1 ATF的smc指令调用流程

在REE侧调用smc异常之后,会根据中断向量表触发cpu的同步异常sync_exception_aarch64/32,然后跳转执行到handle_sync_exception->smc_handler64/32中,最后跳转到_RT_SVC_DESCS_START_+RT_SVC_DESC_HANDLE这个工具类中执行具体的操作,最后跳转到el3_exit返回REE侧。

2.1 REE侧如何调用smc指令

在REE侧调用smc之前,需要对通用寄存器进行赋值传参x0-x8。然后通过 smc #0这一汇编指令进行smc调用

// 在 AArch32中只有个r0-r3才能成功的保存到寄存器中,r4-r6需要被压入到堆栈中保存
func smc/** For AArch32 only r0-r3 will be in the registers;* rest r4-r6 will be pushed on to the stack. So here, we'll* have to load them from the stack to registers r4-r6 explicitly.* Clobbers: r4-r6*/ldm sp, {r4, r5, r6}smc #0
endfunc smc
//在 AArch64中则不需要
func smcsmc #0
endfunc smc

2.2 smc同步异常

在运行时el3采用的异常向量表是runtime_exceptions

(1)首先看两个宏定义


.macro vector_base  label   .section .vectors, "ax"   //指定代码段必须存放在.vectors段里, “ax”表示该段可执行并且可‘a’读和可‘x’执行.align 11, 0            //地址方式对齐11 其余字节用0填充\label:.endm.macro vector_entry  label   //label为标号以冒号结尾.section .vectors, "ax"//指定代码段必须存放在.vectors段里, “ax”表示该段可执行并且可‘a’读和可‘x’执行.align 7, 0             //地址方式对齐7\label:.endm.macro check_vector_size since.if (. - \since) > (32 * 4)   //这个.应该是当前位置 - 段的开头地址 如果大于 32条指令.error "Vector exceeds 32 instructions"       //向量超过32条指令.endif.endm
.macro no_ret _func:req, skip_nop=0    //其实意思就是bl _funcbl  \_func
//这里省略了其他的异常
vector_base runtime_exceptions  //定义 .vectors
vector_entry sync_exception_aarch64handle_sync_exceptioncheck_vector_size sync_exception_aarch64
vector_entry sync_exception_aarch32handle_sync_exceptioncheck_vector_size sync_exception_aarch32

这段代码等价于

.section .vectors, "ax"    //指定代码段必须存放在.vectors段里, “ax”表示该段可执行并且可‘a’读和可‘x’执行
.align 11, 0            //地址方式对齐11 其余字节用0填充
runtime_exceptions:.section .vectors, "ax"//指定代码段必须存放在.vectors段里, “ax”表示该段可执行并且可‘a’读和可‘x’执行.align 7, 0             //地址方式对齐7sync_exception_aarch64:handle_sync_exception.if (. - serror_aarch64) > (32 * 4) //这个.应该是当前位置 - 段的开头地址 如果大于 32条指令.error "Vector exceeds 32 instructions"       //向量超过32条指令.endifsync_exception_aarch32handle_sync_exception.if (. - serror_aarch64) > (32 * 4)  //这个.应该是当前位置 - 段的开头地址 如果大于 32条指令.error "Vector exceeds 32 instructions"       //向量超过32条指令.endif

2.3 handle_sync_exception

这个 handle_sync_exception是一个宏定义

.macro   handle_sync_exception/* Enable the SError interrupt */msr   daifclr, #DAIF_ABT_BIT  // #define DAIF_ABT_BIT     (U(1) << 2)  将其传输到 daifclr寄存器中str x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]  // CTX_GPREGS_OFFSET = 0 + #define CTX_GPREG_LR        U(0xf0) + sp 的值作为地址 存入 x30的值#if ENABLE_RUNTIME_INSTRUMENTATION/** Read the timestamp value and store it in per-cpu data. The value* will be extracted from per-cpu data by the C level SMC handler and* saved to the PMF timestamp region.*/mrs    x30, cntpct_el0 //将cntpct_el0 存入x30str  x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]  //保存x29的值到堆栈mrs x29, tpidr_el3  //将tpidr_el3存入x29str    x30, [x29, #CPU_DATA_PMF_TS0_OFFSET]    //将 cntpct_el0 指写入到tpidr_el3中ldr    x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]  //获取x29的值
#endifmrs   x30, esr_el3    //将esr_el3存入x30ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH //#define ESR_EC_SHIFT          U(26) #define ESR_EC_LENGTH         U(6)    相当于 保留 x30的bit[31-26]并将这几位提到bit[6-0]/* Handle SMC exceptions separately from other synchronous exceptions */cmp x30, #EC_AARCH32_SMC    //#define EC_AARCH32_SMC            U(0x13) 对比b.eq  smc_handler32cmp    x30, #EC_AARCH64_SMC    //#define EC_AARCH64_SMC            U(0x17) 对比b.eq  smc_handler64/* Other kinds of synchronous exceptions are not handled */no_ret  report_unhandled_exception  //都不是的话跳转到这里report_unhandled_exception.endm

2.4 smc_handler32/64 以及report_unhandled_exception的执行

在2.3中有三种跳转选项其中smc_handler32/64能够正确触发异常,report_unhandled_exception则是错误的流程
这个函数主要是存储x4-x18寄存器的值,并通过x0也就是smc_id判断该指令是smc_handler32还是smc_handler64,然后进入到rt_svc_descs这个工具结构体中,执行具体的指令。

//report_unhandled_exception 这里不详细研究
func report_unhandled_exceptionprepare_crash_buf_save_x0_x1 //保存adr x0, excpt_msgmov    sp, x0/* This call will not return */b  do_crash_reporting
endfunc report_unhandled_exception
//smc_handler32/64
smc_handler32:tbnz  x0, #FUNCID_CC_SHIFT, smc_prohibited    //  #define FUNCID_CC_SHIFT U(30) 意思是 x0的第30位若不为0 跳转到smc_prohibited这个函数,x0一般用来做smc_id 第三十位为1时代表时AArch32指令stp x8, x9, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X8]stp x10, x11, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X10]stp  x12, x13, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X12]stp  x14, x15, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X14]stp  x16, x17, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X16] //保存现场,将寄存器的值压入堆栈
smc_handler64:  //不知道为什么AArch64指令不保存上述寄存器的值stp  x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4]    stp x6, x7, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X6]    //保存现场,将寄存器的值压入堆栈/* Save rest of the gpregs and sp_el0*/save_x18_to_x29_sp_el0   //保存x18-x29到sp栈中后面有代码mov    x5, xzr //xzr存入x5mov    x6, sp  //将sp指针存入x6/* Get the unique owning entity number */ // #define FUNCID_OEN_WIDTH        U(6) #define FUNCID_OEN_SHIFT       U(24) #define FUNCID_OEN_SHIFT      U(24)  #define FUNCID_TYPE_WIDTH        U(1)ubfx    x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH   //x0为smd_id 指令的bit[24-30]为OEN 存入到x16中ubfx   x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH //x0为smd_id  x15 存储着 0或者1 代表是AArch32指令还是AArch64指令orr    x16, x16, x15, lsl #FUNCID_OEN_WIDTH    //将x15左移6为存入到x16中adr    x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE) //读取KEEP(*(rt_svc_descs))指令的地址adr   x14, rt_svc_descs_indices   //读取rt_svc_descs_indices这个描述符索引ldrb w15, [x14, x16] //将地址为x14+x16的数据读入到w15,并清除w15的高24位 这里没明白啥意思ldr  x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]   //x6之前是指针的地址 在加上el3环境的偏移地址和其sp的所在地址,可以将CTX_RUNTIME_SP的sp地址给x12tbnz   w15, 7, smc_unknown //如果 w15的第7位不是0,则进入到smc_unknown  msr spsel, #0   //切换到SP_EL0 spsel = 0//* Get the descriptor using the index  x11 = (base + off), x15 = index  handler = (base + off) + (index << log2(size)) 这里主要是算出异常要跳转的c函数入口 lsl    w10, w15, #RT_SVC_SIZE_LOG2 //#define RT_SVC_SIZE_LOG2  5 w15左移5位给w10ldr    x15, [x11, w10, uxtw]//x11是KEEP(*(rt_svc_descs))指令的地址 + w10//保存现场mrs   x16, spsr_el3   //x16 = spsr_el3mrs    x17, elr_el3    //x17 = elr_el3    mrs x18, scr_el3    //x18 = scr_el3    stp x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]    //x6为sp指针地址将数据存入对应的堆栈位置str  x18, [x6, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]  //取这个安全寄存器的地址bfi    x7, x18, #0, #1 //这个跟SCR_EL3的安位有关mov    sp, x12 //没看懂着啥操作blr    x15 //跳转执行rt_svc_descs结构体的成员地址b el3_exit    //退出安全环境
//这里是__RT_SVC_DESCS_START__ 和__RT_SVC_DESCS_END__ 的作用 ld文件里的应该就是存储指针的意思吧__RT_SVC_DESCS_START__ = .;KEEP(*(rt_svc_descs))//__RT_SVC_DESCS_END__ = .;
.macro save_x18_to_x29_sp_el0
stp x18, x19, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X18]
stp x20, x21, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X20]
stp x22, x23, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X22]
stp x24, x25, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X24]
stp x26, x27, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X26]
stp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28]
mrs x18, sp_el0
str x18, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_SP_EL0]
.endm
//smc_unknown:
smc_unknown:/*恢复x4-x18寄存器,返回到REE侧*/mov   w0, #SMC_UNKb   restore_gp_registers_callee_eret

2.5 std_svc_smc_handler (这只是调用psic的smc_handler)

在2.4 中最后跳转到x15寄存器所存储的地址

ldr x15 =  [x11, w10, uxtw] ;//x11 是(__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE)   //RT_SVC_DESC_HANDLE = 24 (也就是sizeof(rt_svc_desc_t) = 24)
adr x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE) //读取KEEP(*(rt_svc_descs))指令的地址
lsl w10, w15, #RT_SVC_SIZE_LOG2 //#define RT_SVC_SIZE_LOG2  5 w15左移5位给w10
ldrb    w15, [x14, x16] //将地址为x14+x16的数据读入到w15,并清除w15的高24位 这里没明白啥意思
adr x14, rt_svc_descs_indices   //读取rt_svc_descs_indices这个描述符索引
ubfx    x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH   //x0为smd_id 指令的bit[24-30]为OEN 存入到x16中
orr x16, x16, x15, lsl #FUNCID_OEN_WIDTH    //将x15左移6为存入到x16中
ubfx    x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH //x0为smd_id  x15 存储着 0或者1 代表是AArch32指令还是AArch64指令

应该就是跳入了__RT_SVC_DESCS_这个的对应函数地址

uint8_t rt_svc_descs_indices[MAX_RT_SVCS];   //MAX_RT_SVCS = 128 代表最多有128个服务 它存储着服务id
static rt_svc_desc_t *rt_svc_descs;

其中 rt_svc_desc_t 的成员及初始化参数为

typedef struct rt_svc_desc {uint8_t start_oen;   //该服务的起始编号uint8_t end_oen;  //该服务的末尾编号 end_oen 和 start_oen可以相同 只是在在程序上能看出这一类的服务结尾是什么编号uint8_t call_type;    //异常种类 分为SMC_TYPE_YIELD,SMC_TYPE_STD,SMC_TYPE_FASTconst char *name;   //异常名字rt_svc_init_t init;   //异常函数初始化地址rt_svc_handle_t handle;  //异常处理函数句柄
} rt_svc_desc_t;

在其他博主的文章中搜索到是跳入了std_svc_smc_handler这个函数
首先通过上述函数了解到 只有初始的x0-x3的值没有压入到中断也就是只能传输过去smc_fid、x1、x2、x3这四个值

uintptr_t std_svc_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void *cookie,void *handle,    //这里的handle正好对应了之前REE侧sp堆栈的值u_register_t flags)
{/** Dispatch PSCI calls to PSCI SMC handler and return its return* value*/
#ifdef ENABLE_QOS_SETTING   //这里不用管unsigned long qos_ret = 0;
#endifif (is_psci_fid(smc_fid)) {   //根据smc_fid的值判断是否是psci的smv指令 smc_fid & 0xffe0 == 0 所以判断 psci的smc_fid 在 0x0000 - 0x001fuint64_t ret;#if ENABLE_RUNTIME_INSTRUMENTATION //应该是时间戳上报,没啥用,没有被使能PMF_WRITE_TIMESTAMP(rt_instr_svc,RT_INSTR_ENTER_PSCI,PMF_CACHE_MAINT,get_cpu_data(cpu_data_pmf_ts[CPU_DATA_PMF_TS0_IDX]));
#endifret = psci_smc_handler(smc_fid, x1, x2, x3, x4,cookie, handle, flags);//这里直接调用#if ENABLE_RUNTIME_INSTRUMENTATION //同理时间抽,看这个handle的运行时间应该是PMF_CAPTURE_TIMESTAMP(rt_instr_svc,RT_INSTR_EXIT_PSCI,PMF_NO_CACHE_MAINT);
#endifSMC_RET1(handle, ret);    //将返回值存入handle的r0中}switch (smc_fid) {   //几种其他的smc_fid指令case ARM_STD_SVC_CALL_COUNT:SMC_RET1(handle, PSCI_NUM_CALLS);   //这个就是将PSCI_NUM_CALLS的数据存储到REE侧的r0中case ARM_STD_SVC_UID:/* Return UID to the caller */SMC_UUID_RET(handle, arm_svc_uid);case ARM_STD_SVC_VERSION:/* Return the version of current implementation */SMC_RET2(handle, STD_SVC_VERSION_MAJOR, STD_SVC_VERSION_MINOR);#ifdef ENABLE_QOS_SETTING //没用到case SPRD_QOS_READ:qos_ret= qos_register_read(x1);SMC_RET1(handle, qos_ret);case SPRD_QOS_WRITE:qos_ret = qos_register_write(x1, x2);SMC_RET1(handle, qos_ret);
#endifdefault:  //都不是返回 SMC_UNK 0xffffffffWARN("Unimplemented Standard Service Call: 0x%x \n", smc_fid);SMC_RET1(handle, SMC_UNK);}
}

从这个函数中可以看出smc现在只挂载了psci相关的指令其他的都没有涉及

2.6 el3_exit

执行完std_svc_smc_handler 之后又回到原先的汇编函数接下来执行el3_exit

func el3_exitmov x17, sp     //将sp的值给x17msr  spsel, #1   //返回非安全将spsel置1str  x17, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]   //把之前REE侧的sp地址给x17ldr   x18, [sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]  //读取[sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]到x18ldp    x16, x17, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]    //读取[sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3] 应该是elr_e13,spsr_el3 的值给  x16, x17msr scr_el3, x18    //还原REE侧的scr_el3msr spsr_el3, x16   //还原REE侧的spsr_el3msr    elr_el3, x17    //还原REE侧的elr_el3b   restore_gp_registers_eret   //还原REE侧的x0-x30
endfunc el3_exit
func restore_gp_registers_eretldp    x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]ldp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2]b   restore_gp_registers_callee_eret
endfunc restore_gp_registers_eret
func restore_gp_registers_callee_eretldp    x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4]ldp x6, x7, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X6]ldp x8, x9, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X8]ldp x10, x11, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X10]ldp  x12, x13, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X12]ldp  x14, x15, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X14]ldp  x18, x19, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X18]ldp  x20, x21, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X20]ldp  x22, x23, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X22]ldp  x24, x25, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X24]ldp  x26, x27, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X26]ldp  x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28]ldp  x30, x17, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]  //这里将链接寄存器的值给了x17msr    sp_el0, x17 //sp_el0 = x17 也就是之前REE侧的pc值ldp    x16, x17, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X16] //还原REE侧的x16,17eret
endfunc restore_gp_registers_callee_eret
//死循环?
func ereteret       //这里的eret 是 arm v8中的 eret指令后面讲
endfunc eret

这里是armv8手册中用于描述eret的语句

使用ELR和SPSR返回当前异常级别。在执行的时候,PE从SPSR恢复PSTATE,和分支到ELR里的地址。
PE检查SPSR的当前异常级别是否存在非法返回事件,
如果在EL0中执行,ERET将导致未定义指令异常。
大概意思就是回到REE侧了

3 smc指令如何书写

从之前std_svc_smc_handler函数中的handle对应REE侧sp来说,程序根据SMC_RET1、SMC_RET2等参数可以将之前堆栈的中值改变,从而影响REE侧返回的x0-x12,以起堆栈中所存储的其他寄存器。
所以 REE侧触发smc #0指令时,x0-x3的值是有用的。x0代表smc_id x1-x3代表其他需要传输的形参。返回REE侧时能都返回的数据可通过handle存储到x0-x12中。

4 bl31启动的runtime_svc_init函数

在bl31中会执行runtime_svc_init函数,该函数会调用注册到EL3中所有服务的初始化函数,其中有一个服务项就是TEE服务,该服务项的初始化函数会将TEE OS的初始化函数赋值给bl32_init变量,当所有服务项执行完初始化后,在bl31中会调用b32_init执行的函数来跳转到TEE OS中并开始执行TEE OS的启动。

void bl31_main(void)
{NOTICE("BL31: %s\n", version_string);NOTICE("BL31: %s\n", build_message);bl31_platform_setup();    //通用和安全时钟初始化,其他芯片相关功能初始化bl31_lib_init(); //空函数INFO("BL31: Initializing runtime services\n");runtime_svc_init();    //重点 下面展开分析if (bl32_init) { INFO("BL31: Initializing BL32\n");(*bl32_init)();}bl31_prepare_next_image_entry();    //加载下一阶段的入口地址console_flush();   //控制台刷新bl31_plat_runtime_setup();   //空函数
}
//注册smc指令相关的服务
void runtime_svc_init(void)
{int rc = 0;unsigned int index, start_idx, end_idx;/* Assert the number of descriptors detected are less than maximum indices */assert((RT_SVC_DESCS_END >= RT_SVC_DESCS_START) &&(RT_SVC_DECS_NUM < MAX_RT_SVCS)); //这句话表明 RT_SVC_DECS_NUM时当前加载的服务数量,define RT_SVC_DECS_NUM     ((RT_SVC_DESCS_END - RT_SVC_DESCS_START)\/ sizeof(rt_svc_desc_t))if (RT_SVC_DECS_NUM == 0)    //如果没有服务要注册return;memset(rt_svc_descs_indices, -1, sizeof(rt_svc_descs_indices));   //初始化rt_svc_descs_indicesrt_svc_descs = (rt_svc_desc_t *)  RT_SVC_DESCS_START; //建立一个注册表结构体for (index = 0; index < RT_SVC_DECS_NUM; index++) {rt_svc_desc_t *service = &rt_svc_descs[index];rc = validate_rt_svc_desc(service);    //判断每一个服务的各项参数是否正确if (rc) {ERROR("Invalid runtime service descriptor %p\n",(void *) service);panic(); //不正确}if (service->init) {   //该服务是否需要初始化rc = service->init();   //进行初始化if (rc) {    //初始化是否成功ERROR("Error initializing runtime service %s\n",service->name);continue;}}start_idx = get_unique_oen(rt_svc_descs[index].start_oen,service->call_type);   //八位的id号assert(start_idx < MAX_RT_SVCS);end_idx = get_unique_oen(rt_svc_descs[index].end_oen,service->call_type);    //八位的id号assert(end_idx < MAX_RT_SVCS);for (; start_idx <= end_idx; start_idx++)rt_svc_descs_indices[start_idx] = index;//证明可以根据rt_svc_descs_indices[?]的值找到其对应的rt_svc_descs[index]中index值}
}

具体注册宏指令

#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch) \static const rt_svc_desc_t __svc_desc_ ## _name \__section("rt_svc_descs") __used = { \.start_oen = _start, \.end_oen = _end, \.call_type = _type, \.name = #_name, \.init = _setup, \.handle = _smch }
//其中__setion("rt_svc_descs")的意思就时注册到rt_svc_descs段中

然后添加服务时只需要调用这个宏指令就可以了

DECLARE_RT_SVC(std_svc,OEN_STD_START,OEN_STD_END,SMC_TYPE_FAST,std_svc_setup,std_svc_smc_handler
);
这个的意思就是注册
static const rt_svc_desc_t __svc_desc_std_svc服务。其服务id为SMC_TYPE_FAST << 6 + OEN_STD_START,结束服务的id为SMC_TYPE_FAST << 6 + OEN_STD_END

ATF中smc指令详解相关推荐

  1. 【Bluetooth LE】Bluez中Bluetoothctl指令详解(连接iPhone为例)

    Bluez中Bluetoothctl指令详解 写在前面 准备硬件和软件 ubantu&bluez版本 iPhone&LightBlue Bluetoothctl指令列表 Bluetoo ...

  2. [ATF]-smc指令详解

    文章目录 1.在linux中发起smc的调用 2.陷入ATF的smc同步异常后,调用handler和exit_el3返回linux 3.fast call和std call的定义 4.fast cal ...

  3. arm-linux-ld中的参数,arm-linux-ld指令详解

    arm-linux-ld指令详解 我们对每个c或者汇编文件进行单独编译,但是不去连接,生成很多.o 的文件,这些.o文件首先是分散的,我们首先要考虑的如何组合起来:其次,这些.o文件存在相互调用的关系 ...

  4. java中Freemarker list指令详解

    java Freemarker中list指令主要是进行迭代服务器端传递过来的List集合. 定义 <#list nameList as names> ${names} </#list ...

  5. C#中的预处理指令详解

    这篇文章主要介绍了C#中的预处理指令详解,本文讲解了#define 和 #undef.#if.#elif.#else和#endif.#warning和#error.#region和#endregion ...

  6. Linux中的ps指令详解

    [时间]2018.12.16 [题目]Linux中的ps指令详解 转载地址:https://www.cnblogs.com/exe19/p/5511733.html 概述 要对进程进行监测和控制,首先 ...

  7. Linux中iptraf命令详解(IP局域网监控工具)

    2019独角兽企业重金招聘Python工程师标准>>> Linux中iptraf命令详解(IP局域网监控工具) 发布时间:2017-12-27 20:46:03   作者:佚名    ...

  8. 九爷带你了解 nginx 日志配置指令详解

    nginx日志配置指令详解 日志对于统计排错来说非常有利的. 本文总结了nginx日志相关的配置如 access_log.log_format.open_log_file_cache.log_not_ ...

  9. movsb movsw movsd 指令详解

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u013490896/article/d ...

最新文章

  1. 低代码技术与市场(Mendix与 OutSystems)
  2. OSChina 周日乱弹 —— 比996更先进的是365工作制
  3. Pod资源管理(pod容器分类,k8s添加harbor私库,上传下载私库)
  4. python笔记30-docstring注释添加变量
  5. 【每日SQL打卡】​​​​​​​​​​​​​​​DAY 20丨查询球队积分【难度中等】​
  6. 122_Power PivotPower BI不连续日期的日环比
  7. 微软首款 Office 应用程序登陆 Linux
  8. 叮当:一个开源的树莓派中文智能音箱项目
  9. RoundedUITableView
  10. idea 新建spring clound 项目_手把手教你spring源码搭建
  11. win7工作组无法查看计算机名,win7系统无法查看工作组计算机怎么解决
  12. 作为产品经理为什么选择开源GIS
  13. kali Linux sqli labs环境搭建,以及报503错误解决
  14. 以Skyline问题来看hard问题在面试的时候如何解决?
  15. php前后端分离登录,前后端分离下如何登录
  16. 玩转华为数据中心交换机系列 | 配置基本QinQ示例
  17. 通过 itms:services://? 在线安装ipa ,跨过appstore
  18. 小程序怎么做线下推广
  19. CDEC中国数字智能生态大会参会指南
  20. 拓视角丨稳固金融领域领军地位,强化数字化服务和体验

热门文章

  1. mysql中的replication_Mysql之replication初探
  2. 3毛起租!“爱优腾”起诉多家视频平台账号出租平台 经济损失过亿?
  3. 7-1 悄悄关注 (20分)
  4. Java基础——运行时异常和非运行时异常
  5. 获得各平台文件的访问 创建 修改时间
  6. JAVA增删改查代码
  7. 详解python中的lambda函数
  8. luoguP5017 摆渡车
  9. Appium安装卸载和判断应用是否已经安装
  10. 如何将“跳一跳”的Python辅助原理移植到“百万英雄”答题中