Cauchy-Schwarz Inequality

Keyword : Cauchy–Schwarz inequality Minkowski inequality Young’s inequality Hölder’s inequality

设f(x)f(x)f(x)在区间[0,1][0,1][0,1]上连续,且1≤f(x)≤31\leq f(x)\leq 31≤f(x)≤3 .证明:
1≤∫01f(x)dx∫011f(x)dx≤431\leq\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} 1≤∫01​f(x)dx∫01​f(x)1​dx≤34​
Proof: According to Cauchy-Schwarz inequality
∫01f(x)dx∫011f(x)dx≥(∫01dx)2=1\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\geq\big(\int_{0}^{1}\mathrm{d}x\big)^{2}=1 ∫01​f(x)dx∫01​f(x)1​dx≥(∫01​dx)2=1
because 1≤f(x)≤31\leq f(x)\leq31≤f(x)≤3, then
(f(x)−1)(f(x)−3)f(x)≤0\frac{\big(f(x)-1\big)\big(f(x)-3\big)}{f(x)}\leq 0 f(x)(f(x)−1)(f(x)−3)​≤0
Opening the brakests ,we reduce
f(x)+3f(x)≤4f(x)+\frac{3}{f(x)}\leq4 f(x)+f(x)3​≤4
and also because
∫01f(x)dx∫013f(x)dx≤14(∫01f(x)dx+∫013f(x)dx)2\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\leq \frac{1}{4}\bigg(\int_{0}^{1}f(x)\mathrm{d}x+\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\bigg)^{2} ∫01​f(x)dx∫01​f(x)3​dx≤41​(∫01​f(x)dx+∫01​f(x)3​dx)2
then we reduce
∫01f(x)dx∫011f(x)dx≤43\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} ∫01​f(x)dx∫01​f(x)1​dx≤34​
so
1≤∫01f(x)dx∫011f(x)dx≤431\leq \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq \frac{4}{3} 1≤∫01​f(x)dx∫01​f(x)1​dx≤34​


Cauchy-Schwarz Inequality

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

The inequality for sums was published by Augustin-Louis Cauchy(1821), while the corresponding inequality for integrals was first proved by Viktor Bun-yakovsky (1859) . Later the integral inequality was rediscovered by Hermann Ama-ndus Schwarz (1888).

In Euclidean space RnR^{n}Rn with the standard inner product ,the Cauchy–Schwarz inequality is
∑k=1n(akbk)2≤(∑k=1nak2)(∑k=1nbk2)\sum_{k=1}^{n}\big(a_{k}b_{k}\big)^{2}\leq \big(\sum_{k=1}^{n}a_{k}^{2}\big)\big(\sum_{k=1}^{n}b_{k}^{2}\big) k=1∑n​(ak​bk​)2≤(k=1∑n​ak2​)(k=1∑n​bk2​)
The Cauchy–Schwarz inequality can be proved using only ideas from elemen-tary algebra in this case. Consider the following quadratic polynomial in ttt ,then
H(t)=∑k=1n(akt+bk)2=(a1t+b1)2+(a2t+b2)2+⋯+(ant+bn)2≥0H(t)=\sum_{k=1}^{n}\big(a_{k}t+b_{k}\big)^{2}=(a_{1}t+b_{1})^{2}+(a_{2}t+b_{2})^{2}+\cdots+(a_{n}t+b_{n})^{2}\geq0 H(t)=k=1∑n​(ak​t+bk​)2=(a1​t+b1​)2+(a2​t+b2​)2+⋯+(an​t+bn​)2≥0
which is
H(t)=(∑k=1nak2)t2+2(∑k=1nakbk)t+∑k=1nbk2H(t)=\big(\sum_{k=1}^{n}a_{k}^{2}\big)t^{2}+2\big(\sum_{k=1}^{n}a_{k}b_{k}\big)t+\sum_{k=1}^{n}b_{k}^{2} H(t)=(k=1∑n​ak2​)t2+2(k=1∑n​ak​bk​)t+k=1∑n​bk2​
Discriminant Δ\DeltaΔ is Less than or equal to 000,then organized
∑k=1n(akbk)2≤(∑k=1nak2)(∑k=1nbk2)\sum_{k=1}^{n}\big(a_{k}b_{k}\big)^{2}\leq \big(\sum_{k=1}^{n}a_{k}^{2}\big)\big(\sum_{k=1}^{n}b_{k}^{2}\big) k=1∑n​(ak​bk​)2≤(k=1∑n​ak2​)(k=1∑n​bk2​)

还有积分版the intergral inequality


Continuous version

If fff and ggg was intergral in [a,b][a,b][a,b] ,then
(∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx\bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫ab​f(x)g(x)dx)2≤∫ab​f2(x)dx∫ab​g2(x)dx
Proof 1: for all λ∈R\lambda \in Rλ∈R ,(f(x)+λg(x))2≥0\big(f(x) + \lambda g(x)\big)^{2}\geq0(f(x)+λg(x))2≥0 ,reduce
∫ab(f(x)+λg(x))2dx≥0\int_{a}^{b}\bigg(f\big(x\big)+\lambda g\big(x\big)\bigg)^{2}\mathrm{d}x\geq0 ∫ab​(f(x)+λg(x))2dx≥0
Opening the brakests ,we reduce
λ2∫abg2(x)dx+2λ∫abf(x)g(x)dx+∫abf2(x)dx≥0\lambda^{2}\int_{a}^{b}g^{2}(x)\mathrm{d}x+2\lambda \int_{a}^{b}f(x)g(x)\mathrm{d}x+\int_{a}^{b}f^{2}(x)\mathrm{d}x\geq0 λ2∫ab​g2(x)dx+2λ∫ab​f(x)g(x)dx+∫ab​f2(x)dx≥0
Discriminan Δ\DeltaΔ is Less than or equal to 000 ,then organized
(∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx\bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫ab​f(x)g(x)dx)2≤∫ab​f2(x)dx∫ab​g2(x)dx


Proof 2: we can make
F(x)=∫axf2(t)dt∫axg2(t)dt−(∫axf(t)g(t)dt)2F(x)=\int_{a}^{x}f^{2}(t)\mathrm{d}t\int_{a}^{x}g^{2}(t)\mathrm{d}t-\bigg(\int_{a}^{x}f(t)g(t)\mathrm{d}t\bigg)^{2} F(x)=∫ax​f2(t)dt∫ax​g2(t)dt−(∫ax​f(t)g(t)dt)2
and F(a)=0F(a)=0F(a)=0 ,derive it
F′(x)=g2(x)∫axf2(t)dt+f2(x)∫axg2(t)dt−2f(x)g(x)∫axf(t)g(t)dt=∫ax(f(x)g(t)−g(x)f(t))2dt≥0\begin{aligned} F^{'}(x)&=g^{2}(x)\int_{a}^{x}f^{2}(t)\mathrm{d}t+f^{2}(x)\int_{a}^{x}g^{2}(t)\mathrm{d}t-2f(x)g(x)\int_{a}^{x}f(t)g(t)\mathrm{d}t\\ &=\int_{a}^{x}\bigg(f(x)g(t)-g(x)f(t)\bigg)^{2}\mathrm{d}t\geq0 \end{aligned} F′(x)​=g2(x)∫ax​f2(t)dt+f2(x)∫ax​g2(t)dt−2f(x)g(x)∫ax​f(t)g(t)dt=∫ax​(f(x)g(t)−g(x)f(t))2dt≥0​
so F(a)≥F(a)=0F(a)\geq F(a)=0F(a)≥F(a)=0 ,which is
(∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx\bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫ab​f(x)g(x)dx)2≤∫ab​f2(x)dx∫ab​g2(x)dx


Inference 1: Minkowski inequality

https://en.wikipedia.org/wiki/Minkowski_inequality

In mathematical analysis ,the Minkowski inequality establishes that the Lp spa-ces are normed vector spaces. Let S be a measure space, let 1≤ρ<∞1\leq \rho <\infty1≤ρ<∞ and let fffand ggg be elements of Lp(s)Lp(s)Lp(s). Then f+gf + gf+g is in Lp(s)Lp(s)Lp(s) .

If fff and ggg was intergral in [a,b][a,b][a,b] ,then
∫ab(f(x)+g(x))2dx≤∫abf2(x)dx+∫abg2(x)dx\sqrt{\int_{a}^{b}\bigg(f\big(x\big)+g\big(x\big)\bigg)^{2}\mathrm{d}x}\leq\sqrt{\int_{a}^{b}f^{2}(x)\mathrm{d}x}+\sqrt{\int_{a}^{b}g^{2}(x)\mathrm{d}x} ∫ab​(f(x)+g(x))2dx​≤∫ab​f2(x)dx​+∫ab​g2(x)dx​
Proof : by Cauchy-Schwarz inequality to get
∫ab(f(x)+g(x))2dx≤∫abf2(x)dx+∫abg2(x)dx+2∫abf2(x)dx∫abg2(x)dx\int_{a}^{b}\bigg(f\big(x\big)+g\big(x\big)\bigg)^{2}\mathrm{d}x\leq \int_{a}^{b}f^{2}(x)\mathrm{d}x+\int_{a}^{b}g^{2}(x)\mathrm{d}x+2\sqrt{\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x} ∫ab​(f(x)+g(x))2dx≤∫ab​f2(x)dx+∫ab​g2(x)dx+2∫ab​f2(x)dx∫ab​g2(x)dx​
then we reduce it .


Inference 2: Hölder’s inequality

https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality

Discrete form

Sippose ak,bk>0(k=1,2,⋯,n)a_{k},b_{k}>0(k=1,2,\cdots,n)ak​,bk​>0(k=1,2,⋯,n) ,p,q≥1p,q\geq1p,q≥1 and 1p+1q=1\frac{1}{p}+\frac{1}{q}=1p1​+q1​=1 ,then
∑k=1nakbk≤(∑k=1nakp)1p(∑k=1nbkq)1q\sum_{k=1}^{n}a_{k}b_{k}\leq\bigg(\sum_{k=1}^{n}a_{k}^{p}\bigg)^{\frac{1}{p}}\bigg(\sum_{k=1}^{n}b_{k}^{q}\bigg)^{\frac{1}{q}} k=1∑n​ak​bk​≤(k=1∑n​akp​)p1​(k=1∑n​bkq​)q1​
The inequality hold if aka_{k}ak​ and only if is proportional to bkb_{k}bk​.

Proof : use lemma Young's inequality
∑k=1nakbk(∑k=1nakp)1p(∑k=1nbkq)1q=∑k=1n(akp∑k=1nakp)1p(bkq∑k=1nbkq)1q≤∑k=1n[1p(akp∑k=1nakp)+(1qbkq∑k=1nbkq)]=1p+1q\begin{aligned} \frac{\sum_{k=1}^{n}a_{k}b_{k}}{\big(\sum_{k=1}^{n}a_{k}^{p}\big)^{\frac{1}{p}}\big( \sum_{k=1}^{n}b_{k}^{q}\big)^{\frac{1}{q}}}&=\sum_{k=1}^{n}\bigg(\frac{a_{k}^{p}}{\sum_{k=1}^{n}a_{k}^{p}} \bigg)^{\frac{1}{p}}\bigg(\frac{b_{k}^{q}}{\sum_{k=1}^{n}b_{k}^{q}} \bigg)^{\frac{1}{q}}\\ &\leq \sum_{k=1}^{n}\bigg[ \frac{1}{p}\bigg(\frac{a_{k}^{p}}{\sum_{k=1}^{n}a_{k}^{p}} \bigg)+\bigg(\frac{1}{q}\frac{b_{k}^{q}}{\sum_{k=1}^{n}b_{k}^{q}} \bigg)\bigg]\\ &=\frac{1}{p}+\frac{1}{q} \end{aligned} (∑k=1n​akp​)p1​(∑k=1n​bkq​)q1​∑k=1n​ak​bk​​​=k=1∑n​(∑k=1n​akp​akp​​)p1​(∑k=1n​bkq​bkq​​)q1​≤k=1∑n​[p1​(∑k=1n​akp​akp​​)+(q1​∑k=1n​bkq​bkq​​)]=p1​+q1​​
In mathematical analysis ,Hölder’s inequality ,named after Otto Hölde ,is a fundamental inequality between integrals and an indispensable tool for the study of LpLpLp spaces .


Continous version

If fff and ggg was intergraled in [a,b][a,b][a,b] ,and f(X)≥0f(X)\geq0f(X)≥0 ,g(x)≥0g(x)\geq0g(x)≥0 ,then
∫abf(x)g(x)dx≤(∫abfp(x)dx)1/p(∫abgq(x)dx)1/q\int_{a}^{b}f(x)g(x)\mathrm{d}x\leq\bigg(\int_{a}^{b}f^{p}\big(x\big)\mathrm{d}x\bigg)^{1/p}\bigg(\int_{a}^{b}g^{q}\big(x\big)\mathrm{d}x\bigg)^{1/q} ∫ab​f(x)g(x)dx≤(∫ab​fp(x)dx)1/p(∫ab​gq(x)dx)1/q
among p,q≥1p,q\geq1p,q≥1 ,and 1p+1q=1\frac{1}{p}+\frac{1}{q}=1p1​+q1​=1 .

先证一个重要引理Young’s inequality


lemma : Young’s inequality

https://en.wikipedia.org/wiki/Young%27s_inequality_for_products

In mathematics, Young’s inequality is a mathematical inequality about the pro-duct of two numbers .The inequality is named after William Henry Young and should not be confused with Young's convolution inequation .

Young's inequality can be used to prove Hölder's inequality. It is also wi-dely used to estimate the norm of nonlinear terms in PDE theory ,since it allows one to estimate a product of two terms by a sum of the same terms raised to a power and scaled .

In its standard form, the inequality states that if aaa and bbb are nonnegetive real nu-mber and ppp and qqq are real numbers greater than 111 such that 1p+1q=1\frac{1}{p}+ \frac{1}{q}=1p1​+q1​=1, then
ab≤app+bqqab\leq \frac{a^{p}}{p}+\frac{b^{q}}{q} ab≤pap​+qbq​
The inequality hold if and only if ap=bqa_{p}=b^{q}ap​=bq .This form of Young's inequality can be proved by Jensen’s inequality and can be used to prove Hölder’s inequality.

Proof : Because f(x)=exf(x)=e^{x}f(x)=ex is an convex function ,that use Jensen's inequality
f(∑i=1nλixi)≤∑i=1nλif(xi)f(\sum_{i=1}^{n}\lambda_{i}x_{i})\leq\sum_{i=1}^{n}\lambda_{i}f(x_{i}) f(i=1∑n​λi​xi​)≤i=1∑n​λi​f(xi​)
among λi>0\lambda_{i}>0λi​>0 ,and ∑iλi=1\sum_{i}\lambda_{i}=1∑i​λi​=1

i) while ab≠0
ab=eln⁡aeln⁡b=exp⁡(1pln⁡ap)exp⁡(1qln⁡bq)=exp⁡(1pln⁡ap+1qln⁡bq)≤1peln⁡ap+1qeln⁡bq=app+bqq\begin{aligned} ab&=e^{\ln a}e^{\ln b}=\exp\big(\frac{1}{p}\ln a^{p}\big)\exp\big(\frac{1}{q}\ln b^{q}\big)\\ &=\exp\big(\frac{1}{p}\ln a^{p}+\frac{1}{q}\ln b^{q}\big)\leq\frac{1}{p}e^{\ln a^{p}}+\frac{1}{q} e^{\ln b^{q}}\\ &=\frac{a^{p}}{p}+\frac{b^{q}}{q}\end{aligned} ab​=elnaelnb=exp(p1​lnap)exp(q1​lnbq)=exp(p1​lnap+q1​lnbq)≤p1​elnap+q1​elnbq=pap​+qbq​​
ii) whlie ab=0

Obviously there is ab≤app+bqqab\leq \frac{a^{p}}{p}+\frac{b^{q}}{q}ab≤pap​+qbq​

Combining the foregoing i) and ii) .

Now we proof the Integral inequality using Young’s inequality

Proof : we make
m=fp(x)∫abfp(x)dx,n=gq(x)∫abgq(x)dxm=\frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x} \ ,\ n=\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x} m=∫ab​fp(x)dxfp(x)​ , n=∫ab​gq(x)dxgq(x)​
by Young’s inequality ,then we reduce
fp(x)∫abfp(x)dxgq(x)∫abgq(x)dx≤1pfp(x)∫abfp(x)dx+1qgq(x)∫abgq(x)dx\frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x}\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x}\leq\frac{1}{p}\frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x}+\frac{1}{q}\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x} ∫ab​fp(x)dxfp(x)​∫ab​gq(x)dxgq(x)​≤p1​∫ab​fp(x)dxfp(x)​+q1​∫ab​gq(x)dxgq(x)​
now integral for x left and right sides
∫abf(x)g(x)dx≤(∫abfp(x)dx)1/p(∫abgq(x)dx)1/q\int_{a}^{b}f(x)g(x)\mathrm{d}x\leq\bigg(\int_{a}^{b}f^{p}\big(x\big)\mathrm{d}x\bigg)^{1/p}\bigg(\int_{a}^{b}g^{q}\big(x\big)\mathrm{d}x\bigg)^{1/q} ∫ab​f(x)g(x)dx≤(∫ab​fp(x)dx)1/p(∫ab​gq(x)dx)1/q
The numbers p and q above are said to be Hölder conjugates of each other. The special case p=q=2 gives a form of the Cauchy-Schwarz inequality.

To be continued … …

Cauchy-Schwarz Inequality相关推荐

  1. Cauchy–Schwarz inequality理解

    首先假设向量a=(a1,a2) b=(b1,b2),我们知道内积是<a,b>=a1b1+a2b2,也就是a*b^T 对于复数域的操作,一般都是把转置换成共轭转置(因为|a|^2 不等于a* ...

  2. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  3. 向量的内积,与角的关系,向量与它本身点积_4

    目录 什么是点积? 点积运算 向量与角的联系 向量和它本身 什么是点积? 两个向量相乘,我们应该会想到如下场景: 但这个在现实生活中,用处不大. 但是其他乘法形式很有用. 最重要的是一种向量运算方式是 ...

  4. 度量空间(metric space)

    参考文章:(GTM135)Advanced Linear Algebra 度量空间 定义 度量空间(metric space)是二元组(M,d)(M,d)(M,d),其中MMM是非空集合,度量(met ...

  5. 机器学习要用到的基础知识

    1.Cauchy–Schwarz inequality The Cauchy–Schwarz inequality states that for all vectors and  of an inn ...

  6. Minkowski space

    In mathematical physics, Minkowski space (or Minkowski spacetime) (/mɪŋˈkɔːfski, -ˈkɒf-/[1]) is a co ...

  7. 高等代数 具有度量的线性空间(第10章)2 实内积空间

    一.实线性空间中内积的概念(10.2) 1.实线性空间中的正定性 (1)定义: (2)充要条件: 命题1:设fff是nnn维实线性空间VVV上的1个对称双线性函数,fff在VVV的1个基α1...αn ...

  8. 陈景润定理的数学证明何处寻

    由于时代过于久远,陈景润定理的数学证明与公式推理过程很难寻找. 实际上,陈景润定理的数学证明与公式推导十分复.困难,出乎一般人的想象. 有兴趣者,可搜索该文PDF原文第,查看第5-6页.该文件共有74 ...

  9. 【数理知识】《矩阵论》方保镕老师-目录及关于符号的含义

    矩阵论中关于符号的含义 符号 含义 详解 N(A)或ker⁡(A)N(A) 或 \ker(A)N(A)或ker(A) 齐次线性方程 Ax=0Ax=0Ax=0 的解空间 P14 Span(x1,x2,⋯ ...

最新文章

  1. 深蓝学院的深度学习理论与实践课程:第一章
  2. SSH框架执行自己定义的SQL语句
  3. ubuntu下搭建一个数据化处理的开发环境
  4. 用少于10行代码训练前沿深度学习新药研发模型
  5. web 小程序 ch2 第一个小程序
  6. Angular Schematics 学习笔记
  7. OpenTelemetry - 云原生下可观测性的新标准
  8. Python爬虫进阶必备 | X中网密码加密算法分析
  9. 在OpenSSL中添加自定义加密算法
  10. 视频教程-初级学习ArcGIS Engine视频课程-C#
  11. JeeWx捷微管家系统
  12. OpenCV提取图书条码(ISBN码)
  13. UniApp开发社交社区
  14. 使用Arduino开发板制作自动药物提醒器
  15. Android账号管理系统详解
  16. 计算机一级怎么上网题怎样保存页面,全国计算机一级上网操作题知识点
  17. 华为网络实验--动态路由器+RIP路由协议配置及验证
  18. 理解和应用持续集成-Tekton
  19. H3C MSR 3600-28-X1路由器配置过程
  20. 一曲相思用计算机怎么按,抖音这人间袅袅炊烟是什么歌 抖音一曲相思完整版...

热门文章

  1. 数据分析师必备技能之PowerBI教程
  2. 订餐系统之按距离[根据经纬度]排序、搜索
  3. 怎样在VS2005中添加Flash控件
  4. IDM+毒(du)盘 = 高速下载互联网中大部分资源
  5. 已然神话的区块链的应用了解一下-MGCEX
  6. 一年有50万主播入驻淘宝,宇宙的尽头是编制,直播的尽头是淘宝?
  7. 零样本学习和小样本学习(转)
  8. 关于龙蜥社区20个问题 |龙蜥问答第1期
  9. TensorFlow1深度学习基础(笔记二)
  10. php 超出整形范围,频率超出范围怎么办