学习测度论,就能得到对积分的更本质和深刻的理解。


1.非负简单函数的积分
先补充简单函数的概念:(造化不够,经常漏概念!)
定义:简单函数:设f(x)f(x)f(x)的定义域EEE可分为有限个不相交的可测集E1,E2,…,EnE_1,E_2,\dots,E_nE1​,E2​,…,En​,且∪iEi=E\cup_iE_i=E∪i​Ei​=E,若函数在每个可测集EiE_iEi​上的取值都为一个常数CiC_iCi​,则称其为简单函数。所以简单函数也可以说成是阶梯函数。

设fff是简单函数,则存在测度空间(X,F,μ)(X,\mathscr F,\mu)(X,F,μ)的有限可测分割{Ai}\{A_i \}{Ai​}和实数{ai}\{a_i\}{ai​}使得f=∑iaiIAif=\sum_{i}a_iI_{A_i}f=∑i​ai​IAi​​,其中III是指示函数。因此,我们可以如下定义积分:
∫Xfdμ=∑i=1naiμ(Ai)\int_{X}fd\mu=\sum_{i=1}^n a_i\mu(A_i)∫X​fdμ=i=1∑n​ai​μ(Ai​)
因此,该积分本质上就是(有限可测分割的)测度的加权平均和。

命题1:非负简单函数积分的性质:

  1. 指示函数的积分就是测度:∫XIAdμ=μ(A)\int_X I_Ad\mu=\mu(A)∫X​IA​dμ=μ(A)
  2. 非负
  3. 线性性
  4. 大小关系:若f≥gf\ge gf≥g,则∫Xfdμ≥∫Xgdμ\int_Xfd\mu\ge\int_Xgd\mu∫X​fdμ≥∫X​gdμ
  5. 极限:若lim⁡n→∞fn≥g\lim_{n\to\infty}f_n\ge glimn→∞​fn​≥g,则lim⁡n→∞∫Xfndμ≥∫Xgdμ\lim_{n\to\infty}\int_Xf_nd\mu\ge\int_Xgd\mulimn→∞​∫X​fn​dμ≥∫X​gdμ

\space 
2.非负可测函数的积分
讲完了非负简单函数,再看非负可测函数的积分。定义如下:
∫Xfdμ=defsup⁡{∫Xgdμ:g非负简单且g≤f}\int_Xfd\mu\stackrel{def}{=} \sup\{\int_Xgd\mu:g非负简单且g\le f\}∫X​fdμ=defsup{∫X​gdμ:g非负简单且g≤f}

命题2:非负可测函数积分的性质
线性性与非负性和非负简单函数积分相同,下面重点看这个:
若{fn}\{f_n\}{fn​}是非负简单函数且fn↑ff_n\uparrow ffn​↑f,则lim⁡n→∞∫Xfndμ=∫Xfdμ\lim_{n\to\infty}\int_Xf_nd\mu=\int_Xfd\mulimn→∞​∫X​fn​dμ=∫X​fdμ

这解决了函数列极限的积分问题。事实上,对于Riemman积分,如果函数列的极限不可积,那就不好了,但是Lebesgue积分解决了这个问题。
实际上,粗浅地讲,本节测度论中的积分与Riemman积分的不同之处就在于前者是对μ\muμ(值域)积分,而后者是分割自变量xxx。如下图所示,上面是Riemman积分,下面是本节所讲的积分。Riemman积分是无限分割,测度论的积分是有限分割。

特别地,如果Lebesgue可测函数ggg对于Lebuesgue测度λ\lambdaλ的积分存在,则称之为Lebesgue积分,即:
∫Rg(x)dx=def∫Rgdλ\int_{\mathbf R}g(x)dx\stackrel{def}{=}\int_{\mathbf R}gd\lambda∫R​g(x)dx=def∫R​gdλ
因此,Riemman积分实际上是Lebesgue积分的特殊情形。
\space 
3.一般可测函数的积分
对于不一定非负的可测函数,我们将其划分为正部和负部,正部就是其为正的部分,负部就是其为负的部分,二者是互斥的,因此:
f=f+−f−f=f^+-f^-f=f+−f−
则根据前面积分的可加性,有∫Xfdμ=∫Xf+dμ−∫Xf−dμ\int_Xfd\mu=\int_Xf^+d\mu-\int_Xf^-d\mu∫X​fdμ=∫X​f+dμ−∫X​f−dμ
因此,若等式右边的两个积分都为无穷,则左边的积分没有意义否则称为存在或有意义。同时,若右边的两个积分都为有限数,就称fff是可积的

定理3:
设fff是可测空间(X,F,μ)(X,\mathscr F,\mu)(X,F,μ)上的可测函数:

  1. 若fff的积分存在,则∣∫Xfdμ∣≤∫X∣f∣dμ|\int_Xfd\mu| \le \int_X|f|d\mu∣∫X​fdμ∣≤∫X​∣f∣dμ
  2. fff可积当且仅当∣f∣|f|∣f∣可积
  3. 若fff可积,则∣f∣<∞a.e.|f|<\infty \space a.e.∣f∣<∞ a.e.

定理4:
设f,gf,gf,g是可测空间(X,F,μ)(X,\mathscr F,\mu)(X,F,μ)上的可测函数:

  1. 零测集处积分为0.即对A∈F,μ(A)=0A\in\mathscr F ,\mu(A)=0A∈F,μ(A)=0,有∫Afdμ=0\int_Afd\mu = 0∫A​fdμ=0。
  2. 若f≥ga.e.f\ge g\space a.e.f≥g a.e.,则∫Xfdμ≥∫Xgdμ\int_Xfd\mu \ge \int_Xgd\mu∫X​fdμ≥∫X​gdμ
  3. 若f=ga.e.f=g\space a.e.f=g a.e.,则只要其中任一个的积分存在,另一个的积分也存在而且两个积分值相等。

上面两个定理的证明很漂亮,在此就不记了(证明记了也是忘),这些定理基本上还是比较直观的。

测度论与概率论基础学习笔记7——3.1积分的定义相关推荐

  1. 测度论与概率论基础学习笔记3——2.1测度的定义与性质

    定义1 设E\mathscr EE是XXX上的集合系且∅∈E\emptyset \in \mathscr E∅∈E,若E\mathscr EE上的非负集函数(取值大于等于0的函数)μ\muμ具有可列可 ...

  2. 测度论与概率论基础学习笔记4——2.2外测度

    测度论果然十分高深啊-越学越觉得自己水平有限,只能做一些肤浅的理解. 由于比较stupid,本节的证明我都没有学(doge,希望几年之后武功长进之时能回来看看. 引言 外测度的基本想法是用一些形状良好 ...

  3. 测度论与概率论基础学习笔记5——2.3测度的扩张和测度空间的完备化

    note:这部分内容比较偏证明,对我来说有些难度,也好久没更新.今日暂且一记,以后有更深刻的理解之后再来补充.2021.3.16 一.测度的扩张 定义:扩张 设μ\muμ和τ\tauτ分别是集合系A\ ...

  4. 测度论与概率论基础学习笔记9——3.3Lp空间

    Lp空间在泛函分析中比较详细地讲述过(但我没有详细地学过),这里更多作一点重复. 1.Lp空间定义 设(X,F,μ)(X,\mathscr F,\mu)(X,F,μ)是一测度空间,定义其上绝对值p次幂 ...

  5. guido正式发布python年份_Python 基础学习笔记.docx

    Python 基础学习笔记 基于<Python语言程序设计基础(第2版)> 第一部分 初识Python语言 第1章 程序设计基本方法 1.1 计算机的概念 计算机是根据指令操作数据的设备, ...

  6. ASP.Net MVC开发基础学习笔记(5):区域、模板页与WebAPI初步

    http://blog.jobbole.com/85008/ ASP.Net MVC开发基础学习笔记(5):区域.模板页与WebAPI初步 2015/03/17 · IT技术 · .Net, Asp. ...

  7. Python3 基础学习笔记 C09【文件和异常】

    CSDN 课程推荐:<8小时Python零基础轻松入门>,讲师齐伟,苏州研途教育科技有限公司CTO,苏州大学应用统计专业硕士生指导委员会委员:已出版<跟老齐学Python:轻松入门& ...

  8. Python3 基础学习笔记 C08 【类】

    CSDN 课程推荐:<8小时Python零基础轻松入门>,讲师齐伟,苏州研途教育科技有限公司CTO,苏州大学应用统计专业硕士生指导委员会委员:已出版<跟老齐学Python:轻松入门& ...

  9. Python3 基础学习笔记 C07【函数】

    CSDN 课程推荐:<8小时Python零基础轻松入门>,讲师齐伟,苏州研途教育科技有限公司CTO,苏州大学应用统计专业硕士生指导委员会委员:已出版<跟老齐学Python:轻松入门& ...

  10. Python3 基础学习笔记 C06【用户输入和 while 循环】

    CSDN 课程推荐:<8小时Python零基础轻松入门>,讲师齐伟,苏州研途教育科技有限公司CTO,苏州大学应用统计专业硕士生指导委员会委员:已出版<跟老齐学Python:轻松入门& ...

最新文章

  1. 2款不同样式的CSS3 Loading加载动画 附源码
  2. CentOS各版本ISO下载地址
  3. mysql100万数据一键下载csv_使用PHP来导入包含100万条数据的csv文件,请问你最快多久能全部导入mysql 数据库?...
  4. MySQL学习笔记02-数据库概述及MySQL简介 .
  5. select * from mys where id=2;
  6. java Hashtable的遍历方法
  7. Java实用面试题及参考答案分享
  8. gps有几个轨道面_嫦五“一脚刹车”,进了环月轨道
  9. 交换机的RJ45端口和SFP端口有什么区别?
  10. 【喜报】2016 年度最受欢迎中国开源软件TOP20出炉——JEECG、JEEWX双入围!
  11. php 项目中引用对方接口_关于PHP中为什么要写接口的问题说明
  12. 关于苹果绕ID的一些注意事项,A6-A7 Sliver 6.2 小白少走弯路。
  13. 如何用计算机函数来求加权总分,Excel小技巧-使用函数「SUMPRODUCT」计算加权后的总和及平均值...
  14. 一、Maven-单一架构案例(创建工程,引入依赖,搭建环境:持久化层,)
  15. 下列计算机程序设计语言中不属于高级语言,下列计算机程序设计语言中不属于高级语言的是()?...
  16. suse linux 添加网卡驱动,图文并茂介绍suse linux 11系统安装全过程以及suse系统下安装网卡驱动和刷新固件.doc...
  17. 小程序开发有哪些方式?
  18. 厦大计算机推免复试,统考生没戏!厦大该专业3个系招生,推免占比最高100%!...
  19. 《NVMe-over-Fabrics-1_0a-2018.07.23-Ratified》阅读笔记(3)-- 命令
  20. latex添加背景图片

热门文章

  1. 微信小程序转码机器人
  2. 企业网的规划与设计(eNSP)
  3. 中证登 中债登 上清所 证券清算 证券账户 资金账户
  4. 简单SNIFFER 应用驱动安装及使用
  5. 那些年我们一起追逐过的安全工具
  6. muduo库net源码分析一(网络编程本质)
  7. css让div背景变成半透明
  8. flac文件如何转换成mp3
  9. 小程序毕设作品之微信电子书阅读小程序毕业设计(7)中期检查报告
  10. android手机如何查看系统版本号,怎么查看安卓系统版本