本文原理参考论文: Laplacian Mesh Processing

本文复现参考:Mesh模型的Laplace Deformation(网格形变 - 拉普拉斯形变) - C++代码实现

文章目录

  • 拉普拉斯网格变形原理
    • 拉普拉斯坐标
    • 拉普拉斯矩阵
    • 原理分析
    • 添加锚点
    • 求解形变后的坐标

拉普拉斯网格变形是一个相当经典的工作,本工作复现了一下基础的部分,这里记录下原理部分和结果。
复现结果演示如下:

拉普拉斯网格变形原理

可以用用一句话来解释拉普拉斯网格变形的原理: 形变前的点的拉普拉斯坐标与形变后的点的拉普拉斯坐标尽可能相等。这句话里面其实只有点的拉普拉斯坐标是我们所不清楚的,下面阐述拉普拉斯坐标为何物。

拉普拉斯坐标

拉普拉斯坐标是一个相当简单的概念,对于一个三角网格模型M=(V,E,F),V为顶点集,E为边集,F为三角面片集。V(v1,…vn)中每一个点的坐标表示都是笛卡尔坐标,下图(源自论文Laplacian Mesh Processing)和公式定义了拉普拉斯坐标的表示,点vi的笛卡尔坐标减去所有vi的相邻点vj的笛卡尔坐标的平均值,di表示vi的相邻点的个数。

δi=(δi(x),δi(y),δi(z))=vi−1di∑j∈N(i)vj\delta_{i}=\left(\delta_{i}^{(x)}, \delta_{i}^{(y)}, \delta_{i}^{(z)}\right)=\mathbf{v}_{i}-\frac{1}{d_{i}} \sum_{j \in N(i)} \mathbf{v}_{j} δi​=(δi(x)​,δi(y)​,δi(z)​)=vi​−di​1​j∈N(i)∑​vj​
拉普拉斯坐标蕴含了网格模型中的细节信息,而细节信息正是我们在网格形变后不希望改变的,拉普拉斯网格变形正是基于这一约束。

拉普拉斯矩阵

拉普拉斯坐标的计算我们可以按照上面的公式分别求解,但是为了简化计算,通常用矩阵乘法计算拉普拉斯坐标。只需要定义拉普拉斯矩阵L,便可求解拉普拉斯坐标 δ = L*V ( V表示所有点构成的笛卡尔坐标矩阵)。下面给出L的定义:

L=I−D−1AL=I-D^{-1} A L=I−D−1A
其中,I为单位矩阵,D矩阵是一个对角矩阵,对角线上的值Dii = di,di是第i个点的邻接点数目 ,A 矩阵是邻接矩阵。若点vi和vj相邻,Aij = 1,若不相邻,则 Aij = 0。
Aij={1(i,j)∈E0otherwise A_{i j}=\left\{\begin{array}{ll}{1} & {(i, j) \in E} \\ {0} & {\text { otherwise }}\end{array}\right. Aij​={10​(i,j)∈E otherwise ​
在计算机中求矩阵的逆是比较麻烦的,因此再使用上面公式的时候我们通常两边同乘D将公式变成如下形式。之后便用Ls代替L。
LS=DL=D−AL_{S}=D L=D-A LS​=DL=D−A

(LS)ij={dii=j−1(i,j)∈E0otherwise \left(L_{S}\right)_{i j}=\left\{\begin{array}{ll}{d_{i}} & {i=j} \\ {-1} & {(i, j) \in E} \\ {0} & {\text { otherwise }}\end{array}\right. (LS​)ij​=⎩⎨⎧​di​−10​i=j(i,j)∈E otherwise ​

原理分析

回到一开始说的拉普拉斯原理:形变前的点的拉普拉斯坐标与形变后的点的拉普拉斯坐标尽可能相等。现在将这句话用公式表达出来:

(L)nn * Xn3 = (L)nn * Cn3 = Bn3

用Ls矩阵代替L矩阵,等式两边同乘D,变为下式:

(Ls)nn * Xn3 = (Ls)nn * Cn3 = D*Bn3

n表示网格中点的个数,Lnn表示拉普拉斯坐标矩阵大小为n*n,(Ls)nn=DL( L为拉普拉斯矩阵,D为上述描述的对角阵),X表示形变后的点的笛卡尔坐标(需要求解的目标),C表示形变前的点的笛卡尔坐标,B表示形变前的拉普拉斯坐标。

写到上面的矩阵的形式,是不是非常熟悉?这就是矩阵中最为常见的Ax=b的形式啊,对应到这个问题就是LX=B

这里简单回顾一下矩阵里求解Ax=b的方法,当A是可逆的: x= A~ b(这里用A~表示A的逆),当A不是方阵的时候,通常我们用最小二乘求解最优解,等式两边同乘以AT :ATAx=ATb−−>x=(ATA)−1ATbA^{T}A x=A^{T} b --> x = (A^{T}A)^{-1}A^{T} bATAx=ATb−−>x=(ATA)−1ATb(符号-1表示逆,ATA^{T}AT表示矩阵A的转置)

在拉普拉斯变换中如果Ls是可逆的我们就可以直接计算 形变后的点的坐标矩阵 X = (Ls)~ * D * Bn3

但是很遗憾,通常Ls是不可逆的,对于使得Ls可逆的解释原文是那么说的

为了唯一地还原全局坐标,需要解决一个完整的线性系统。 假设模型是相连的的,我们需要指定一个顶点的笛卡尔坐标来解决平移自由度。 替换顶点i的坐标等效于从L删除第i行和第i列,这使矩阵可逆。

为什么需要增加锚点? 我的理解是这样会增加Ls矩阵的秩,从而使得可以求解LsX = DB。

锚点是什么呢? 现在可以滑动鼠标看看最开始的gif动态图,图中标识的红色点和绿色点即为锚点。锚点分成两种:固定锚点(形变过程中,该点是雷打不动的,如图中的绿色点),移动锚点(形变过程中,该点是控制移动的,如图中的红色点,这些红色点绕着y轴顺时针旋转,可以说是移动锚点牵引着形变的进行)

有一个博客说的也很有趣:

因为形变需要有控制点这种东西,所以在矩阵中增加锚点信息。也就是说,一个mesh,肯定有点移动了,才发生的laplace形变,不然形变个鬼啊。所以这些移动了的点和形变过程中保证不动的点,成为锚点,因为它们属于我们不需要计算坐标的点,因为我们已经知道了。

添加锚点

直接给出添加锚点的公式:

(Ln×nAa×n)x=(Bn×3Aba×3)\left(\begin{array}{c}{L_{n \times n}} \\ { A_{a \times n}}\end{array}\right)\mathbf{x}=\left(\begin{array}{c}{B_{n \times 3}} \\ { Ab_{a \times 3}}\end{array}\right)(Ln×n​Aa×n​​)x=(Bn×3​Aba×3​​)

其中L和B为已知的,A和Ab为矩阵需要增加的锚点信息,Aa×3{ A_{a \times 3}}Aa×3​是一个标识矩阵,其中的a表示添加的锚点个数(固定锚点和移动锚点个数之和),n为网格总点数。Aba×3{ Ab_{a \times 3}}Aba×3​ 表示锚点的笛卡坐标。

这样看上去非常抽象,举个栗子

设n = 5,a = 2(一个移动锚点,一个固定锚点),固定锚点的坐标为(Fx,Fy,Fz),下标为1, 移动锚点的坐标为(Mx,My,Mz)下标为4。则:

Aa×3=(0100000001){ A_{a \times 3}} = ( \begin{matrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{matrix}) Aa×3​=(00​10​00​00​01​) Aba×3=(FxFyFzMxMyMz){ Ab_{a \times 3}} = ( \begin{matrix} Fx & Fy & Fz \\ Mx & My & Mz \end{matrix}) Aba×3​=(FxMx​FyMy​FzMz​)

求解形变后的坐标

令L∗=(Ln×nAa×n),Ls∗=DL∗L^{*} = \left(\begin{array}{c}{L_{n \times n}} \\ { A_{a \times n}}\end{array}\right) , L_{s}^{*} = DL^{*} L∗=(Ln×n​Aa×n​​),Ls∗​=DL∗

则最终求解只需求解:Ls−X=DBL_{s}^{-}X = DBLs−​X=DB ,注意这时Ls−L_{s}^{-}Ls−​不是方阵,需要两边同乘其转置,将X左边部分转为方阵。

(Ls∗)TLs∗X=(Ls∗)TDB(L_{s}^{*})^{T}L_{s}^{*} X = (L_{s}^{*})^{T}DB(Ls∗​)TLs∗​X=(Ls∗​)TDB

最终求得X:

X=((Ls∗)TLs∗)−1(Ls∗)TDBX = ((L_{s}^{*})^{T}L_{s}^{*} )^{-1}(L_{s}^{*})^{T}DBX=((Ls∗​)TLs∗​)−1(Ls∗​)TDB

接下来就只需要更新点的坐标即可,注意只改变非锚点的点的坐标

写在最后
该方法经过测试对于点数少于100的模型具有较好的实时性,对于上千的点的模型程序处理就会变得很慢。

[图形学]拉普拉斯网格变形(Laplace Deformation)原理及复现相关推荐

  1. 图形处理(三)简单拉普拉斯网格变形-Siggraph 2004

    三角网格变形一直是CAGD相关领域的重点,刚上研究生的时候,感觉有点神奇.而且一上来导师就给我发了一篇基于格林坐标的自由变形的相关paper,让我看,外文文献,看了n多天,第一次看外文文献,啥也没看懂 ...

  2. Siggraph三角网格变形之拉普拉斯变换

    三角网格变形一直是CAGD相关领域的重点,刚上研究生的时候,感觉有点神奇.而且一上来导师就给我发了一篇基于格林坐标的自由变形的相关paper,让我看,外文文献,看了n多天,第一次看外文文献,啥也没看懂 ...

  3. 图形处理(十二)拉普拉斯网格优化、最小二乘网格模型光顺

    看这篇博文前,请先参考我的另外一篇博文<图形处理(三)简单拉普拉斯网格变形-Siggraph 2004>学习拉普拉斯坐标的相关理论知识.这里要分享的paper,是通过拉普拉斯的方法实现三角 ...

  4. 图形处理(五)基于旋转不变量的网格变形-Siggraph 2007

    一.相关理论 本篇博文主要讲解2007年Siggraph上的一篇经典paper:<Linear Rotation-invariant Coordinates for Meshes>,这篇p ...

  5. Siggraph三角网格变形之三维网格拉普拉斯

    Mesh Editing中重要的特征是要保持局部的细节,尤其Local Laplace Coordinates的不变性,最简单的Laplace 网格处理的原理如下:          网格的lapla ...

  6. arap deformation 网格变形可视化

    欢迎关注更多精彩 关注我,学习常用算法与数据结构,一题多解,降维打击. rarp变形全称是 As-Rigid-As-Possible Suface Deformation. 意思是变形时尽量使每条边保 ...

  7. 基于笼形的变形Cage-based deformation(CBD)_ 均值坐标MVC(Mean Value Coordinate)方法计算cage的权重

    基于笼形的变形Cage-based deformation(CBD) 起源 CBD来源于 Free Form Deformation (FFD). FFD通过操控网格上的顶点(grid / cage) ...

  8. 拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)

    作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦 ...

  9. 网格变形动画MeshTransform

    原文:Mesh Transforms 作者:Bartosz Ciechanowski 译者:kmyhy 我是 transform 属性的超级粉丝.让 UIView 或者 CALayer 的形体发生改变 ...

  10. Open3d学习计划—高级篇 8(网格变形)

    Open3D是一个开源库,支持快速开发和处理3D数据.Open3D在c++和Python中公开了一组精心选择的数据结构和算法.后端是高度优化的,并且是为并行化而设置的. 本系列学习计划有Blue同学作 ...

最新文章

  1. 一些我们码代码过程中有用的小技巧
  2. HDU-1128 Self Numbers 筛选
  3. python中的迭代库
  4. 树莓派与Android客户端进行socket通信
  5. QML和C++混合编程--(三)
  6. 15crmo焊接后多长时间探伤_3分钟get钢筋焊接工程
  7. CVPR 2021 | 又好又快的视频异常检测,引入元学习的动态原型学习组件
  8. OpenCV-闭运算(CLOSE)
  9. JEECG传统版问题分析
  10. 孔子称他为贤,孟子尊他为圣,柳下惠何德何能?2700年家谱揭露真相
  11. 原型工具Axure:学习路线及资源
  12. php px与rem转换,pt 与 px、em、rem 的区别与换算
  13. Mac M1芯片 安装vmware 和ubuntu 以及换源全过程
  14. 深度报道 第1个从太空发回的LoRa信号(含视频)
  15. Nginx下同域部署多个Vue项目(history路由模式),报404、500错误
  16. ccflow表结构与运行机制(二次开发必看)
  17. Android 电子书功能实现、长按选中、高亮显示。 TXT
  18. 蒲江县实验中学计算机老师照片,上“新”!实验中学一批高能教师亮相!
  19. 【Unity3D】 新手引导
  20. 服务器硬盘常用的阵列方式有几种,常见的RAID阵列方式

热门文章

  1. OA系统四级模块编写测试用例(角色模块)
  2. html中怎样设置放大功能,CSS如何设置图片放大效果?
  3. 使用vb.net调用bartender并打印标签
  4. 在Python中分词
  5. Java_API文档
  6. nrf52840蓝牙协议栈主机一拖八
  7. 锚杆拉拔试验弹性模量计算_锚杆拉拔试验检测标准
  8. 【PyTorch深度学习项目实战100例】—— 基于ResNet101实现猴痘病毒识别任务 | 第31例
  9. 统计学(第七版 贾俊平)第七章 期末复习笔记(详细 附例题详解及公式)
  10. 贾俊平统计学blog整理