学习图像处理,无疑会涉及到降维的操作,而PCA是常用的降维算法,既然经常用到,所以需要抠明白才行啊~~

PCA(PrincipalComponents Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。

这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。

这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?

一、简介

PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?对于学习图像处理的人来说,都知道PCA是降维的,但是,很多人不知道具体的原理,为此,我写这篇文章,来详细阐述一下PCA及其具体计算过程:

二、PCA详解

1、原始数据:

为了方便,我们假定数据是二维的,借助网络上的一组数据,如下:

x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T
y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T

2、计算协方差矩阵

什么是协方差矩阵?相信看这篇文章的人都学过数理统计,一些基本的常识都知道,但是,也许你很长时间不看了,都忘差不多了,为了方便大家更好的理解,这里先简单的回顾一下数理统计的相关知识,当然如果你知道协方差矩阵的求法你可以跳过这里。

(1)协方差矩阵:

首先我们给你一个含有n个样本的集合,依次给出数理统计中的一些相关概念:

均值:
标准差:
方差:

既然我们都有这么多描述数据之间关系的统计量,为什么我们还要用协方差呢?我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解这几科成绩之间的关系,这时,我们就要用协方差,协方差就是一种用来度量两个随机变量关系的统计量,其定义为:

从协方差的定义上我们也可以看出一些显而易见的性质,如:

(X的方差)

需要注意的是,协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。

(2)协方差矩阵的求法:

协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。下面我们将在matlab中用一个例子进行详细说明:

首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。
MySample = fix(rand(10,3)*50)

根据公式,计算协方差需要计算均值,那是按行计算均值还是按列呢,我一开始就老是困扰这个问题。前面我们也特别强调了,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。样本矩阵的每行是一个样本,每列为一个维度,所以我们要按列计算均值。为了描述方便,我们先将三个维度的数据分别赋值:

dim1 = MySample(:,1);
dim2 = MySample(:,2);
dim3 = MySample(:,3);

计算dim1与dim2,dim1与dim3,dim2与dim3的协方差:

sum( (dim1-mean(dim1)) .* (dim2-mean(dim2)) ) / ( size(MySample,1)-1 ) % 得到  74.5333
sum( (dim1-mean(dim1)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -10.0889
sum( (dim2-mean(dim2)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -10***000

搞清楚了这个后面就容易多了,协方差矩阵的对角线就是各个维度上的方差,下面我们依次计算:

std(dim1)^2 % 得到   108.3222
std(dim2)^2 % 得到   260.6222
std(dim3)^2 % 得到  94.1778

这样,我们就得到了计算协方差矩阵所需要的所有数据,调用Matlab自带的cov函数进行验证:

cov(MySample)

可以看到跟我们计算的结果是一样的,说明我们的计算是正确的。但是通常我们不用这种方法,而是用下面简化的方法进行计算:

先让样本矩阵中心化,即每一维度减去该维度的均值,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可。其实这种方法也是由前面的公式通道而来,只不过理解起来不是很直观而已。大家可以自己写个小的矩阵看一下就明白了。其Matlab代码实现如下:

X = MySample – repmat(mean(MySample),10,1);    % 中心化样本矩阵
C = (X’*X)./(size(X,1)-1)

(为方便对matlab不太明白的人,小小说明一下各个函数,同样,对matlab有一定基础的人直接跳过:

B = repmat(A,m,n ) %%将矩阵 A 复制 m×n 块,即把 A 作为 B 的元素,B 由 m×n 个 A 平铺而成。B 的维数是 [size(A,1)*m, (size(A,2)*n]

B = mean(A)的说明:

如果你有这样一个矩阵:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];
用mean(A)(默认dim=1)就会求每一列的均值
ans =
    3.0000    4.5000    6.0000
用mean(A,2)就会求每一行的均值 
ans =
    2.0000
    4.0000
    6.0000

6.0000

size(A,n)%% 如果在size函数的输入参数中再添加一项n,并用1或2为n赋值,则 size将返回矩阵的行数或列数。其中r=size(A,1)该语句返回的是矩阵A的行数, c=size(A,2) 该语句返回的是矩阵A的列数)

上面我们简单说了一下协方差矩阵及其求法,言归正传,我们用上面简化求法,求出样本的协方差矩阵为:

3、计算协方差矩阵的特征向量和特征值

因为协方差矩阵为方阵,我们可以计算它的特征向量和特征值,如下:

[eigenvectors,eigenvalues] = eig(cov)

我们可以看到这些矢量都是单位矢量,也就是它们的长度为1,这对PCA来说是很重要的。

4、选择成分组成模式矢量

求出协方差矩阵的特征值及特征向量之后,按照特征值由大到小进行排列,这将给出成分的重要性级别。现在,如果你喜欢,可以忽略那些重要性很小的成分,当然这会丢失一些信息,但是如果对应的特征值很小,你不会丢失很多信息。如果你已经忽略了一些成分,那么最后的数据集将有更少的维数,精确地说,如果你的原始数据是n维的,你选择了前p个主要成分,那么你现在的数据将仅有p维。现在我们要做的是组成一个模式矢量,这只是几个矢量组成的矩阵的一个有意思的名字而已,它由你保持的所有特征矢量构成,每一个特征矢量是这个矩阵的一列。

对于我们的数据集,因为有两个特征矢量,因此我们有两个选择。我们可以用两个特征矢量组成模式矢量:

我们也可以忽略其中较小特征值的一个特征矢量,从而得到如下模式矢量:

5、得到降维后的数据

其中rowFeatureVector是由模式矢量作为列组成的矩阵的转置,因此它的行就是原来的模式矢量,而且对应最大特征值的特征矢量在该矩阵的最上一行。rowdataAdjust是每一维数据减去均值后,所组成矩阵的转置,即数据项目在每一列中,每一行是一维,对我们的样本来说即是,第一行为x维上数据,第二行为y维上的数据。FinalData是最后得到的数据,数据项目在它的列中,维数沿着行。

这将给我们什么结果呢?这将仅仅给出我们选择的数据。我们的原始数据有两个轴(x和y),所以我们的原始数据按这两个轴分布。我们可以按任何两个我们喜欢的轴表示我们的数据。如果这些轴是正交的,这种表达将是最有效的,这就是特征矢量总是正交的重要性。我们已经将我们的数据从原来的xy轴表达变换为现在的单个特征矢量表达。

(说明:如果要恢复原始数据,只需逆过程计算即可,即:

到此为止,相信你已经掌握了PCA及其原理了

PCA (主成分分析)详解 (写给初学者)相关推荐

  1. 【教程】ENVI主成分分析详解

    主成分分析(PCA)是一种统计方法,简而言之就是用几种特性去描述事物.每个事物都可以用不同的特性去进行表达,但这些特性一般而言是存在相互的融合和冗余,而用主成分分析方法将这些特性进行转换成不相关的新特 ...

  2. php正则实例,php 正则表达式实例详解(适合初学者)

    正则表达式实例详解(适合初学者) 数学公式正则表达式: (?'kh'()*([- ]){0,1}[0-9.] (?'-kh'))*([ -*/]{1}(?'kh'()*((?<=()([- ]) ...

  3. 清风数学建模学习笔记——主成分分析(PCA)原理详解及案例分析

    主成分分析   本文将介绍主成分分析(PCA),主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息. 一般 ...

  4. 主成分分析(PCA)原理详解_转载

    一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...

  5. 通俗易懂的主成分分析法(PCA)详解

    转载自:http://blog.codinglabs.org/articles/pca-tutorial.html 文章分析脉络梳理: 1.向量A和B的内积表示的是向量A在B上的投影长度.那么将一个向 ...

  6. 【Python数据分析】数据预处理3——数据规约(含主成分分析详解、Python主要预处理函数)

    数据规约产生更小且保持完整性的新数据集,在规约后的数据集上进行分析和挖掘将提高效率 一.属性规约 属性规约通过属性合并创建新属性维数,或者通过直接删除不相关的属性来减少数据维数,从而提高数据挖掘的效率 ...

  7. PCA算法详解——化繁为简

    目录 一.前言 一.什么是PCA? 二.PCA原理 1.通俗的认知 2.其他视角 三.算法实现 一.前言 老鹰是一个三维立体实物,而图片是二维的,但我们能一眼识别出上图是一只老鹰而非鹌鹑,可见对于某些 ...

  8. 2DPCA—二维主成分分析详解及编程

    目录 一.为什么提出2DPCA(Why) 二.2DPCA数学公式(What) (一)模型 (二)策略(优化目标) (三)算法(如何计算投影向量) (四)特征提取和图像重构 三.2DPCA编程(How) ...

  9. EasyExcel详解-写Excel

    一.注解 使用注解很简单,只要在对应的实体类上面加上注解即可. ExcelProperty 用于匹配excel和实体类的匹配,参数如下: 名称 默认值 描述 value 空 用于匹配excel中的头, ...

  10. 44从零开始学Java之详解容易让初学者懵圈的abstract抽象类、抽象方法

    作者:孙玉昌,昵称[一一哥],另外[壹壹哥]也是我哦 千锋教育高级教研员.CSDN博客专家.万粉博主.阿里云专家博主.掘金优质作者 前言 经过前面几篇文章的讲解,我们现在已经对面向对象有了基本的认知, ...

最新文章

  1. python详细安装教程环境配置-python环境配置详细步骤
  2. 中国大陆穷光蛋排行榜---转
  3. 详解数据中台构建核心产品Dataphin“ 规划”能力
  4. 深入理解 JVM Class文件格式(四)
  5. 画面轻松浪漫的伪原创工具
  6. mySql 修改字段名
  7. JAVA实现图的邻接表以及DFS
  8. 给定一个数组和一个数M,在数组中求一些数使它们的和最接近M------递归
  9. 关于IplImage中widthstep的大小与width,nchanne
  10. 超好用的卸载工具——geek
  11. STM32-DMA控制器
  12. cydia加载未能连接服务器请求超时,cydia无法加载请求超时(一招教你解决)
  13. 用一行`CSS`实现10种布局
  14. 量子计算机窦文涛,中国式浪漫,美到哭泣!
  15. 家用无线路由器WDS初始化失败解决方法
  16. 生活中的定律——墨菲定律
  17. 推荐一款开源跨平台 [业务大屏,数据报表] 快速开发平台
  18. 让台服客户端支持简体中文
  19. RIDE 图标点击没反应
  20. twitter_如何找回旧的Twitter网站

热门文章

  1. 三星刷入鸿蒙OS,全面狙击华为鸿蒙OS系统!谷歌霸气联手三星:发布新版鸿蒙OS系统...
  2. python5.网络爬虫
  3. 加息靴子落地铁矿石继续反弹,甲醇认购大涨,苹果10-01大跳水2022.5.5
  4. [cadfil] 基于隐形飞机喷气式发动机双S弯喷管的纤维缠绕工艺
  5. linux入门--磁盘管理之分区、格式化与挂载
  6. RMQ---csu1809
  7. 基于51单片机的智能窗帘设计
  8. SaaS应用12原则
  9. 蓝海创意云丨干货:V-Ray渲染后期处理雪中建筑效果图
  10. python试卷管理系统的设计与实现_在线考试系统的设计与实现毕业设计论文.doc...