§ \S Suppose that r r is finite and not equal to 11. Then

¯(a)+¯(b)+...+¯(l)>¯(a+b+...+l)

\mathcal{\bar{A}}(a) + \mathcal{\bar{A}}(b) + ... + \mathcal{\bar{A}}(l) > \mathcal{\bar{A}}(a+b+ ... + l) holds with r>1 r>1; and

¯(a)+¯(b)+...+¯(l)<¯(a+b+...+l)

\mathcal{\bar{A}}(a) + \mathcal{\bar{A}}(b) + ... + \mathcal{\bar{A}}(l) holds with r<1 r. The inequality holds unless (a),(b),...,(l) (a), (b), ..., (l) are proportional, or r≤0 r\le 0 and aν=bν=...=lν=0 a_\nu = b_\nu = ... = l_\nu=0 for some a ν \nu.

The main result remains true when r=+∞ r=+\infty or r=−∞ r=-\infty, except that the conditions for equality require a restatement.

§ \S If r r is finite and not equal to 00 or 1 1, then

(∑(a+b+...+l)r)1/r<(∑ar)1/r+...+(∑lr)1/r

\left(\sum(a+b+ ... + l)^r\right)^{1/r} holds with r>1 r>1, and

(∑(a+b+...+l)r)1/r>(∑ar)1/r+...+(∑lr)1/r

\left(\sum(a+b+ ... + l)^r\right)^{1/r} > \left(\sum a^r\right)^{1/r} + ... +\left(\sum l^r\right)^{1/r} holds with r<1 r.

§ \S If r r is positive and not equal to 11, then

∑(a+b+...+l)r>∑ar+...+∑lr

\sum(a+b+ ... + l)^r > \sum a^r + ... +\sum l^r holds with r>1 r>1, and

∑(a+b+...+l)r<∑ar+...+∑lr

\sum(a+b+ ... + l)^r holds with r<1 r.

In a nutshell, what is usually required in practice is as follows:
If r>0 r>0 then,

(∑(a+b+...+l)r)R<(∑ar)R+...+(∑lr)R

\left(\sum(a+b+ ... + l)^r\right)^{R} where R=1 R=1 if 0<r≤1 0 and R=1r R=\frac{1}{r} if r>1 r>1.

The following inequality is often useful for the prupose of determining an upper bound for ∑ak \sum a^k.

§ \S Suppose that k>1 k>1, that k′ k' is conjugate to k k, and that B>0B>0. Then a necessary and sufficient condition that ∑ak≤A \sum a^k \le A is that ∑ab≤A1/kB1/k′ \sum ab \le A^{1/k}B^{1/{k'}} for all b b for which ∑bk′≤B\sum b^{k'}\le B.

The geometrical interpretations are illustrated as follows. When k=2 k=2, A=l2 A=l^2, and B=1 B=1 holds, we take rectangular coordinats. The theorem asserts that, if the length of the projection of a vector along an arbitrary direction does not exceed l l, the length of the vector does not exceed ll.

Inequalities - Minkowski's inequality相关推荐

  1. 泛函分析1-线性空间

    文章目录 Preface 1 Linear Spaces 1.1 linear space Examples 1.2 Subsets of a linear space Notation 1.3 Su ...

  2. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  3. 中心极限定理_High Dimensional Probability(1) 中心极限定理

    1. 大数定理与中心极限定理 关于大数定理有一个很常见的描述,就是掷一枚硬币很多次,最终出现的正面次数和反面次数各占比 ,即: 当n足够大时,某一事件事件出现的频率将几乎接近于其发生的概率.大数定理描 ...

  4. 9.2 向量范数的三大不等式

    文章目录 柯西-施瓦茨不等式 赫尔德不等式 闵可夫斯基不等式   我这里要讲的三大不等式不是三种范数比较大小的三大不等式.而是非常经典的,学习线性代数必须掌握的三大不等式:柯西-施瓦茨不等式.赫尔德不 ...

  5. 度量空间(metric space)

    参考文章:(GTM135)Advanced Linear Algebra 度量空间 定义 度量空间(metric space)是二元组(M,d)(M,d)(M,d),其中MMM是非空集合,度量(met ...

  6. Boole‘s,Doob‘s inequality,中心极限定理Central Limit Theorem,Kolmogorov extension theorem, Lebesgue‘s domin

    1. Boole's inequality In probability theory, Boole's inequality, also known as the union bound, says ...

  7. Cauchy-Schwarz Inequality

    Cauchy-Schwarz Inequality Keyword : Cauchy–Schwarz inequality Minkowski inequality Young's inequalit ...

  8. Minkowski space

    In mathematical physics, Minkowski space (or Minkowski spacetime) (/mɪŋˈkɔːfski, -ˈkɒf-/[1]) is a co ...

  9. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

最新文章

  1. 类 求数组最大最小平均
  2. 论文翻译 | LS-Net:单目双目视觉的非线性最小二乘学习算法
  3. 《云计算:概念、技术与架构》一2.3 案例研究3:Innovartus
  4. hdu4454 三分 求点到圆,然后在到矩形的最短路
  5. android指纹fingerprint学习总结
  6. delphi listview怎么自动宽度_自动门日常使用出现这些问题应尽快维修以免因小失大...
  7. UVA10785 The Mad Numerologist
  8. 【CF 1195】Basketball Exercise/Submarine in the Rybinsk Sea (hard edition)/OpenStreetMap+二维单调队列滑动窗口模板
  9. C#利用反射将Datatable转化为指定实体类ListT
  10. Python爬取“Python小屋”公众号所有文章生成独立Word文档
  11. covariance 公式_黑体辐射的近似公式
  12. 计算机组成原理第6版课后答案,计算机组成原理第6章习题参考答案
  13. 【Vue】Nodejs下载与安装
  14. 《工业设计史》第九章:职业工业设计师的出现
  15. matlab画图——semilogy函数介绍
  16. C语言:从低位开始取出长整型变量s奇数位上的数,依次构成一个新数放在t中。
  17. 袋鼠云数据中台专栏(一) :浅析数据中台策略与建设实践
  18. 重庆师范大学第一届ACM选拔赛
  19. java js hexmd5_JAVA与JS在MD5上问题
  20. docker 网络方案--分析

热门文章

  1. android 读写sd卡的权限设置
  2. JAVAFX如何在文本框内插入图片
  3. 14.C++读入一系列整数,统计出正整数个数i和负整数个数j,读入0则结束
  4. 高通平台android 8.1基线某款usb camera打开dev/video1出错
  5. .NET Framework各个版本(3.5 - 4.0)
  6. 2021了,为什么说音视频技术是技术风口?Android音视频开发这么吃香
  7. 学术论文投稿第五弹——如何写Discussion
  8. 用ln命令链接文件 --- 一根绳子上的蚂蚱?
  9. ebp 函数堆栈esp_EBP、ESP作用——esp始终指向栈顶,ebp是在堆栈中寻址用的(就是临时变量嘛)...
  10. 计算机毕业设计ssm基于B_S的汽车售后服务管理系统e48c4系统+程序+源码+lw+远程部署