运算放大器——4种基本运放电路(同相放大、反相放大、加法器、差分放大电路)在实际设计中需要考虑的实际问题

前言

第一篇博客就从运放入手吧,话不多说。正文开始:想必大家对运放电路都熟悉的再不能熟悉了。可是这里为什么又再拿出来写呢?肯定是有不同的知识才会有意义,所以接下来就本人在积累到的前人的知识,拿出来浅谈浅谈,不当之处希望大家指正。

四种基本的运算放大电路

1. 同相放大电路

同相放大电路:顾名思义输出和输出信号是相位相同。放大倍数由Rg和Rf共同决定。

2. 反向放大电路

反相放大电路:顾名思义输出和输出信号是相位相反。放大倍数由Rg和Rf共同决定。

3.加法器

加法器:顾名思义输出是输入信号的和。每个信号的放大倍数有反馈电阻Rf与每个输入信号串联的电阻R共同决定。

4. 差分放大电路

差分放大电路:输出信号是输入信号之差。输出信号可先由分压器规则计算同相输入端的电压V+,然后使用同相运放增益公式计算出通相输出电压Vout1。然后在使用反向增益公式计算反向输出级的电压Vout2。最后将两个输出电压相加即可。

到此为止是属于大家在都熟知的基本知识。

以上都是基于理想运算放大器设计,然而,由于运放的开环响应,会出现一些很小但应当注意的误差项。例如反相放大器的增益是否永远都能够由-Rf/Rg决定,同相放大器的增益是否由1+Rf/Rg决定?答案是,但也不是。这就要考虑到运放的开环增益,理想的开环增益无穷大,那么误差项为0;当开环增益远远大于预期的闭环增益时,那么误差项的值也会小到去可在设计中忽略。但是,当闭环增益增大时,误差项这时候就不可能被忽略掉了,如果被忽略,设计出来的电路的增益就会和理论设计的相违背。
接下来先介绍一个常见的运放的开环响应,如下图所示。很多人一眼望去,这图好熟悉呀。That’s right!这和简单的低通滤波器的幅频响应曲线图一样

这一曲线主要包括两段:一段是水平的,一段是倾斜的。最左边的频率,开环增益为80dB(即10 000V/V)。所以这一频率下能够达到的最大增益为10000。只要频率增加3个十倍频程,这一情况就会发生显著改变来响应曲线开始倾斜,能达到的最大增益只有小于40dB,或者小于100V/V。由此可知,在这一频率下运放能够获得的最大增益就显著被限制了。
考虑到开环增益的影响,单级反相放大和同相放大运放电路在实际中的增益由一下两条公式给出。


考虑到上图的开环响应图,假设频率足够低,开环增益为80dB,即能够达到的最大增益为10000.有限开环增益对反向放大电路实际增益的影响如下表所示

当Rf=Rg,理论增益为-1,有限开环增益只贡献了0.02%的误差。因此,使用误差为1%的电阻时,电阻误差都比这个误差还要大,因此,这个由开环增益引起的0.02%的误差便可以忽略不计了。但是当增益为-100时,误差达到了1%,这就足够引起注意了。略微调整电阻的值可以补偿这一误差。然而当理论增益增大到10000时,误差也增加到了50%,无论如何调整都无法补偿。如果使用一些阻值悬殊的电阻。如Rg=1Ω,Rf=1TΩ,那么能够达到的最大增益的绝对值仍然达不到10000。就像光速一样,你能够无限接近它,然是永远达不到。

同理,对于同相放大电路,其实际增益与理论增益由下表所示。低增益时误差可忽略,或者微调电阻值便可以误差范围内满足设计。但是误差达到50%,通过调整电阻值,取一些荒谬的阻值来达到增益要求,可以接近但是永远无法达到开环增益。

后面这些内容似乎难懂,与实际也比较不沾边,与所学的相差甚远。但是,在设计放大器电路时,我们应该讲这些牢记于心,因为这才是运放的真正性质。

再往后的有源滤波器设计讲解中,也会受到类似的限制,一条很有用的经验法则是(不是本人得出来的,从前人那里积累的):在最高的工作频率上确保开环增益比所需增益打40dB,否则可能会出现误差,对于带通滤波器的情形,这种的限制还会使谐振频率降低。

运算放大器——4种基本运放电路(同相放大、反相放大、加法器、差分放大电路)实际设计中需要考虑的实际问题相关推荐

  1. 运算放大器——4种基本运放电路(同相放大、反相放大、加法器、差分放大电路)

    1. 同相放大电路 顾名思义输出和输出信号是相位相同.放大倍数由Rg和Rf共同决定. 2. 反向放大电路 顾名思义输出和输出信号是相位相反.放大倍数由Rg和Rf共同决定. 3.加法器 顾名思义输出是输 ...

  2. TI高精度实验室-运算放大器-第十节-运放稳定性问题

    TI高精度实验室-运算放大器-第十节-运放稳定性问题 在本系列的视频当中 将会讨论到波特图 Bode plot 基本的稳定性理论 以及如何在 SPICE 当中 进行稳定性仿真 在这个视频中 我们会讨论 ...

  3. 什么情况下运放才能用虚短和虚断的概念1、在开环电路中,输入两端的电压差非常小,不会让运放饱和2、在闭环的深度反馈电路中。

    虚短虚断的使用条件 虚断的存在是无条件的,因为这是由它的内部结构决定的,电流进不去.(当然是理想状态) 虚短的存在是有条件的,这个条件是"运放要处于放大状态",要满足这个条件只有两 ...

  4. 两个运放制作加法器_运放基础第10讲,加法器、减法器、积分器、微分器、仪表放大器...

    运放基础第10讲,加法器.减法器.积分器.微分器.仪表放大器课程介绍 <运放第2部,运放电路设计实战基础视频> 课程介绍:<运放电路设计基础视频教程>的第一部分内容有三分之一到 ...

  5. 测试设计中需要考虑的22种测试类型

    测试设计中需要考虑的22种测试类型 测试设计中需要考虑的22种测试类型 纪玉春 来自21CMM 黑盒测试:不基于内部设计和代码的任何知识,而是基于需求和功能性. 白盒测试:基于一个应用代码的内部逻辑知 ...

  6. 测试设计中需要考虑的22种测试类型 --

    测试设计中需要考虑的22种测试类型 --      黑盒测试:不基于内部设计和代码的任何知识,而是基于需求和功能性. 白盒测试:基于一个应用代码的内部逻辑知识,测试是基于覆盖全部代码.分支.路径.条件 ...

  7. 唐老师讲运算放大器(第七讲)——运放的应用

    二.有源滤波器 三.无源低通滤波器 四.一阶低通有源滤波器 五.二阶低通滤波器 比一阶阻带下降的更快 应用举例(注意:滤波器处的两次RC不一定要相等) 二阶低通滤波器的幅频特性: 解决Sallen-K ...

  8. 电子技术基础(三)_第3章集成运放及其应用__反相比例运算

    反相比例运算是 集成运放的基本运算电路 反相比例运算 一个特点是: 输入的正极要接地 上图为反相比例运算电路,输入信号 uᵢ 通过电阻R₁ 加到集成运放的反相输入端, 而输出信号通过电阻Rf 也回送到 ...

  9. 用Cadence Virtuoso IC617结合gm/id方法设计两级运放(五管OTA加共源极)

    前言 本文为我自己的学习笔记,属于Cadence Virtuoso系列的进阶部分,采用的软件版本是Cadence Virtuoso IC617.其他文章请点击上方,看我制作的Cadence Virtu ...

最新文章

  1. spss相关性分析看结果_利用spss做Pearson相关性分析步骤详解
  2. [CF960F]Pathwalks
  3. 中国机器人市场前景开阔 本土企业如何突围?
  4. 实现Datagrid分页
  5. window中使用jedis连接虚拟机中的redis
  6. Expression Blend实例中文教程(6) - 项目控件和用户交互控件快速入门
  7. 计算机终端维护组织结构,信息部组织架构及人员编制 Manning GuideOrganization Chart...
  8. 《DFC-Net:Deep Flow-Guided Video Inpainting》论文笔记
  9. 【解锁】Pandoc——Pandoc安装、使用、快速上手
  10. idear怎么设置自动导包
  11. Python获取英雄联盟的皮肤原画:新手玩家们都懵了!(一)
  12. 朱一龙左娜扎右热巴,王栎鑫:我想活成你的样子
  13. 苹果公司CEO:混蛋乔布斯
  14. 诊断分析-5-西楚大学轴承数据库
  15. Dots初探和原理分析
  16. 腾讯、阿里场外“旁观”,谁将杀进千亿美元SaaS圈?
  17. 5G基站基带架构设计之总体篇
  18. Conflux 开发教程 | 使用 IDE 在 Conflux 开发 DApp 的实战操作指南
  19. “BOOTMGR is missing”详解
  20. ini配置文件的格式

热门文章

  1. update_project
  2. left join查询on后面的条件过滤失效的问题
  3. MySQL 字符串截取函数
  4. shell遍历根目录_bash 实现目录遍历
  5. unity编辑器之自动提示订外卖
  6. 纯html页面怎么进行路由,前端路由一探
  7. (毕业设计)mysql+php沿河农产品特卖网站的设计与实现 附源码201524
  8. man LVCREATE
  9. Java8:永久代(PermGen)和元空间(Metaspace)
  10. PermGen Space 的错误,导致项目无法正常运行