如何建立bp神经网络预测 模型

建立BP神经网络预测模型,可按下列步骤进行:1、提供原始数据2、训练数据预测数据提取及归一化3、BP网络训练4、BP网络预测5、结果分析现用一个实际的例子,来预测2015年和2016年某地区的人口数。

已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人执行BP_main程序,得到[2015, 5128.呵呵3946380615234375][2016,5100.5797325642779469490051269531]代码及图形如下。

谷歌人工智能写作项目:小发猫

数据分析建模步骤有哪些?

1、分类和聚类分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别常见的神经网络结构

聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显著的区别。

分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。

常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。

2、回归分析回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。

按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。

3、神经网络神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。

它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。

基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。

4、关联分析关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。

例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。

关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到的潜在客户,真正的把数据挖掘落到实处。

4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。

其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。

而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。

建立BP神经网络地面沉降预测模型

基坑降水引起地面沉降的BP神经网络预测模型建模过程如下:(1)样本选择因基坑降水引起的地面沉降量和距离基坑的距离关系密切,因此建模选用“基坑降水引起沉降工程数据(第二类)”(见表4.1)中的相关数据作为样本进行学习训练和检验。

(2)BP神经网络结构设计对于BP网络,对于任何在闭区间内的一个连续函数都可以用单隐层的BP网络逼近,因而一个三层BP网络就可以完成任意的n维到m维的映射。

根据网络结构简单化的原则,确定采用三层BP网络结构,即输入层为沉降点距基坑的距离L(m)、等效压缩模量E(MPa)、水位降深H(m)和支护刚度n四个参数,输出层为地面累积沉降量(mm),隐层层数为1层。

隐层的神经元数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次实验来确定,因而不存在一个理想的解析式来表示。隐单元的数目与问题的要求,与输入、输出单元的数目有直接的关系。

隐单元数目太多会导致学习时间过长,误差不一定最佳,也会导致容错性差、不能识别以前没有看到的样本,因此一定存在一个最佳的隐单元数。

研究通过一次编程比较了隐层神经元个数分别为5、10、15、20、25、30、40时训练速度及检验精度。

图4.2BP神经网络程序框图(3)网络训练及检验BP网络采用梯度下降法来降低网络的训练误差,考虑到基坑降水地面沉降范围内沉降量变化幅度较小的特点,训练时以训练目标取0.001为控制条件,考虑到网络的结构比较复杂,神经元个数比较多,需要适当增加训练次数和学习速率,因此初始训练次数设为10000次,学习速率取0.1,中间层的神经元传递函数采用S型正切函数tansig,传输函数采用logsig,训练函数采用trainlm,选用38组数据中的33组作为训练样本,5组作为检验样本。

(4)网络实现及检验效果使用MATLAB6.0编程建立基于BP神经网络的基坑降水地面沉降预测模型(程序代码见附件1),其训练误差及检验效果如下:图4.3训练误差曲线图4.4预测误差曲线由图4.3、图4.4可见:样本数据收敛,训练误差较小,中间层神经单元个数为10时预测精度较好,误差小于20%,误差满足工程需求。

1.如何用MATLAB神经网络工具箱创建BP神经网络模型?具体有哪些步骤?请高手举实例详细解释下? 2.如何把输

%人脸识别模型,脸部模型自己找吧。

functionmytest()clc;images=[];M_train=3;%表示人脸N_train=5;%表示方向sample=[];pixel_value=[];sample_number=0;forj=1:N_trainfori=1:M_trainstr=strcat('Images\',num2str(i),'_',num2str(j),'.bmp');%读取图像,连接字符串形成图像的文件名。

img=imread(str);[rowscols]=size(img);%获得图像的行和列值。

img_edge=edge(img,'Sobel');%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好sub_rows=floor(rows/6);%最接近的最小整数,分成6行sub_cols=floor(cols/8);%最接近的最小整数,分成8列sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度sample_number=sample_number+1;forsubblock_i=1:8%因为这还在i,j的循环中,所以不可以用iblock_num=subblock_i;pixel_value(sample_number,block_num)=0;forii=sub_rows:(2*sub_rows)forjj=(subblock_i-1)*sub_cols+1:subblock_i*sub_colspixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);endendendendend%将特征值转换为小于1的值max_pixel_value=max(pixel_value);max_pixel_value_1=max(max_pixel_value);fori=1:3mid_value=10^i;if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)。

伤寒、副伤寒流行预测模型(BP神经网络)的建立

由于目前研究的各种数学模型或多或少存在使用条件的局限性,或使用方法的复杂性等问题,预测效果均不十分理想,距离实际应用仍有较大差距。

NNT是Matlab中较为重要的一个工具箱,在实际应用中,BP网络用的最广泛。

神经网络具有综合能力强,对数据的要求不高,适时学习等突出优点,其操作简便,节省时间,网络初学者即使不了解其算法的本质,也可以直接应用功能丰富的函数来实现自己的目的。

因此,易于被基层单位预防工作者掌握和应用。

以下几个问题是建立理想的因素与疾病之间的神经网络模型的关键:(1)资料选取应尽可能地选取所研究地区系统连续的因素与疾病资料,最好包括有疾病高发年和疾病低发年的数据。

在收集影响因素时,要抓住主要影响伤寒、副伤寒的发病因素。

(2)疾病发病率分级神经网络预测法是按发病率高低来进行预测,在定义发病率等级时,要结合专业知识及当地情况而定,并根据网络学习训练效果而适时调整,以使网络学习训练达到最佳效果。

(3)资料处理问题在实践中发现,资料的特征往往很大程度地影响网络学习和训练的稳定性,因此,数据的应用、纳入、排出问题有待于进一步研究。

6.3.1人工神经网络的基本原理人工神经网络(ANN)是近年来发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,有着广泛的应用领域。

人工神经网络是一种自适应的高度非线性动力系统,在网络计算的基础上,经过多次重复组合,能够完成多维空间的映射任务。

神经网络通过内部连接的自组织结构,具有对数据的高度自适应能力,由计算机直接从实例中学习获取知识,探求解决问题的方法,自动建立起复杂系统的控制规律及其认知模型。

人工神经网络就其结构而言,一般包括输入层、隐含层和输出层,不同的神经网络可以有不同的隐含层数,但他们都只有一层输入和一层输出。

神经网络的各层又由不同数目的神经元组成,各层神经元数目随解决问题的不同而有不同的神经元个数。

6.3.2BP神经网络模型BP网络是在1985年由PDP小组提出的反向传播算法的基础上发展起来的,是一种多层次反馈型网络(图6.17),它在输入和输出之间采用多层映射方式,网络按层排列,只有相邻层的节点直接相互连接,传递之间信息。

在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。

如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使误差信号最小。

BP网络的学习算法步骤如下(图6.18):图6.17BP神经网络示意图图6.18BP算法流程图第一步:设置初始参数ω和θ,(ω为初始权重,θ为临界值,均随机设为较小的数)。

第二步:将已知的样本加到网络上,利用下式可算出他们的输出值yi,其值为岩溶地区地下水与环境的特殊性研究式中:xi为该节点的输入;ωij为从I到j的联接权;θj为临界值;yj为实际算出的输出数据。

第三步:将已知输出数据与上面算出的输出数据之差(dj-yj)调整权系数ω,调整量为ΔWij=ηδjxj式中:η为比例系数;xj为在隐节点为网络输入,在输出点则为下层(隐)节点的输出(j=1,2…,n);dj为已知的输出数据(学习样本训练数据);δj为一个与输出偏差相关的值,对于输出节点来说有δj=ηj(1-yj)(dj-yj)对于隐节点来说,由于它的输出无法进行比较,所以经过反向逐层计算有岩溶地区地下水与环境的特殊性研究其中k指要把上层(输出层)节点取遍。

误差δj是从输出层反向逐层计算的。各神经元的权值调整后为ωij(t)=ωij(t-1)+Vωij式中:t为学习次数。

这个算法是一个迭代过程,每一轮将各W值调整一遍,这样一直迭代下去,知道输出误差小于某一允许值为止,这样一个好的网络就训练成功了,BP算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题,它使用了优化技术中最普遍的一种梯度下降算法,用迭代运算求解权值相当于学习记忆问题。

6.3.3BP神经网络模型在伤寒、副伤寒流行与传播预测中的应用伤寒、副伤寒的传播与流行同环境之间有着一定的联系。

根据桂林市1990年以来乡镇为单位的伤寒、副伤寒疫情资料,伤寒、副伤寒疫源地资料,结合现有资源与环境背景资料(桂林市行政区划、土壤、气候等)和社会经济资料(经济、人口、生活习惯等统计资料)建立人工神经网络数学模型,来逼近这种规律。

6.3.3.1模型建立(1)神经网络的BP算法BP网络是一种前馈型网络,由1个输入层、若干隐含层和1个输出层构成。

如果输入层、隐含层和输出层的单元个数分别为n,q1,q2,m,则该三层网络网络可表示为BP(n,q1,q2,m),利用该网络可实现n维输入向量Xn=(X1,X2,…,Xn)T到m维输出向量Ym=(Y1,Y2,…,Ym)T的非线性映射。

输入层和输出层的单元数n,m根据具体问题确定。

(2)样本的选取将模型的输入变量设计为平均温度、平均降雨量、岩石性质、岩溶发育、地下水类型、饮用水类型、正规自来水供应比例、集中供水比例8个输入因子(表6.29),输出单元为伤寒副伤寒的发病率等级,共一个输出单元。

其中q1,q2的值根据训练结果进行选择。表6.29桂林市伤寒副伤寒影响因素量化表通过分析,选取在伤寒副伤寒有代表性的县镇在1994~2001年的环境参评因子作为样本进行训练。

利用聚类分析法对疫情进行聚类分级(Ⅰ、Ⅱ、Ⅲ、Ⅳ),伤寒副伤寒发病最高级为Ⅳ(BP网络中输出定为4),次之的为Ⅲ(BP网络中输出定为3),以此类推,最低为Ⅰ(BP网络中输出定为1)(3)数据的归一化处理为使网络在训练过程中易于收敛,我们对输入数据进行了归一化处理,并将输入的原始数据都化为0~1之间的数。

如将平均降雨量的数据乘以0.0001;将平均气温的数据乘以0.01;其他输入数据也按类似的方法进行归一化处理。

(4)模型的算法过程假设共有P个训练样本,输入的第p个(p=1,2,…,P)训练样本信息首先向前传播到隐含单元上。

经过激活函数f(u)的作用得到隐含层1的输出信息:岩溶地区地下水与环境的特殊性研究经过激活函数f(u)的作用得到隐含层2的输出信息:岩溶地区地下水与环境的特殊性研究激活函数f(u)我们这里采用Sigmoid型,即f(u)=1/[1+exp(-u)](6.5)隐含层的输出信息传到输出层,可得到最终输出结果为岩溶地区地下水与环境的特殊性研究以上过程为网络学习的信息正向传播过程。

另一个过程为误差反向传播过程。

如果网络输出与期望输出间存在误差,则将误差反向传播,利用下式来调节网络权重和阈值:岩溶地区地下水与环境的特殊性研究式中:Δω(t)为t次训练时权重和阈值的修正;η称为学习速率,0<η<1;E为误差平方和。

岩溶地区地下水与环境的特殊性研究反复运用以上两个过程,直至网络输出与期望输出间的误差满足一定的要求。该模型算法的缺点:1)需要较长的训练时间。

由于一些复杂的问题,BP算法可能要进行几小时甚至更长的时间的训练,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。2)完全不能训练。

主要表现在网络出现的麻痹现象上,在网络的训练过程中,当其权值调的过大,可能使得所有的或大部分神经元的加权总和n偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导数f′(n)非常小,从而使得对网络权值的调节过程几乎停顿下来。

3)局部极小值。BP算法可以使网络权值收敛到一个解,但它并不能保证所求为误差超平面的全局最小解,很可能是一个局部极小解。

这是因为BP算法采用的是梯度下降法,训练从某一起点沿误差函数的斜面逐渐达到误差的最小值。

考虑到以上算法的缺点,对模型进行了两方面的改进:(1)附加动量法为了避免陷入局部极小值,对模型进行了改进,应用了附加动量法。

附加动量法在使网络修正及其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响,其作用如同一个低通滤波器,它允许网络忽略网络上的微小变化特性。

在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用则有可能滑过这些极小值。

该方法是在反向传播法的基础上在每一个权值的变化上加上一项正比于前次权值变化量的值,并根据反向传播法来产生心的权值变化。

促使权值的调节向着误差曲面底部的平均方向变化,从而防止了如Δω(t)=0的出现,有助于使网络从误差曲面的局部极小值中跳出。

这种方法主要是把式(6.7)改进为岩溶地区地下水与环境的特殊性研究式中:A为训练次数;a为动量因子,一般取0.95左右。

训练中对采用动量法的判断条件为岩溶地区地下水与环境的特殊性研究(2)自适应学习速率对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。

通常是凭经验或实验获取,但即使这样,对训练开始初期功效较好的学习速率,不见得对后来的训练合适。

所以,为了尽量缩短网络所需的训练时间,采用了学习速率随着训练变化的方法来找到相对于每一时刻来说较差的学习速率。

下式给出了一种自适应学习速率的调整公式:岩溶地区地下水与环境的特殊性研究通过以上两个方面的改进,训练了一个比较理想的网络,将动量法和自适应学习速率结合起来,效果要比单独使用要好得多。

6.3.3.2模型的求解与预测采用包含了2个隐含层的神经网络BP(4,q1,q2,1),隐含层单元数q1,q2与所研究的具体问题有关,目前尚无统一的确定方法,通常根据网络训练情况采用试错法确定。

在满足一定的精度要求下一般认小的数值,以改善网络的概括推论能力。

在训练中网络的收敛采用输出值Ykp与实测值tp的误差平方和进行控制:岩溶地区地下水与环境的特殊性研究1)将附加动量法和自适应学习速率结合应用,分析桂林市36个乡镇地质条件各因素对伤寒副伤寒发病等级的影响。

因此训练样本为36个,第一个隐含层有19个神经元,第二个隐含层有11个神经元,学习速率为0.001。A.程序(略)。B.网络训练。

在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.19)。图6.19神经网络训练过程图C.模型预测。

a.输入未参与训练的乡镇(洞井乡、两水乡、延东乡、四塘乡、严关镇、灵田乡)地质条件数据。b.预测。程序运行后网络输出预测值a3,与已知的实际值进行比较,其预测结果整理后见(表6.30)。

经计算,对6个乡镇伤寒副伤寒发病等级的预测符合率为83.3%。表6.30神经网络模型预测结果与实际结果比较c.地质条件改进方案。

在影响疾病发生的地质条件中,大部分地质条件是不会变化的,而改变发病地区的饮用水类型是可以人为地通过改良措施加以实施的一个因素。

因此,以灵田乡为例对发病率较高的乡镇进行分析,改变其饮用水类型,来看发病等级的变化情况。

表6.31显示,在其他地质条件因素不变的情况下,改变当地的地下水类型(从原来的岩溶水类型改变成基岩裂隙水)则将发病等级从原来的最高级4级,下降为较低的2级,效果是十分明显的。

因此,今后在进行伤寒副伤寒疾病防治的时候,可以通过改变高发区饮用水类型来客观上减少疫情的发生。

表6.31灵田乡改变饮用水类型前后的预测结果2)选取桂林地区1994~2000年月平均降雨量、月平均温度作为输入数据矩阵,进行样本训练,设定不同的隐含层单元数,对各月份的数据进行BP网络训练。

在隐含层单元数q1=13,q2=9,经过46383次数的训练,误差达到精度要求,学习速率0.02。A.附加动量法程序(略)。B.网络训练。

在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.20)。C.模型预测。a.输入桂林市2001年1~12月桂林市各月份的平均气温和平均降雨量。预测程度(略)。b.预测。

程序运行后网络输出预测值a2,与已知的实际值进行比较,其预测结果整理后见(表6.32)。经计算,对2001年1~12月伤寒副伤寒发病等级进行预测,12个预测结果中,有9个符合,符合率为75%。

图6.20神经网络训练过程图表6.32神经网络模型预测结果与实际值比较6.3.3.3模型的评价本研究采用BP神经网络对伤寒、副伤寒发病率等级进行定量预测,一方面引用数量化理论对不确定因素进行量化处理;另一方面利用神经网络优点,充分考虑各影响因素与发病率之间的非线性映射。

实际应用表明,神经网络定量预测伤寒、副伤寒发病率是理想的。其主要优点有:1)避免了模糊或不确定因素的分析工作和具体数学模型的建立工作。2)完成了输入和输出之间复杂的非线性映射关系。

3)采用自适应的信息处理方式,有效减少人为的主观臆断性。虽然如此,但仍存在以下缺点:1)学习算法的收敛速度慢,通常需要上千次或更多,训练时间长。2)从数学上看,BP算法有可能存在局部极小问题。

本模型具有广泛的应用范围,可以应用在很多领域。从上面的结果可以看出,实际和网络学习数据总体较为接近,演化趋势也基本一致。

说明选定的气象因子、地质条件因素为神经单元获得的伤寒、副伤寒发病等级与实际等级比较接近,从而证明伤寒、副伤寒流行与地理因素的确存在较密切的相关性。

如何用 Python 构建神经网络择时模型

importmathimportrandom(0)defrand(a,b):#随机函数return(b-a)*random.random()+adefmake_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵mat=[]foriinrange(m):mat.append([fill]*n)returnmat#定义sigmoid函数和它的导数defsigmoid(x):return1.0/((-x))defsigmoid_derivate(x):returnx*(1-x)#sigmoid函数的导数classBPNeuralNetwork:def__init__(self):#初始化变量self.input_n=0self.hidden_n=0self.output_n=0self.input_cells=[]self.hidden_cells=[]self.output_cells=[]self.input_weights=[]self.output_weights=[]self.input_correction=[]self.output_correction=[]#三个列表维护:输入层,隐含层,输出层神经元defsetup(self,ni,nh,no):self.input_n=ni+1#输入层+偏置项self.hidden_n=nh#隐含层self.output_n=no#输出层#初始化神经元self.input_cells=[1.0]*self.input_nself.hidden_cells=[1.0]*self.hidden_nself.output_cells=[1.0]*self.output_n#初始化连接边的边权self.input_weights=make_matrix(self.input_n,self.hidden_n)#邻接矩阵存边权:输入层->隐藏层self.output_weights=make_matrix(self.hidden_n,self.output_n)#邻接矩阵存边权:隐藏层->输出层#随机初始化边权:为了反向传导做准备--->随机初始化的目的是使对称失效foriinrange(self.input_n):forhinrange(self.hidden_n):self.input_weights[i][h]=rand(-0.2,0.2)#由输入层第i个元素到隐藏层第j个元素的边权为随机值forhinrange(self.hidden_n):foroinrange(self.output_n):self.output_weights[h][o]=rand(-2.0,2.0)#由隐藏层第i个元素到输出层第j个元素的边权为随机值#保存校正矩阵,为了以后误差做调整self.input_correction=make_matrix(self.input_n,self.hidden_n)self.output_correction=make_matrix(self.hidden_n,self.output_n)#输出预测值defpredict(self,inputs):#对输入层进行操作转化样本foriinrange(self.input_n-1):self.input_cells[i]=inputs[i]#n个样本从0~n-1#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和forjinrange(self.hidden_n):total=0.0foriinrange(self.input_n):total+=self.input_cells[i]*self.input_weights[i][j]#此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层self.hidden_cells[j]=sigmoid(total)#此节点的输出是前一层所有输入点和到该点之间的权值加权和forkinrange(self.output_n):total=0.0forjinrange(self.hidden_n):total+=self.hidden_cells[j]*self.output_weights[j][k]self.output_cells[k]=sigmoid(total)#获取输出层每个元素的值returnself.output_cells[:]#最后输出层的结果返回#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差defback_propagate(self,case,label,learn,correct):#对输入样本做预测self.predict(case)#对实例进行预测output_deltas=[0.0]*self.output_n#初始化矩阵foroinrange(self.output_n):error=label[o]-self.output_cells[o]#正确结果和预测结果的误差:0,1,-1output_deltas[o]=sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内#隐含层误差hidden_deltas=[0.0]*self.hidden_nforhinrange(self.hidden_n):error=0.0foroinrange(self.output_n):error+=output_deltas[o]*self.output_weights[h][o]hidden_deltas[h]=sigmoid_derivate(self.hidden_cells[h])*error#反向传播算法求W#更新隐藏层->输出权重forhinrange(self.hidden_n):foroinrange(self.output_n):change=output_deltas[o]*self.hidden_cells[h]#调整权重:上一层每个节点的权重学习*变化+矫正率self.output_weights[h][o]+=learn*change+correct*self.output_correction[h][o]#更新输入->隐藏层的权重foriinrange(self.input_n):forhinrange(self.hidden_n):change=hidden_deltas[h]*self.input_cells[i]self.input_weights[i][h]+=learn*change+correct*self.input_correction[i][h]self.input_correction[i][h]=change#获取全局误差error=0.0foroinrange(len(label)):error=0.5*(label[o]-self.output_cells[o])**2#平方误差函数returnerrordeftrain(self,cases,labels,limit=10000,learn=0.05,correct=0.1):foriinrange(limit):#设置迭代次数error=0.0forjinrange(len(cases)):#对输入层进行访问label=labels[j]case=cases[j]error+=self.back_propagate(case,label,learn,correct)#样例,标签,学习率,正确阈值deftest(self):#学习异或cases=[[0,0],[0,1],[1,0],[1,1],]#测试样例labels=[[0],[1],[1],[0]]#标签self.setup(2,5,1)#初始化神经网络:输入层,隐藏层,输出层元素个数self.train(cases,labels,10000,0.05,0.1)#可以更改forcaseincases:print(self.predict(case))if__name__=='__main__':nn=BPNeuralNetwork()()。

神经网络Hopfield模型

一、Hopfield模型概述1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。

Hopfield人工神经网络是一种反馈网络(RecurrentNetwork),又称自联想记忆网络。

其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。

Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(DiscreteHopfieldNeuralNetwork,简称DHNN)和连续型Hopfield网络(ContinueHopfieldNeuralNetwork,简称CHNN)。

离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。

二、Hopfield模型原理离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。

正交化的权值设计这一方法的基本思想和出发点是为了满足下面4个要求:1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足wij=wji,i,j=1,2…,N;2)保证所有要求记忆的稳定平衡点都能收敛到自己;3)使伪稳定点的数目尽可能地少;4)使稳定点的吸引力尽可能地大。

正交化权值的计算公式推导如下:1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1):A=(x1-xPx2-xP…xP-1-xP)T。

2)对A做奇异值分解A=USVT,U=(u1u2…uN),V=(υ1υ2…υP-1),中国矿产资源评价新技术与评价新模型Σ=diαg(λ1,λ2,…,λK),O为零矩阵。

K维空间为N维空间的子空间,它由K个独立的基组成:K=rαnk(A),设{u1u2…uK}为A的正交基,而{uK+1uK+2…uN}为N维空间的补充正交基。下面利用U矩阵来设计权值。

3)构造中国矿产资源评价新技术与评价新模型总的连接权矩阵为:Wt=Wp-T·Wm,其中,T为大于-1的参数,缺省值为10。

Wp和Wm均满足对称条件,即(wp)ij=(wp)ji,(wm)ij=(wm)ji,因而Wt中分量也满足对称条件。这就保证了系统在异步时能够收敛并且不会出现极限环。

4)网络的偏差构造为bt=xP-Wt·xP。下面推导记忆样本能够收敛到自己的有效性。

(1)对于输入样本中的任意目标矢量xp,p=1,2,…,P,因为(xp-xP)是A中的一个矢量,它属于A的秩所定义的K个基空间的矢量,所以必存在系数α1,α2,…,αK,使xp-xP=α1u1+α2u2+…+αKuK,即xp=α1u1+α2u2+…+αKuK+xP,对于U中任意一个ui,有中国矿产资源评价新技术与评价新模型由正交性质可知,上式中当i=j,;当i≠j,;对于输入模式xi,其网络输出为yi=sgn(Wtxi+bt)=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]=sgn[(Wp-T·Wm)(xi-xP)+xP]=sgn[Wt(xi-xP)+xP]=sgn[(xi-xP)+xP]=xi。

(2)对于输入模式xP,其网络输出为yP=sgn(WtxP+bt)=sgn(WtxP+xP-WtxP)=sgn(xP)=xP。

(3)如果输入一个不是记忆样本的x,网络输出为y=sgn(Wtx+bt)=sgn[(Wp-T·Wm)(x-xP)+xP]=sgn[Wt(x-xP)+xP]。

因为x不是已学习过的记忆样本,x-xP不是A中的矢量,则必然有Wt(x-xP)≠x-xP,并且再设计过程中可以通过调节Wt=Wp-T·Wm中的参数T的大小来控制(x-xP)与xP的符号,以保证输入矢量x与记忆样本之间存在足够的大小余额,从而使sgn(Wtx+bt)≠x,使x不能收敛到自身。

用输入模式给出一组目标平衡点,函数HopfieldDesign()可以设计出Hopfield网络的权值和偏差,保证网络对给定的目标矢量能收敛到稳定的平衡点。

设计好网络后,可以应用函数HopfieldSimu(),对输入矢量进行分类,这些输入矢量将趋近目标平衡点,最终找到他们的目标矢量,作为对输入矢量进行分类。

三、总体算法1.Hopfield网络权值W[N][N]、偏差b[N]设计总体算法应用正交化权值设计方法,设计Hopfield网络;根据给定的目标矢量设计产生权值W[N][N],偏差b[N];使Hopfield网络的稳定输出矢量与给定的目标矢量一致。

1)输入P个输入模式X=(x[1],x[2],…,x[P-1],x[P])输入参数,包括T、h;2)由X[N][P]构造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);3)对A[N][P-1]作奇异值分解A=USVT;4)求A[N][P-1]的秩rank;5)由U=(u[1],u[2],…,u[K])构造Wp[N][N];6)由U=(u[K+1],…,u[N])构造Wm[N][N];7)构造Wt[N][N]=Wp[N][N]-T*Wm[N][N];8)构造bt[N]=X[N][P]-Wt[N][N]*X[N][P];9)构造W[N][N](9~13),构造W1[N][N]=h*Wt[N][N];10)求W1[N][N]的特征值矩阵Val[N][N](对角线元素为特征值,其余为0),特征向量矩阵Vec[N][N];11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];12)求Vec[N][N]的逆Invec[N][N];13)构造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];14)构造b[N],(14~15),C1=exp(h)-1,C2=-(exp(-T*h)-1)/T;15)构造中国矿产资源评价新技术与评价新模型Uˊ——U的转置;16)输出W[N][N],b[N];17)结束。

2.Hopfield网络预测应用总体算法Hopfield网络由一层N个斜坡函数神经元组成。应用正交化权值设计方法,设计Hopfield网络。根据给定的目标矢量设计产生权值W[N][N],偏差b[N]。

初始输出为X[N][P],计算X[N][P]=f(W[N][N]*X[N][P]+b[N]),进行T次迭代,返回最终输出X[N][P],可以看作初始输出的分类。

3.斜坡函数中国矿产资源评价新技术与评价新模型输出范围[-1,1]。四、数据流图Hopfield网数据流图见附图3。

五、调用函数说明1.一般实矩阵奇异值分解(1)功能用豪斯荷尔德(Householder)变换及变形QR算法对一般实矩阵进行奇异值分解。

(2)方法说明设A为m×n的实矩阵,则存在一个m×m的列正交矩阵U和n×n的列正交矩阵V,使中国矿产资源评价新技术与评价新模型成立。

其中Σ=diag(σ0,σ1,…σp)p⩽min(m,n)-1,且σ0≥σ1≥…≥σp>0,上式称为实矩阵A的奇异值分解式,σi(i=0,1,…,p)称为A的奇异值。

奇异值分解分两大步:第一步:用豪斯荷尔德变换将A约化为双对角线矩阵。

即中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型中的每一个变换Uj(j=0,1,…,k-1)将A中的第j列主对角线以下的元素变为0,而中的每一个变换Vj(j=0,1,…,l-1)将A中的第j行主对角线紧邻的右次对角线元素右边的元素变为0。

]]j具有如下形式:中国矿产资源评价新技术与评价新模型其中ρ为一个比例因子,以避免计算过程中的溢出现象与误差的累积,Vj是一个列向量。

即Vj=(υ0,υ1,…,υn-1),则中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型第二步:用变形的QR算法进行迭代,计算所有的奇异值。

即:用一系列的平面旋转变换对双对角线矩阵B逐步变换成对角矩阵。

在每一次的迭代中,用变换中国矿产资源评价新技术与评价新模型其中变换将B中第j列主对角线下的一个非0元素变为0,同时在第j行的次对角线元素的右边出现一个非0元素;而变换Vj,j+1将第j-1行的次对角线元素右边的一个0元素变为0,同时在第j列的主对角线元素的下方出现一个非0元素。

由此可知,经过一次迭代(j=0,1,…,p-1)后,B′仍为双对角线矩阵。但随着迭代的进行。最后收敛为对角矩阵,其对角线上的元素为奇异值。

在每次迭代时,经过初始化变换V01后,将在第0列的主对角线下方出现一个非0元素。在变换V01中,选择位移植u的计算公式如下:中国矿产资源评价新技术与评价新模型最后还需要对奇异值按非递增次序进行排列。

在上述变换过程中,若对于某个次对角线元素ej满足|ej|⩽ε(|sj+1|+|sj|)则可以认为ej为0。若对角线元素sj满足|sj|⩽ε(|ej-1|+|ej|)则可以认为sj为0(即为0奇异值)。

其中ε为给定的精度要求。

(3)调用说明intbmuav(double*a,intm,intn,double*u,double*v,doubleeps,intka),本函数返回一个整型标志值,若返回的标志值小于0,则表示出现了迭代60次还未求得某个奇异值的情况。

此时,矩阵的分解式为UAVT;若返回的标志值大于0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为m×n。

存放m×n的实矩阵A;返回时,其对角线给出奇异值(以非递增次序排列),其余元素为0;m——整型变量,实矩阵A的行数;n——整型变量,实矩阵A的列数;u——指向双精度实型数组的指针,体积为m×m。

返回时存放左奇异向量U;υ——指向双精度实型数组的指针,体积为n×n。返回时存放右奇异向量VT;esp——双精度实型变量,给定的精度要求;ka——整型变量,其值为max(m,n)+1。

2.求实对称矩阵特征值和特征向量的雅可比过关法(1)功能用雅可比(Jacobi)方法求实对称矩阵的全部特征值与相应的特征向量。(2)方法说明雅可比方法的基本思想如下。设n阶矩阵A为对称矩阵。

在n阶对称矩阵A的非对角线元素中选取一个绝对值最大的元素,设为apq。

利用平面旋转变换矩阵R0(p,q,θ)对A进行正交相似变换:A1=R0(p,q,θ)TA,其中R0(p,q,θ)的元素为rpp=cosθ,rqq=cosθ,rpq=sinθ,rqp=sinθ,rij=0,i,j≠p,q。

如果按下式确定角度θ,中国矿产资源评价新技术与评价新模型则对称矩阵A经上述变换后,其非对角线元素的平方和将减少,对角线元素的平方和增加,而矩阵中所有元素的平方和保持不变。

由此可知,对称矩阵A每次经过一次变换,其非对角线元素的平方和“向零接近一步”。因此,只要反复进行上述变换,就可以逐步将矩阵A变为对角矩阵。

对角矩阵中对角线上的元素λ0,λ1,…,λn-1即为特征值,而每一步中的平面旋转矩阵的乘积的第i列(i=0,1,…,n-1)即为与λi相应的特征向量。

综上所述,用雅可比方法求n阶对称矩阵A的特征值及相应特征向量的步骤如下:1)令S=In(In为单位矩阵);2)在A中选取非对角线元素中绝对值最大者,设为apq;3)若|apq|<ε,则迭代过程结束。

此时对角线元素aii(i=0,1,…,n-1)即为特征值λi,矩阵S的第i列为与λi相应的特征向量。否则,继续下一步;4)计算平面旋转矩阵的元素及其变换后的矩阵A1的元素。

其计算公式如下中国矿产资源评价新技术与评价新模型5)S=S·R(p,q,θ),转(2)。

在选取非对角线上的绝对值最大的元素时用如下方法:首先计算实对称矩阵A的非对角线元素的平方和的平方根中国矿产资源评价新技术与评价新模型然后设置关口υ1=υ0/n,在非对角线元素中按行扫描选取第一个绝对值大于或等于υ1的元素αpq进行平面旋转变换,直到所有非对角线元素的绝对值均小于υ1为止。

再设关口υ2=υ1/n,重复这个过程。以此类推,这个过程一直作用到对于某个υk<ε为止。(3)调用说明voidcjcbj(double*a,intn,double*v,doubleeps)。

形参说明:a——指向双精度实型数组的指针,体积为n×n,存放n阶实对称矩阵A;返回时,其对角线存放n个特征值;n——整型变量,实矩阵A的阶数;υ——指向双精度实型数组的指针,体积为n×n,返回特征向量,其中第i列为与λi(即返回的αii,i=0,1,……,n-1)对应的特征向量;esp——双精度实型变量。

给定的精度要求。3.矩阵求逆(1)功能用全选主元高斯-约当(Gauss-Jordan)消去法求n阶实矩阵A的逆矩阵。

(2)方法说明高斯-约当法(全选主元)求逆的步骤如下:首先,对于k从0到n-1做如下几步:1)从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号和列号,再通过行交换和列交换将它交换到主元素位置上,这一步称为全选主元;2);3),i,j=0,1,…,n-1(i,j≠k);4)αij-,i,j=0,1,…,n-1(i,j≠k);5)-,i,j=0,1,…,n-1(i≠k);最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下:在全选主元过程中,先交换的行、列后进行恢复;原来的行(列)交换用列(行)交换来恢复。

图8-4东昆仑—柴北缘地区基于HOPFIELD模型的铜矿分类结果图(3)调用说明intbrinv(double*a,intn)。本函数返回一个整型标志位。

若返回的标志位为0,则表示矩阵A奇异,还输出信息“err**notinv”;若返回的标志位不为0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为n×n。

存放原矩阵A;返回时,存放其逆矩阵A-1;n——整型变量,矩阵的阶数。六、实例实例:柴北缘—东昆仑地区铜矿分类预测。

选取8种因素,分别是重砂异常存在标志、水化异常存在标志、化探异常峰值、地质图熵值、Ms存在标志、Gs存在标志、Shdadlie到区的距离、构造线线密度。构置原始变量,并根据原始数据构造预测模型。

HOPFIELD模型参数设置:训练模式维数8,预测样本个数774,参数个数8,迭代次数330。结果分44类(图8-4,表8-5)。表8-5原始数据表及分类结果(部分)续表。

神经网络建模的适用范围,神经网络建模步骤视频相关推荐

  1. 神经网络建模的适用范围,神经网络建模介绍文案

    有哪些深度神经网络模型? 目前经常使用的深度神经网络模型主要有卷积神经网络(CNN) .递归神经网络(RNN).深信度网络(DBN) .深度自动编码器(AutoEncoder) 和生成对抗网络(GAN ...

  2. 数学建模神经网络模型,数学建模神经网络算法

    神经网络能对数据进行预测吗 数学建模 . 神经网络本身就是数学的逼近模型,网络最早是由数学中的函数逼近技术而来,按照统计学规律,组合成线性叠加网络,从中分析出一些现实中高度非线性的模型,神经网络本身就 ...

  3. 神经网络建模的基本思想,建模方法神经网络设计

    在做数学建模题时,都有那些方法可以处理大量数据 结合数模培训和参赛的经验,可采用数据挖掘中的多元回归分析,主成分分析.人工神经网络等方法在建模中的一些成功应用. 以全国大学生数学建模竞赛题为例,数据处 ...

  4. 神经网络数学建模怎么算,神经网络数学建模论文

    神经网络能对数据进行预测吗 数学建模 . 神经网络本身就是数学的逼近模型,网络最早是由数学中的函数逼近技术而来,按照统计学规律,组合成线性叠加网络,从中分析出一些现实中高度非线性的模型,神经网络本身就 ...

  5. 图神经网络如何对知识图谱建模? | 赠书

    几乎所有早期的知识图谱嵌入的经典方法都是在对每个三元组打分,在实体和关系的表示中并没有完全考虑到整幅图的结构. 早期,图神经网络的方法在知识图谱嵌入中并没有被重视,主要由于: 早期的图神经网络更多是具 ...

  6. PaperNotes(16)-图神经网络GNN简史、不动点建模-笔记

    图神经网络简史.简介 1.图神经网络简史 2.图神经网络--学习过程 3.图神经网络--理论基础 4.图神经网络的局限 5.GNN,RNN,GGNN 6.小结 阅读笔记:从图(Graph)到图卷积(G ...

  7. 卷积神经网络常用模型,卷积神经网络数学建模

    有哪些深度神经网络模型? 目前经常使用的深度神经网络模型主要有卷积神经网络(CNN).递归神经网络(RNN).深信度网络(DBN).深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等. ...

  8. 调试神经网络的checklist,切实可行的步骤

    2019-11-28 21:14:16 作者:Cecelia Shao 编译:ronghuaiyang 导读 这篇文章提供了可以采取的切实可行的步骤来识别和修复机器学习模型的训练.泛化和优化问题. 众 ...

  9. 神经网络的主要应用领域,神经网络发展介绍视频

    神经网络的历史是什么? 沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型.这种模型使得神经网络的研究分裂为两种不同研究思路. 一种主要关注大脑中的生 ...

最新文章

  1. Android新版NDK环境配置(免Cygwin)
  2. 第一门编程语言的选择无关紧要?
  3. linux之tr命令详解
  4. java 类对象可以调用静态方法吗
  5. C++ STL快速入门
  6. 浅析phpwind9.0之登陆机制
  7. idea 一直在build_CEO季度表彰团队| 我们一直在做最酷的事
  8. java filter 模式,Java设计模式----过滤器模式(挑三拣四)
  9. Linux内核设计与实现---进程调度
  10. c#养老院老人信息管理系统源码 论文_辽宁吃的好的社区养老院位置,爱心养老院_抚顺市望花区社会养老中心...
  11. 计算机设备管理程序在哪,怎么打开设备管理器
  12. 华为机试真题 C++ 实现【乱序整数序列两数之和绝对值最小】
  13. 交互式电子白板android,交互式电子白板教学应用
  14. 平衡搜索树中的左单旋右单旋双旋
  15. android的权限一览表和RGB颜色对照表
  16. Springboot框架整合Mybatis-plus实战动态SQL以及常见的Mybatis面试题
  17. [JZOJ5594][min25筛]最大真因数
  18. surface 部分uwp软件无法联网
  19. virtualbox安装时发生致命错误的解决方法
  20. 生物智能与AI——关乎创造、关乎理解(上) 1

热门文章

  1. 图片二维码,如何将图片制作成二维码
  2. 考研公式大全-提问版-数学二
  3. 插件化Amigo-1
  4. c++中new是否会自动初始化
  5. python获取列表中某个元素个数_如何获取列表中的元素数?
  6. php 安装、使用sphinx
  7. 算法工程师分类与要求
  8. 1.3. DIGITAL SIGNATURES数字签名
  9. transition、-moz-transition、-webkit-transition、-o-transition是什么意思?怎样用?
  10. 使用JqueryEasyUI进行页面布局