在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布p(X,Y)p(X,Y)p(X,Y)和分解的边缘分布的乘积p(X)p(Y)p(X)p(Y)p(X)p(Y)的相似程度。互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。互信息最常用的单位是bit


1 互信息定义

1.1 原始定义

两个离散随机变量XXX和YYY,其联合概率分布函数为p(x,y)p(x, y)p(x,y),而边缘概率分布函数分别为p(x)p(x)p(x)和p(y)p(y)p(y),其互信息可以定义为:
I(X;Y)=∑x∈X∑y∈Yp(x,y)logp(x,y)p(x)p(y)(1)I(X;Y)=\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log \frac{p(x,y)}{p(x)p(y)}}\tag{1}I(X;Y)=x∈X∑​y∈Y∑​p(x,y)logp(x)p(y)p(x,y)​(1)
        在连续随机变量的情形下,p(x,y)p(x,y)p(x,y)是XXX和YYY的联合概率密度函数,而p(x)p(x)p(x)和p(y)p(y)p(y)分别是XXX和YYY的边缘概率密度函数,求和被替换成了二重积分:
I(X;Y)=∫X∫Yp(x,y)logp(x,y)p(x)p(y)dxdy(2)I(X;Y)=\int_X\int_Y{p(x,y)log \frac{p(x,y)}{p(x)p(y)}}dxdy\tag{2}I(X;Y)=∫X​∫Y​p(x,y)logp(x)p(y)p(x,y)​dxdy(2)

互信息量I(xi;yj)I(x_i; y_j)I(xi​;yj​)在联合概率空间P(XY)P(XY)P(XY)中的统计平均值。 平均互信息I(X;Y)I(X; Y)I(X;Y)克服了互信息量I(xi;yj)I(x_i; y_j)I(xi​;yj​)的随机性,成为一个确定的量。如果对数以 2 为基底,互信息的单位是bit

直观上,互信息度量XXX和YYY共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果XXX和YYY相互独立,则知道XXX不对YYY提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果XXX是YYY的一个确定性函数,且YYY也是XXX的一个确定性函数,那么传递的所有信息被XXX和YYY共享:知道XXX决定YYY的值,反之亦然。因此,在此情形下,互信息YYY(或XXX)单独包含的不确定度相同,称作YYY(或XXX)的熵。而且,这个互信息与XXX的熵和YYY的熵相同。(这种情形的一个非常特殊的情况是当 XXX和YYY为相同随机变量时。)

互信息是XXX和YYY联合分布相对于假定XXX和YYY独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:I(X;Y)=0I(X; Y) = 0I(X;Y)=0,当且仅当XXX和YYY为独立随机变量。从一个方向很容易看出:当XXX和YYY独立时,p(x,y)=p(x)p(y)p(x, y) = p(x) p(y)p(x,y)=p(x)p(y),因此:
logp(x,y)p(x)p(y)=log1=0(3)log\frac{p(x, y)}{p(x)p(y)}=log1=0\tag{3}logp(x)p(y)p(x,y)​=log1=0(3)

1.2 用熵表示互信息

熵的定义:熵是一个随机变量不确定性的度量,对于一个离散型随机变量X∼p(x)X\sim p(x)X∼p(x),其离散熵可以定义为:
H(X)=−∑x∈χp(x)logp(x)(4)H(X)=-\sum_{x\in\chi}^{}{p(x)}log p(x)\tag{4}H(X)=−x∈χ∑​p(x)logp(x)(4)
        其中: 花体χ\chiχ表示为包含所有小xxx元素的集合,logloglog以2为底。

一个随机变量的熵越大,意味着不确定性越大,换言之,该随机变量包含的信息量越大。必然是事件是确定无疑的,并不含有不确定性,所以必然事件的熵应该是0,也就是说,必然事件不含有信息量。

接下来推导如何用熵表示互信息:
1. 离散型
I(X;Y)=∑x∈X∑y∈Yp(x,y)logp(x,y)p(x)p(y)=∑x∈X∑y∈Yp(x,y)logp(y)p(x∣y)p(x)p(y)=∑x∈X∑y∈Yp(x,y)logp(x∣y)p(x)=∑x∈X∑y∈Yp(x,y)logp(x∣y)−∑x∈X∑y∈Yp(x,y)logp(x)=−∑x∈Xp(x)logp(x)−[−∑x∈X∑y∈Yp(x,y)logp(x∣y)]=H(X)−H(X∣Y)(5)\begin{aligned}I(X;Y)&=\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log \frac{p(x,y)}{p(x)p(y)}}=\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log \frac{p(y)p(x|y)}{p(x)p(y)}}\\&=\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log \frac{p(x|y)}{p(x)}}=\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log p(x|y)}-\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log p(x)} \\&=-\sum_{x\in\mathcal{X}}^{}{p(x)log p(x)}-\left[ -\sum_{x\in\mathcal{X}}^{}\sum_{y\in\mathcal{Y}}^{}{p(x,y)log p(x|y)} \right]=H(X)-H(X|Y)\end{aligned}\tag{5}I(X;Y)​=x∈X∑​y∈Y∑​p(x,y)logp(x)p(y)p(x,y)​=x∈X∑​y∈Y∑​p(x,y)logp(x)p(y)p(y)p(x∣y)​=x∈X∑​y∈Y∑​p(x,y)logp(x)p(x∣y)​=x∈X∑​y∈Y∑​p(x,y)logp(x∣y)−x∈X∑​y∈Y∑​p(x,y)logp(x)=−x∈X∑​p(x)logp(x)−⎣⎡​−x∈X∑​y∈Y∑​p(x,y)logp(x∣y)⎦⎤​=H(X)−H(X∣Y)​(5)
2. 连续型
I(X;Y)=∫X∫YP(X,Y)log⁡P(X,Y)P(X)P(Y)=∫X∫YP(X,Y)log⁡P(X,Y)P(X)−∫X∫YP(X,Y)log⁡P(Y)=∫X∫YP(X)P(Y∣X)log⁡P(Y∣X)−∫Ylog⁡P(Y)∫XP(X,Y)=∫XP(X)∫YP(Y∣X)log⁡P(Y∣X)−∫Ylog⁡P(Y)P(Y)=−∫XP(X)H(Y∣X=x)+H(Y)=H(Y)−H(Y∣X)(6)\begin{aligned} I(X;Y)&=\int_X \int_Y P(X,Y)\log\frac{P(X,Y)}{P(X)P(Y)}\\ &=\int_X \int_Y P(X,Y)\log\frac{P(X,Y)}{P(X)}-\int_X \int_Y P(X,Y)\log{P(Y)}\\ &=\int_X \int_Y P(X)P(Y|X)\log P(Y|X) -\int_Y \log{P(Y)}\int_X P(X,Y)\\ &=\int_X P(X)\int_Y P(Y|X)\log P(Y|X)-\int_Y \log{P(Y)}P(Y)\\ &=-\int_X P(X)H(Y|X=x)+H(Y)\\ &=H(Y)-H(Y|X)\\ \end{aligned}\tag{6}I(X;Y)​=∫X​∫Y​P(X,Y)logP(X)P(Y)P(X,Y)​=∫X​∫Y​P(X,Y)logP(X)P(X,Y)​−∫X​∫Y​P(X,Y)logP(Y)=∫X​∫Y​P(X)P(Y∣X)logP(Y∣X)−∫Y​logP(Y)∫X​P(X,Y)=∫X​P(X)∫Y​P(Y∣X)logP(Y∣X)−∫Y​logP(Y)P(Y)=−∫X​P(X)H(Y∣X=x)+H(Y)=H(Y)−H(Y∣X)​(6)
        经过推导后,我们可以直观地看到H(X)H(X)H(X)表示为原随机变量XXX的信息量,H(X∣Y)H(X|Y)H(X∣Y)为知道事实YYY后XXX的信息量,互信息I(X;Y)I(X; Y)I(X;Y)则表示为知道事实YYY后,原来信息量减少了多少。用Venn图表示:

图1 互信息、条件熵与联合熵

直观地说,如果把熵H(Y)H(Y)H(Y)看作一个随机变量不确定度的量度,那么H(Y∣X)H(Y|X)H(Y∣X)就是XXX没有涉及到的YYY的部分的不确定度的量度。这就是“在XXX已知之后YYY的剩余不确定度的量”,于是第一个等式的右边就可以读作“YYY的不确定度,减去在XXX已知之后YYY的剩余不确定度的量”,此式等价于“移除知道XXX后YYY的不确定度的量”。这证实了互信息的直观意义为知道其中一个变量提供的另一个的信息量(即不确定度的减少量)。

注意到离散情形H(X∣X)=0H(X|X) = 0H(X∣X)=0,于是H(X)=I(X;X)H(X) = I(X;X)H(X)=I(X;X)。因此I(X;X)≥I(X;Y)I(X; X) \geq I(X; Y)I(X;X)≥I(X;Y),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。


2 性质与应用

2.1 常用性质

1. 非负性
        由图1可知:H(X)≥H(X∣Y)H(X)\geq H(X|Y)H(X)≥H(X∣Y),则
I(X;Y)≥0(7)I(X; Y)\geq0\tag{7}I(X;Y)≥0(7)

2. 对称性
I(X;Y)=I(Y;X)(8)I(X; Y) = I(Y; X)\tag{8}I(X;Y)=I(Y;X)(8)

3. 与条件熵和联合熵的关系
I⁡(X;Y)=H(X)−H(X∣Y)=H(Y)−H(Y∣X)=H(X)+H(Y)−H(X,Y)=H(X,Y)−H(X∣Y)−H(Y∣X)(9)\begin{aligned} \operatorname{I}(X;Y)& = H(X) - H(X|Y) \\ &=H(Y) - H(Y|X) \\ &= H(X) + H(Y) - H(X, Y) \\ &= H(X, Y) - H(X|Y) - H(Y|X) \end{aligned}\tag{9}I(X;Y)​=H(X)−H(X∣Y)=H(Y)−H(Y∣X)=H(X)+H(Y)−H(X,Y)=H(X,Y)−H(X∣Y)−H(Y∣X)​(9)

4. 与K-L散度的关系
I⁡(X;Y)=∑yp(y)∑xp(x∣y)log⁡2p(x∣y)p(x)=∑yp(y)DKL⁣(p(x∣y)∥p(x))=EY[DKL⁣(p(x∣y)∥p(x))].(10)\begin{aligned} \operatorname{I}(X;Y) &= \sum_y p(y) \sum_x p(x|y) \log_2 \frac{p(x|y)}{p(x)} \\ &= \sum_y p(y) \; D_\text{KL}\!\left(p(x|y) \parallel p(x)\right) \\ &= \mathbb{E}_Y\left[D_\text{KL}\!\left(p(x|y) \parallel p(x)\right)\right]. \end{aligned}\tag{10}I(X;Y)​=y∑​p(y)x∑​p(x∣y)log2​p(x)p(x∣y)​=y∑​p(y)DKL​(p(x∣y)∥p(x))=EY​[DKL​(p(x∣y)∥p(x))].​(10)

2.2 应用领域

  • 通信中,信道容量是最大互信息
  • k-means,互信息被用作优化目标
  • 隐马尔可夫模型训练,可以采用最大互信息(MMI)标准。
  • RNA结构,可以从多序列比对预测RNA二级结构。
  • 互信息已被用作机器学习中的特征选择和特征变换的标准。它可用于表征变量的相关性和冗余性,例如最小冗余特征选择。
  • 互信息用于确定数据集的两个不同聚类的相似性
  • 单词的互信息通常用作语料库语言学中搭配计算的重要函数。
  • 医学成像中,互信息可以用于进行图像配准。
  • 时间序列分析中,可以用于相位同步的检测。
  • 互信息用于学习贝叶斯网络/动态贝叶斯网络的结构,这被认为可以解释随机变量之间的因果关系。
  • 决策树学习中,是一种loss function

2.3 其他形式

1. 条件互信息
I⁡(X;Y∣Z)=EZ(I⁡(X;Y)∣Z)=∑z∈Z∑y∈Y∑x∈XpZ(z)pX,Y∣Z(x,y∣z)log⁡[pX,Y∣Z(x,y∣z)pX∣Z(x∣z)pY∣Z(y∣z)],(11)\begin{aligned} & {} \operatorname{I}(X;Y|Z) = \mathbb {E}_Z \big(\operatorname{I}(X;Y)|Z\big) = \\ & {} \sum_{z\in Z} \sum_{y\in Y} \sum_{x\in X} {p_Z(z)\, p_{X,Y|Z}(x,y|z) \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]}, \end{aligned}\tag{11}​I(X;Y∣Z)=EZ​(I(X;Y)∣Z)=z∈Z∑​y∈Y∑​x∈X∑​pZ​(z)pX,Y∣Z​(x,y∣z)log[pX∣Z​(x∣z)pY∣Z​(y∣z)pX,Y∣Z​(x,y∣z)​],​(11)
        可以简写为:
I(X;Y∣Z)=∑z∈Z∑y∈Y∑x∈XpX,Y,Z(x,y,z)log⁡pX,Y,Z(x,y,z)pZ(z)pX,Z(x,z)pY,Z(y,z).(12)\begin{aligned} & {} I(X;Y|Z) = \\ & {} \sum_{z\in Z} \sum_{y\in Y} \sum_{x\in X} p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)}. \end{aligned}\tag{12}​I(X;Y∣Z)=z∈Z∑​y∈Y∑​x∈X∑​pX,Y,Z​(x,y,z)logpX,Z​(x,z)pY,Z​(y,z)pX,Y,Z​(x,y,z)pZ​(z)​.​(12)

2. 方向信息(Directed Information)

假设两个随机过程Xn,YnX^n,Y^nXn,Yn,方向互信息:
I⁡(Xn→Yn)=∑i=1nI⁡(Xi;Yi∣Yi−1)(13)\operatorname{I}\left(X^n \to Y^n\right) = \sum_{i=1}^n \operatorname{I}\left(X^i; Y_i|Y^{i-1}\right)\tag{13}I(Xn→Yn)=i=1∑n​I(Xi;Yi​∣Yi−1)(13)

3. 与相关系数的关系

互信息其中包含所有独立性(线性和非线性),不像correlation coefficients measures一样只包含线性。对于互信息与相关系数的关系,可以参考这篇博客:https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

当随机变量X,YX,YX,Y 的联合概率分布服从二元正态分布时,有以下性质:ρ\rhoρ是相关系数
I⁡=−12log⁡(1−ρ2)(14)\operatorname{I} = -\frac{1}{2} \log\left(1 - \rho^2\right)\tag{14}I=−21​log(1−ρ2)(14)
        证明如下:
(X1X2)∼N((μ1μ2),Σ),Σ=(σ12ρσ1σ2ρσ1σ2σ22)H(Xi)=12log⁡(2πeσi2)=12+12log⁡(2π)+log⁡(σi),i∈{1,2}H(X1,X2)=12log⁡[(2πe)2∣Σ∣]=1+log⁡(2π)+log⁡(σ1σ2)+12log⁡(1−ρ2)(15)\begin{aligned} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} &\sim \mathcal{N} \left( \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma \right),\qquad \Sigma = \begin{pmatrix} \sigma^2_1 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma^2_2 \end{pmatrix} \\ H(X_i) &= \frac{1}{2}\log\left(2\pi e \sigma_i^2\right) = \frac{1}{2} + \frac{1}{2}\log(2\pi) + \log\left(\sigma_i\right), \quad i\in\{1, 2\} \\ H(X_1, X_2) &= \frac{1}{2}\log\left[(2\pi e)^2|\Sigma|\right] = 1 + \log(2\pi) + \log\left(\sigma_1 \sigma_2\right) + \frac{1}{2}\log\left(1 - \rho^2\right) \\ \end{aligned}\tag{15}(X1​X2​​)H(Xi​)H(X1​,X2​)​∼N((μ1​μ2​​),Σ),Σ=(σ12​ρσ1​σ2​​ρσ1​σ2​σ22​​)=21​log(2πeσi2​)=21​+21​log(2π)+log(σi​),i∈{1,2}=21​log[(2πe)2∣Σ∣]=1+log(2π)+log(σ1​σ2​)+21​log(1−ρ2)​(15)
        所以,
I⁡(X1;X2)=H(X1)+H(X2)−H(X1,X2)=−12log⁡(1−ρ2)(16)\operatorname{I}\left(X_1; X_2\right) = H\left(X_1\right) + H\left(X_2\right) - H\left(X_1, X_2\right) = -\frac{1}{2}\log\left(1 - \rho^2\right)\tag{16}I(X1​;X2​)=H(X1​)+H(X2​)−H(X1​,X2​)=−21​log(1−ρ2)(16)


3 代码实现

实现一:基于直方图

% function: main.m
clc
u1 = rand(4,1);
u2 = [2;32;6666;5];
wind_size = size(u1,1);
mi = calmi(u1, u2, wind_size);
% function: calmi.m
% u1:输入计算的向量1
% u2:输入计算的向量2
% wind_size:向量的长度
function mi = calmi(u1, u2, wind_size)
x = [u1, u2];
n = wind_size;
[xrow, xcol] = size(x);
bin = zeros(xrow,xcol);
pmf = zeros(n, 2);
for i = 1:2minx = min(x(:,i));maxx = max(x(:,i));binwidth = (maxx - minx) / n;edges = minx + binwidth*(0:n);histcEdges = [-Inf edges(2:end-1) Inf];[occur,bin(:,i)] = histc(x(:,i),histcEdges,1); %通过直方图方式计算单个向量的直方图分布pmf(:,i) = occur(1:n)./xrow;
end
%计算u1和u2的联合概率密度
jointOccur = accumarray(bin,1,[n,n]);  %(xi,yi)两个数据同时落入n*n等分方格中的数量即为联合概率密度
jointPmf = jointOccur./xrow;
Hx = -(pmf(:,1))'*log2(pmf(:,1)+eps);
Hy = -(pmf(:,2))'*log2(pmf(:,2)+eps);
Hxy = -(jointPmf(:))'*log2(jointPmf(:)+eps);
MI = Hx+Hy-Hxy;
mi = MI/sqrt(Hx*Hy);   % 标准化互信息,两种形式 NMI=2*MI/(Hx+Hy) 和 NMI=MI/sqrt(Hx*Hy)

histc函数制定数值边界为分界条件histc以 a=[1 2 3 4 5 6 7 8 9 0 ], edges=1:2:7 为例。
[n,bin]=histc(x,edges) 返回n=[2 2 2 1], bin=[ 1 1 2 2 3 3 4 0 0 0]。
edges=1:2:7即总共有三个数值分界,分别为1<=x<3, 3<=x<5, 5<=x<7,
n(1)=2表示a中落在第一个范围的数总共有两个,1和2;
n(2)=2表示a中落在第二个范围的数总共有两个,3和4;
n(3)=2表示a中落在第三个范围的数总共有两个,5和6;
n(4)=1表示a中的值等于edges最后一个值7的个数为1。
bin的值为a中的值分别在edges的哪个范围中(1就是在edges的第一个空中),若不在edges范围中,则返回0。

  • 上述代码C++实现:标准化互信息NMI计算步骤和C++代码(Normalized Mutual Information)
  • Python代码实现:NMI(标准化互信息) python实现
  • stanford的讲解:https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
  • 互信息和标准化互信息:https://www.cnblogs.com/ziqiao/archive/2011/12/13/2286273.html

实现二:基于正态核的多变量核密度估计
        原理介绍:请阅读:Estimation of mutual information using kernel density estimators和Jackknife approach to the estimation of mutual information

function [Ixy,lambda]=MutualInfo(X,Y)
%%
% Estimating Mutual Information with Moon et al. 1995
% between X and Y
% Input parameter
% X and Y : data column vectors (nL*1, nL is the record length)
%
% Output
% Ixy : Mutual Information
% lambda: scaled mutual information similar comparabble to cross-correlation coefficient
%
%  Programmed by
%  Taesam Lee, Ph.D., Research Associate
%  INRS-ETE, Quebecc
%  Hydrologist
%  Oct. 2010
%
%X=X';
Y=Y';d=2;
nx=length(X);
hx=(4/(d+2))^(1/(d+4))*nx^(-1/(d+4));Xall=[X;Y];
sum1=0;
for is=1:nxpxy=p_mkde([X(is),Y(is)]',Xall,hx);px=p_mkde([X(is)],X,hx);py=p_mkde([Y(is)],Y,hx);sum1=sum1+log(pxy/(px*py));
endIxy=sum1/nx;lambda=sqrt(1-exp(-2*Ixy));%% Multivariate kernel density estimate using a normal kernel
% with the same h
% input data X : dim * number of records
%            x : the data point in order to estimate mkde (d*1) vector
%            h : smoothing parameter
function [pxy]=p_mkde(x,X,h);s1=size(X);
d=s1(1);
N=s1(2);Sxy=cov(X');
sum=0;
% p1=1/sqrt((2*pi)^d*det(Sxy))*1/(N*h^d);% invS=inv(Sxy);
detS=det(Sxy);
for ix=1:Np2=(x-X(:,ix))'*(Sxy^(-1))*(x-X(:,ix));sum=sum+1/sqrt((2*pi)^d*detS)*exp(-p2/(2*h^2));
end
pxy=1/(N*h^d)*sum;

参考

  • 互信息公式及概述:https://www.omegaxyz.com/2018/08/02/mi/
  • 列向量互信息计算通用MATLAB代码:https://cloud.tencent.com/developer/article/1827416
  • 计算两个向量的互信息(Mutual Information) matlab程序:https://blog.csdn.net/asfdsdg/article/details/104977788
  • 互信息的介绍:https://www.zhihu.com/question/304499706/answer/544609335
  • 信息论(1)——熵、互信息、相对熵:https://zhuanlan.zhihu.com/p/36192699
  • 基于互信息的特征选择算法MATLAB实现:https://www.omegaxyz.com/2018/08/03/mifs/

高数篇(四)-- 互信息概述与matlab实现相关推荐

  1. 用matlab求累次极限,Matlab笔记——数值计算—高数篇015

    15. 数值计算-高数篇 一.求极限 limit(f,x,a)--求极限lim ()x a f x → limit(f,x,a,'right')--求右极限lim ()x a f x +→ limit ...

  2. 高数篇:01函数的中值定理

    高数篇:01函数的中值定理 高数篇:01函数的中值定理 十大中值定理 有关函数的中值定理 定理3:平均值(离散)定理 定理10:积分中值(连续)定理 定理3和10的区别 转载需注明出处 高数篇:01函 ...

  3. 【高数】高数第四章节——不定积分换元积分分部积分

    高数第四章节--不定积分&换元积分&分部积分 0.博主高数相关章节目录 1.数列 1.不定积分的概念与性质 1.1 原函数 1.2 不定积分 1.3 不定积分的性质 1.3.1 性质 ...

  4. 高数篇:04拉格朗日中值定理

    高数篇:04拉格朗日中值定理 高数篇:04拉格朗日中值定理 定理7:拉格朗日中值定理 拉格朗日与罗尔定理的区别 拉格朗日的应用1.0 多次使用拉氏2.0 转载需注明出处 高数篇:04拉格朗日中值定理 ...

  5. 高数篇:深度解析充分必要条件

    高数篇:深度解析充分必要条件 高数篇:深度解析充分必要条件 充分必要条件的定义 栗子测试 深度解析 转载需注明出处 高数篇:深度解析充分必要条件 如果你对充分必要条件已经有了充分的理解,可以忽略本篇: ...

  6. 大学生数学竞赛(高数篇)

    大学生数学竞赛,不是数学建模,分为数学组和非数学组,我是非数学组. 全国初赛只考高数,全国总决赛考高数和线性代数.当年我是我们学校唯一 一个进入全国总决赛的,非数学组就我一个,数学组全军覆没. 下面贴 ...

  7. 机器学习数学基础之高数篇——简单的泰勒公式(python版)

    不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏. 实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数.由于泰勒公式具有将复杂函 ...

  8. 考研数学知识点(高数篇,更新ing)

    目录 一.极限与连续 二.导数与微分 三.中值定理与导数应用 四.不定积分 五.定积分及其应用 六.反常积分 七.微分方程 一.极限与连续 相关知识点: 邻域.数集的界.映射.函数 数集D有界     ...

  9. 【寒假学习】考研高数第四章-不定积分

    考研数学一 高等数学 目录 文章目录 考研数学一 高等数学 @[toc] 第四章 不定积分 一. 不定积分定义 二. 不定积分的工具 三. 特殊积分类型 第四章 不定积分 2020.2.6 山东潍坊 ...

最新文章

  1. android 生成随机不相同的数
  2. Hadoop集群搭建(七:MySQL的安装配置)
  3. google guava工具包collect包HashMultiMap基本用法
  4. VConsole的使用
  5. 0.7秒,完成动漫线稿上色
  6. 实例源码_SpringBoot数据库源码解析Template实例化操作
  7. Linux下安装并破解StarUML
  8. 【转】刨根究底字符编码之十一——UTF-8编码方式与字节序标记BOM
  9. 关于在smarty中实现省市区三级联动
  10. Gensee SDK UserInfo类函数详细说明
  11. 【转】写给想学习自动化测试的新人
  12. html表格td的内容修改,点击table中的td,修改td中的内容功能实现
  13. 【人生】不管你挣多少, 钱永远是问题
  14. 如何用计算机制作公式,常用的那些软件能做公式编辑器
  15. PHP SPL 迭代器
  16. 20200516每日一句
  17. 4.STM32F407之HAL库——按键
  18. 网络知识 ACL NAT IPv6
  19. 一沉担千斤,一默解万愁
  20. 不同的打法,相同的内核,BAT车联网谁也不比谁更强

热门文章

  1. 怎么写出美观,可读性高的代码?
  2. 世界各国的杀毒软件指引表
  3. Linux下音频格式转换命令行工具
  4. 阿姨来了58到家竞品分析报告
  5. 用three.js做一个新闻联播开头动画(一)
  6. 文盘Rust——子命令提示,提高用户体验
  7. eas库存状态调整单不能反审核_金蝶EAS常见问题集(资产管理系统).pdf
  8. python核心编程笔记
  9. 防火墙测试-思博伦Avalanche 3100(2)_双极未来
  10. 一个四位数的各位数字的立方和