文章目录

  • 摄像机/观察空间
    • 摄像机位置
    • 摄像机方向
    • 右轴
    • 上轴
  • Look At
  • 自由移动
  • 移动速度
  • 鼠标输入
  • 缩放
  • 摄像机源码

 OpenGL本身没有摄像机(Camera)的概念,但我们可以通过把场景中的所有物体往相反方向移动的方式来模拟出摄像机,产生一种我们在移动的感觉,而不是场景在移动。

摄像机/观察空间

 当我们讨论摄像机/观察空间(Camera/View Space)的时候,是在讨论以摄像机的视角作为场景原点时场景中所有的顶点坐标:观察矩阵把所有的世界坐标变换为相对于摄像机位置与方向的观察坐标。要定义一个摄像机,我们需要它在世界空间中的位置、观察的方向、一个指向它右侧的向量以及一个指向它上方的向量。

摄像机位置

获取摄像机位置很简单。摄像机位置简单来说就是世界空间中一个指向摄像机位置的向量。

glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);

正z轴是从屏幕指向你的,如果我们希望摄像机向后移动,我们就沿着z轴的正方向移动。

摄像机方向

 下一个需要的向量是摄像机的方向,这里指的是摄像机指向哪个方向。现在我们让摄像机指向场景原点:(0, 0, 0)。还记得如果将两个矢量相减,我们就能得到这两个矢量的差吗?用场景原点向量减去摄像机位置向量的结果就是摄像机的指向向量。由于我们知道摄像机指向z轴负方向,但我们希望方向向量(Direction Vector)指向摄像机的z轴正方向。如果我们交换相减的顺序,我们就会获得一个指向摄像机正z轴方向的向量:

glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 cameraDirection = glm::normalize(cameraPos - cameraTarget);

右轴

 我们需要的另一个向量是一个右向量(Right Vector),它代表摄像机空间的x轴的正方向。为获取右向量我们需要先使用一个小技巧:先定义一个上向量(Up Vector)。接下来把上向量和第二步得到的方向向量进行叉乘。两个向量叉乘的结果会同时垂直于两向量,因此我们会得到指向x轴正方向的那个向量(如果我们交换两个向量叉乘的顺序就会得到相反的指向x轴负方向的向量):

glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 cameraRight = glm::normalize(glm::cross(up, cameraDirection));

上轴

 现在我们已经有了x轴向量和z轴向量,获取一个指向摄像机的正y轴向量就相对简单了:我们把右向量和方向向量进行叉乘:

glm::vec3 cameraUp = glm::cross(cameraDirection, cameraRight);

 在叉乘和一些小技巧的帮助下,我们创建了所有构成观察/摄像机空间的向量。对于想学到更多数学原理的读者,提示一下,在线性代数中这个处理叫做格拉姆—施密特正交化(Gram-Schmidt Process)。使用这些摄像机向量我们就可以创建一个LookAt矩阵了,它在创建摄像机的时候非常有用。

Look At

 使用矩阵的好处之一是如果你使用3个相互垂直(或非线性)的轴定义了一个坐标空间,你可以用这3个轴外加一个平移向量来创建一个矩阵,并且你可以用这个矩阵乘以任何向量来将其变换到那个坐标空间。这正是LookAt矩阵所做的,现在我们有了3个相互垂直的轴和一个定义摄像机空间的位置坐标,我们可以创建我们自己的LookAt矩阵了:

 其中R是右向量,U是上向量,D是方向向量,P是摄像机位置向量。注意,位置向量是相反的,因为我们最终希望把世界平移到与我们自身移动的相反方向。把这个LookAt矩阵作为观察矩阵可以很高效地把所有世界坐标变换到刚刚定义的观察空间。LookAt矩阵就像它的名字表达的那样:它会创建一个看着(Look at)给定目标的观察矩阵。
 幸运的是,GLM已经提供了这些支持。我们要做的只是定义一个摄像机位置,一个目标位置和一个表示世界空间中的上向量的向量(我们计算右向量使用的那个上向量)。接着GLM就会创建一个LookAt矩阵,我们可以把它当作我们的观察矩阵:

glm::mat4 view;
view = glm::lookAt(glm::vec3(0.0f, 0.0f, 3.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));

glm::LookAt函数需要一个位置、目标和上向量。

自由移动

 让摄像机绕着场景转的确很有趣,但是让我们自己移动摄像机会更有趣!首先我们必须设置一个摄像机系统,所以在我们的程序前面定义一些摄像机变量很有用:

glm::vec3 cameraPos   = glm::vec3(0.0f, 0.0f,  3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp    = glm::vec3(0.0f, 1.0f,  0.0f);

LookAt函数现在成了:

view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

 我们首先将摄像机位置设置为之前定义的cameraPos。方向是当前的位置加上我们刚刚定义的方向向量。这样能保证无论我们怎么移动,摄像机都会注视着目标方向。让我们摆弄一下这些向量,在按下某些按钮时更新cameraPos向量。

void processInput(GLFWwindow *window)
{...float cameraSpeed = 0.05f; // adjust accordinglyif (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)cameraPos += cameraSpeed * cameraFront;if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)cameraPos -= cameraSpeed * cameraFront;if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

 当我们按下WASD键的任意一个,摄像机的位置都会相应更新。如果我们希望向前或向后移动,我们就把位置向量加上或减去方向向量。如果我们希望向左右移动,我们使用叉乘来创建一个右向量(Right Vector),并沿着它相应移动就可以了。这样就创建了使用摄像机时熟悉的横移(Strafe)效果。

移动速度

 目前我们的移动速度是个常量。理论上没什么问题,但是实际情况下根据处理器的能力不同,有些人可能会比其他人每秒绘制更多帧,也就是以更高的频率调用processInput函数。结果就是,根据配置的不同,有些人可能移动很快,而有些人会移动很慢。当你发布你的程序的时候,你必须确保它在所有硬件上移动速度都一样。
 图形程序和游戏通常会跟踪一个时间差(Deltatime)变量,它储存了渲染上一帧所用的时间。我们把所有速度都去乘以deltaTime值。结果就是,如果我们的deltaTime很大,就意味着上一帧的渲染花费了更多时间,所以这一帧的速度需要变得更高来平衡渲染所花去的时间。使用这种方法时,无论你的电脑快还是慢,摄像机的速度都会相应平衡,这样每个用户的体验就都一样了。
 我们跟踪两个全局变量来计算出deltaTime值:

float deltaTime = 0.0f; // 当前帧与上一帧的时间差
float lastFrame = 0.0f; // 上一帧的时间

在每一帧中我们计算出新的deltaTime以备后用。

float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

现在我们有了deltaTime,在计算速度的时候可以将其考虑进去了:

void processInput(GLFWwindow *window)
{float cameraSpeed = 2.5f * deltaTime;...
}

鼠标输入

 偏航角和俯仰角是通过鼠标(或手柄)移动获得的,水平的移动影响偏航角,竖直的移动影响俯仰角。它的原理就是,储存上一帧鼠标的位置,在当前帧中我们当前计算鼠标位置与上一帧的位置相差多少。如果水平/竖直差别越大那么俯仰角或偏航角就改变越大,也就是摄像机需要移动更多的距离。
 首先我们要告诉GLFW,它应该隐藏光标,并捕捉(Capture)它。捕捉光标表示的是,如果焦点在你的程序上(译注:即表示你正在操作这个程序,Windows中拥有焦点的程序标题栏通常是有颜色的那个,而失去焦点的程序标题栏则是灰色的),光标应该停留在窗口中(除非程序失去焦点或者退出)。我们可以用一个简单地配置调用来完成:

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

 在调用这个函数之后,无论我们怎么去移动鼠标,光标都不会显示了,它也不会离开窗口。对于FPS摄像机系统来说非常完美。
 为了计算俯仰角和偏航角,我们需要让GLFW监听鼠标移动事件。(和键盘输入相似)我们会用一个回调函数来完成,函数的原型如下:

void mouse_callback(GLFWwindow* window, double xpos, double ypos);

这里的xpos和ypos代表当前鼠标的位置。当我们用GLFW注册了回调函数之后,鼠标一移动mouse_callback函数就会被调用:

glfwSetCursorPosCallback(window, mouse_callback);

在处理FPS风格摄像机的鼠标输入的时候,我们必须在最终获取方向向量之前做下面这几步:
 1、计算鼠标距上一帧的偏移量。
 2、把偏移量添加到摄像机的俯仰角和偏航角中。
 3、对偏航角和俯仰角进行最大和最小值的限制。
 4、计算方向向量。
第一步是计算鼠标自上一帧的偏移量。我们必须先在程序中储存上一帧的鼠标位置,我们把它的初始值设置为屏幕的中心(屏幕的尺寸是800x600)

float lastX = 400, lastY = 300;

然后在鼠标的回调函数中我们计算当前帧和上一帧鼠标位置的偏移量:

float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // 注意这里是相反的,因为y坐标是从底部往顶部依次增大的
lastX = xpos;
lastY = ypos;float sensitivity = 0.05f;
xoffset *= sensitivity;
yoffset *= sensitivity;

注意我们把偏移量乘以了sensitivity(灵敏度)值。如果我们忽略这个值,鼠标移动就会太大了;你可以自己实验一下,找到适合自己的灵敏度值。
接下来我们把偏移量加到全局变量pitch和yaw上:

yaw   += xoffset;
pitch += yoffset;

第三步,我们需要给摄像机添加一些限制,这样摄像机就不会发生奇怪的移动了(这样也会避免一些奇怪的问题)。对于俯仰角,要让用户不能看向高于89度的地方(在90度时视角会发生逆转,所以我们把89度作为极限),同样也不允许小于-89度。这样能够保证用户只能看到天空或脚下,但是不能超越这个限制。我们可以在值超过限制的时候将其改为极限值来实现:

if(pitch > 89.0f)pitch =  89.0f;
if(pitch < -89.0f)pitch = -89.0f;

注意我们没有给偏航角设置限制,这是因为我们不希望限制用户的水平旋转。当然,给偏航角设置限制也很容易,如果你愿意可以自己实现。
第四也是最后一步,就是通过俯仰角和偏航角来计算以得到真正的方向向量:

glm::vec3 front;
front.x = cos(glm::radians(pitch)) * cos(glm::radians(yaw));
front.y = sin(glm::radians(pitch));
front.z = cos(glm::radians(pitch)) * sin(glm::radians(yaw));
cameraFront = glm::normalize(front);

缩放

 作为我们摄像机系统的一个附加内容,我们还会来实现一个缩放(Zoom)接口。在之前的教程中我们说视野(Field of View)或fov定义了我们可以看到场景中多大的范围。当视野变小时,场景投影出来的空间就会减小,产生放大(Zoom In)了的感觉。我们会使用鼠标的滚轮来放大。与鼠标移动、键盘输入一样,我们需要一个鼠标滚轮的回调函数:

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{if(fov >= 1.0f && fov <= 45.0f)fov -= yoffset;if(fov <= 1.0f)fov = 1.0f;if(fov >= 45.0f)fov = 45.0f;
}

摄像机源码

main.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <cmath>
#include "../shader.h"
#include "../stb_image.h"
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>float vertices[] = {-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,0.5f, -0.5f, -0.5f, 1.0f, 0.0f,0.5f, 0.5f, -0.5f, 1.0f, 1.0f,0.5f, 0.5f, -0.5f, 1.0f, 1.0f,-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,0.5f, -0.5f, 0.5f, 1.0f, 0.0f,0.5f, 0.5f, 0.5f, 1.0f, 1.0f,0.5f, 0.5f, 0.5f, 1.0f, 1.0f,-0.5f, 0.5f, 0.5f, 0.0f, 1.0f,-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,-0.5f, 0.5f, -0.5f, 1.0f, 1.0f,-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,0.5f, 0.5f, 0.5f, 1.0f, 0.0f,0.5f, 0.5f, -0.5f, 1.0f, 1.0f,0.5f, -0.5f, -0.5f, 0.0f, 1.0f,0.5f, -0.5f, -0.5f, 0.0f, 1.0f,0.5f, -0.5f, 0.5f, 0.0f, 0.0f,0.5f, 0.5f, 0.5f, 1.0f, 0.0f,-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,0.5f, -0.5f, -0.5f, 1.0f, 1.0f,0.5f, -0.5f, 0.5f, 1.0f, 0.0f,0.5f, -0.5f, 0.5f, 1.0f, 0.0f,-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,0.5f, 0.5f, -0.5f, 1.0f, 1.0f,0.5f, 0.5f, 0.5f, 1.0f, 0.0f,0.5f, 0.5f, 0.5f, 1.0f, 0.0f,-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,-0.5f, 0.5f, -0.5f, 0.0f, 1.0f
};glm::vec3 cubePositions[] = {glm::vec3(0.0f, 0.0f, 0.0f),glm::vec3(2.0f, 5.0f, -15.0f),glm::vec3(-1.5f, -2.2f, -2.5f),glm::vec3(-3.8f, -2.0f, -12.3f),glm::vec3(2.4f, -0.4f, -3.5f),glm::vec3(-1.7f, 3.0f, -7.5f),glm::vec3(1.3f, -2.0f, -2.5f),glm::vec3(1.5f, 2.0f, -2.5f),glm::vec3(1.5f, 0.2f, -1.5f),glm::vec3(-1.3f, 1.0f, -1.5f)
};glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);float ratio = 0.5;
void processInput(GLFWwindow* window);
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
float deltaTime = 0.0f; // 距离上一帧的时间间隔
float lastFrame = 0.0f; // 上一帧发生的时间
bool firstMouse = true;
float yaw = -90.0f;
float pitch = 0.0f;
float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;
float fov = 45.0f;int main() {glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__ glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endifGLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);if (window == NULL) {std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}//GLFW将窗口的上下文设置为当前线程的上下文glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);glfwSetCursorPosCallback(window, mouse_callback);glfwSetScrollCallback(window, scroll_callback);//GLAD// glad: 加载所有OpenGL函数指针if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {std::cout << "Failed to initialize GLAD" << std::endl;return -1;}Shader ourShader("shaders/shader.vs","shaders/shader.fs");//创建VBO和VAO对象,并赋予IDunsigned int VBO, VAO;glGenVertexArrays(1, &VAO);glGenBuffers(1, &VBO);//绑定VBO和VAO对象glBindVertexArray(VAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);//为当前绑定到target的缓冲区对象创建一个新的数据存储。//如果data不是NULL,则使用来自此指针的数据初始化数据存储glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//告知Shader如何解析缓冲里的属性值glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);//开启VAO管理的第一个属性值glEnableVertexAttribArray(0);//告知Shader如何解析缓冲里的属性值glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));//开启VAO管理的第一个属性值glEnableVertexAttribArray(1);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);glBindBuffer(GL_ARRAY_BUFFER, 0);glBindVertexArray(0);stbi_set_flip_vertically_on_load(true);unsigned int texture, texture1;glGenTextures(1, &texture);glBindTexture(GL_TEXTURE_2D, texture);// 加载并生成纹理 int width, height, nrChannels;unsigned char* data = stbi_load("../pics/container.jpg", &width, &height, &nrChannels, 0); if (data) {glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);//float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };//glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);}else {std::cout << "Failed to load texture" << std::endl;}stbi_image_free(data);glGenTextures(1, &texture1);glBindTexture(GL_TEXTURE_2D, texture1);data = stbi_load("../pics/awesomeface.png", &width, &height, &nrChannels, 0);if (data){glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);}else{std::cout << "Failed to load texture" << std::endl;}stbi_image_free(data);glActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, texture);glActiveTexture(GL_TEXTURE1);glBindTexture(GL_TEXTURE_2D, texture1);glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);ourShader.use();ourShader.setInt("texture1", 0);ourShader.setInt("texture2", 1);ourShader.setFloat("ratio", ratio);// 渲染循环while (!glfwWindowShouldClose(window)) {processInput(window);float currentFrame = glfwGetTime();deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;glClearColor(0.2f, 0.3f, 0.3f, 1.0f); //状态设置glClear(GL_COLOR_BUFFER_BIT); //状态使用glm::mat4 model = glm::mat4(1.0f);model = glm::rotate(model, (float)glfwGetTime() * glm::radians(50.0f), glm::vec3(0.5f, 1.0f, 0.0f));int modelLoc = glGetUniformLocation(ourShader.ID, "model");glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));const float radius = 10.0f;float camX = sin(glfwGetTime()) * radius;float camZ = cos(glfwGetTime()) * radius;glm::mat4 view;view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);int viewLoc = glGetUniformLocation(ourShader.ID, "view");glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));glm::mat4 projection;projection = glm::perspective(glm::radians(fov), 800.0f / 600.0f, 0.1f, 100.0f);int projectionLoc = glGetUniformLocation(ourShader.ID, "projection");glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));ourShader.use();ourShader.setFloat("ratio", ratio);glEnable(GL_DEPTH_TEST);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// glfw: 交换缓冲区和轮询IO事件(按键按下/释放、鼠标移动等)glBindVertexArray(VAO);for (unsigned int i = 0; i < 10; i++) {glm::mat4 model = glm::mat4(1.0f);model = glm::translate(model, cubePositions[i]);float angle = 20.0f * i;model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));ourShader.setMat4("model", model);glDrawArrays(GL_TRIANGLES, 0, 36);}glfwSwapBuffers(window);glfwPollEvents();}// glfw: 回收前面分配的GLFW先关资源. glfwTerminate();glDeleteVertexArrays(1, &VAO);glDeleteBuffers(1, &VBO);glDeleteProgram(ourShader.ID);return 0;
}void processInput(GLFWwindow* window) {if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS){ratio += 0.001;printf("%lf\n", ratio);if (ratio > 1.0)ratio = 1.0;}if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS){ratio -= 0.001;if (ratio < 0.0)ratio = 0.0;}float cameraSpeed = 2.5f * deltaTime;if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)cameraPos += cameraSpeed * cameraFront;if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)cameraPos -= cameraSpeed * cameraFront;if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;}void framebuffer_size_callback(GLFWwindow* window, int width, int height) {glViewport(0, 0, width, height);
}void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{if (firstMouse) { lastX = xpos; lastY = ypos; firstMouse = false; }float xoffset = xpos - lastX;float yoffset = lastY - ypos;lastX = xpos;lastY = ypos;float sensitivity = 0.1f;xoffset *= sensitivity;yoffset *= sensitivity;yaw += xoffset;pitch += yoffset;if (pitch > 89.0f) pitch = 89.0f;if (pitch < -89.0f) pitch = -89.0f;glm::vec3 direction;direction.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));direction.y = sin(glm::radians(pitch));direction.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));cameraFront = glm::normalize(direction);}void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {fov -= (float)yoffset;if (fov < 1.0f) fov = 1.0f;if (fov > 75.0f) fov = 75.0f;
}

shader.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;out vec2 TexCoord;
uniform float offsetX;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos.x,aPos.y,aPos.z, 1.0);TexCoord = aTexCoord;
}

shader.fs

#version 330 core
out vec4 FragColor;
in vec2 TexCoord;uniform sampler2D texture1;
uniform sampler2D texture2;
uniform float ratio;void main()
{FragColor = mix(texture(texture1, TexCoord), texture(texture2, vec2(1.0-TexCoord.x,TexCoord.y)), ratio);
}

参考地址

OpenGL之摄像机相关推荐

  1. OpenGL中摄像机矩阵的计算原理

    OpenGL中摄像机矩阵的计算原理 熟悉OpenGL|ES的朋友,可能会经常设置摄像机的view矩阵,iOS中相对较好,已经封装了方向,只需要设置摄像机位置,目标点位置以及UP向量即可.下面先介绍下摄 ...

  2. 【Modern OpenGL】摄像机系统 Camera

    说明:跟着learnopengl的内容学习,不是纯翻译,只是自己整理记录.  强烈推荐原文,无论是内容还是排版. 原文链接  本文地址:http://blog.csdn.net/aganlengzi/ ...

  3. OpenGL | 放置摄像机gluLookAt函数

    一.gluLookAt函数 gluLookAt用来定义观察者(相机)的状态,包括观察者在世界坐标系中所处的位置.看向世界坐标系中的方向(可以理解为眼睛所看向的方向).观察者头部的朝向(可以在一个平面上 ...

  4. C++ opengl 放置摄像机

    放置摄像机 在场景绘制之前摆放摄像机 [把摄像机摆好了,才能看到东西] gluLookAt 前3个参数为:摄像机的位置: 中间3个参数:眼睛看到的视点: 后3个参数:从头顶发出去的方向向量: 犹如人看 ...

  5. OPenGL 内部摄像机(Inside out:Camera)

    gluLookAt,它有三类(每类3个)共9个引数: void gluLookAt(GLdouble eyex,GLdouble eyey,GLdouble eyez, GLdouble center ...

  6. OpenGL基础14:摄像机

    很可惜,openGL没有摄像机的概念 一.摄像机 我们当然需要想办法模拟出一个摄像机,也就是玩家的视角,在前面这一章:第一个正方体,我们仅将"摄像机"往z轴正方向移动了3个单位,并 ...

  7. 用于OpenGl的Camera类(QT实现的3D摄像机类)

    最近在搞QT上的OPENGL,有好多库都要自己写啊 哐哧哐哧写了一大顿,已经写好了,回过头来记录一下 这篇讲的时关于opengl自由摄像机的问题 写摄像机的思路是,写一个万能的摄像机基类,可以支持各种 ...

  8. OpenGL与OpenCV实现增强现实

    该程序通过OpenCV实现对Marker的识别和定位,然后通过OpenGL将虚拟物体叠加到摄像头图像下,实现增强现实.首先来看看我们使用的Marker: 这是众多Marker中的一个,它们都被一圈的黑 ...

  9. OpenGL 坐标系统(Perspective)

    一.坐标系统概述 本文类容见LearnOpenGL CN.直接copy过来留个存档. OpenGL希望每次顶点着色后,我们的可见顶点都为标准化设备坐标(Normalized Device Coordi ...

最新文章

  1. java swing 文件选择,设置默认文件选择路径,桌面路径
  2. 11个三相异步电动机常见故障与维修方法。
  3. 让 FileUpload 文本框只读
  4. 五万块钱买什么车好_10万预算买什么车好?看空间、动力和配置
  5. Quartz Scheduler失火指令说明
  6. python数据分析基础教程 numpy_Python数据分析基础教程:NumPy学习指南(第2版)
  7. C语言(CED)递归实现汉诺塔问题
  8. recyclerview 设置分割线的高度
  9. 5.1.1 SELECT读取数据
  10. POJ 3597 Polygon Division (DP)
  11. css 背景图 左右空白,缩小窗口时CSS背景图出现右侧空白BUG的解决方法
  12. ImportError: No module named rospy
  13. oracle数据库: ORA-01775: 同义词的循环链问题
  14. 蓝桥杯摔手机测试次数
  15. 用Python让你完成一次绝美樱花视觉体验瞬间陷入二次元~
  16. linux服务器新装hba卡,Linux系统上安装FC HBA卡驱动-weiyonghz-ChinaUnix博客
  17. Flask 新闻网站搜索功能的实现(笔记)
  18. android+mid播放器,视频:瑞芯微MTK安卓/裸眼3D播放器/MID
  19. ue4超级跳、do once、技能冷却时间
  20. 惠普计算机启动后不显示桌面为何故,惠普电脑开机屏幕不亮怎么办

热门文章

  1. 网络计算机怎么用,台式电脑怎么使用手机网络上网
  2. css3动画的神奇之处
  3. [转载] 七龙珠第一部——第062话 超神水的效果
  4. mysql运行信息(SHOW STATUS)详情
  5. spring接受参数的几种形式
  6. 磁盘在磁盘管理中显示没有初始化找回文件方案
  7. 招银网络软件测试合肥面试题,【招银网络科技面试|面试题】-看准网
  8. ati driver for linux
  9. Linux(Centos7)服务器配置光网卡
  10. 原生ajax(常见的http状态码/同源-跨域)