数据归一化

MNIST数据集中的数据都是黑底白字,且取值在0~1之间

# 5、转黑底白字、数据归一化
gray_inv = (255-gray)/255.0

6、转四维数据

CNN神经网络预测需要四维数据

# 6、转四维数据(CNN预测需要)
image = gray_inv.reshape((1,28,28,1))

7、预测

# 7、预测
prediction = model.predict(image)           # 预测
prediction = np.argmax(prediction,axis=1)   # 找出最大值
print('预测结果:', prediction)

8、显示图像

# 8、显示
# 设置plt图表
f, ax = plt.subplots(3, 3, figsize=(7, 7))
# 显示数据集图像
ax[0][0].set_title('train_model')
ax[0][0].axis('off')
ax[0][0].imshow(x_train[18], 'gray')
# 显示原图
ax[0][1].set_title('img')
ax[0][1].axis('off')
ax[0][1].imshow(img, 'gray')
# 显示灰度图(白底黑字)
ax[0][2].set_title('gray')
ax[0][2].axis('off')
ax[0][2].imshow(gray, 'gray')
# 显示灰度图(黑底白字)
ax[1][0].set_title('gray')
ax[1][0].axis('off')
ax[1][0].imshow(gray_inv, 'gray')plt.show()

效果展示

代码

# 识别自己的手写数字(图像预测)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'import tensorflow as tf
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np# 1、载入数据
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 2、载入训练好的模型
model = load_model('mnist.h5')# 3、载入自己写的数字图片并设置大小
img = Image.open('5.jpg')
# 设置大小(和数据集的图片一致)
img = img.resize((28, 28))# 4、转灰度图
gray = np.array(img.convert('L'))       #.convert('L'):转灰度图# 5、转黑底白字、数据归一化
gray_inv = (255-gray)/255.0# 6、转四维数据(CNN预测需要)
image = gray_inv.reshape((1,28,28,1))# 7、预测
prediction = model.predict(image)           # 预测
prediction = np.argmax(prediction,axis=1)   # 找出最大值
print('预测结果:', prediction)# 8、显示
# 设置plt图表
f, ax = plt.subplots(2, 2, figsize=(5, 5))
# 显示数据集图像
ax[0][0].set_title('train_model')
ax[0][0].axis('off')
ax[0][0].imshow(x_train[18], 'gray')
# 显示原图
ax[0][1].set_title('img')
ax[0][1].axis('off')
ax[0][1].imshow(img, 'gray')
# 显示灰度图(白底黑字)
ax[1][0].set_title('gray')
ax[1][0].axis('off')
ax[1][0].imshow(gray, 'gray')
# 显示灰度图(黑底白字)
ax[1][1].set_title(f'predict:{prediction}')
ax[1][1].axis('off')
ax[1][1].imshow(gray_inv, 'gray')plt.show()

深度学习--TensorFlow(项目)识别自己的手写数字(基于CNN卷积神经网络)相关推荐

  1. 独家 | 如何从头开始为MNIST手写数字分类建立卷积神经网络(附代码)

    翻译:张睿毅 校对:吴金笛 本文约9300字,建议阅读20分钟. 本文章逐步介绍了卷积神经网络的建模过程,最终实现了MNIST手写数字分类. MNIST手写数字分类问题是计算机视觉和深度学习中使用的标 ...

  2. 深度学习面试题12:LeNet(手写数字识别)

    目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...

  3. 什么是深度学习?kears简介,深度学习常用的三大模型,MLP(多层感知机),CNN(卷积神经网络),RNN(循环神经网络)

    什么是深度学习? 简单理解深度学习就是人类容易做的事情,机器不容易完成的事情.(实例:人脸识别,这个例子很好的证明了这句话.假如你识别一个人 ,今天这个人长这个样子,明天脸上有一块伤口,我们人是不是还 ...

  4. matlab朴素贝叶斯手写数字识别_从“手写数字识别”学习分类任务

    机器学习问题可以分为回归问题和分类问题,回归问题已经在线性回归讲过,本文学习分类问题.分类问题跟回归问题有明显的区别,回归问题是连续的数值,而分类问题是离散的类别,比如将性别分为[男,女],将图片分为 ...

  5. 机器学习Tensorflow基于MNIST数据集识别自己的手写数字(读取和测试自己的模型)

    机器学习Tensorflow基于MNIST数据集识别自己的手写数字(读取和测试自己的模型)

  6. 基于TensorFlow和mnist数据集的手写数字识别系统 ,可识别电话号码,识别准确率高,有对比实验,两组模型,可讲解代码

    基于TensorFlow和mnist数据集的手写数字识别系统 ,可识别电话号码,识别准确率高,有对比实验,两组模型,可讲解代码

  7. 基于tensorflow+RNN的MNIST数据集手写数字分类

    2018年9月25日笔记 tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流. RNN是recurrent neural network的简称,中文叫做循环 ...

  8. 手写数字识别案例、手写数字图片处理

    python_手写数字识别案例.手写数字图片处理 1.手写数字识别案例 步骤: 收集数据 带有标签的训练数据集来源于trainingDigits文件夹里面所有的文件,接近2000个文件,每个文件中有3 ...

  9. 【FPGA教程案例100】深度学习1——基于CNN卷积神经网络的手写数字识别纯Verilog实现,使用mnist手写数字数据库

    FPGA教程目录 MATLAB教程目录 ---------------------------------------- 目录 1.软件版本 2.CNN卷积神经网络的原理 2.1 mnist手写数字数 ...

最新文章

  1. Navicat导出表结构导出成Excel
  2. 操作系统编写之引导扇区
  3. python3 异步错误 asyncio.Semaphore RuntimeError: Task got Future attached to a different loop
  4. 大道至简_阅读笔记02
  5. 软件开发生命周期中的设计阶段_BIM咨询在设计阶段包含哪些内容?体现了哪些价值?...
  6. Could not find a version that satisfies the requirement PIL
  7. 联想小新系列win10系统使用IDEA经常闪退,蓝屏,死机,饱受折磨
  8. 反转链表—leetcode206
  9. 学计算机的专属表白方式,九个学科专属表白句子-花式表白公式【蜜匠婚礼】...
  10. java基础面试题之:switch的参数类型
  11. RabbitMQ学习总结(8)——RabbitMQ后台管理控制台页面属性总结
  12. MyEclipse 10.7(版本:eclipse 3.7.x-Indigo系列)安装activiti-eclipse-plugin插件(流程设计器)...
  13. Java程序员集合框架面试题
  14. 百度地图API相关点
  15. Java——打印九宫格(奇数行方阵)
  16. VCS+dve+verdi仿真
  17. weblogic的WTC接口配置方法(发送方)
  18. 软考-嵌入式系统设计师:[网络安全:笔记(六)]
  19. jmp指令(0903)
  20. Mac上效率软件推荐

热门文章

  1. 几道常见String面试题
  2. private关键字和构造方法
  3. linux下find命令的使用和总结
  4. Pandas 基础 (1)—— Series
  5. 2nd 四人小组项目的进一步分析
  6. Servlet中的配置 web.xml
  7. 【POJ1113】Wall(凸包)
  8. Java知多少(29)覆盖和重载
  9. [原]unity3d之http多线程异步资源下载
  10. 《OpenCV3编程入门》学习笔记5 Core组件进阶(一)访问图像中的像素