完整版

https://blog.csdn.net/zhaohongfei_358/article/details/106039576

基础回顾

面(体)积公式

球表面积公式:S=球体积公式:V=圆锥体积公式:V=椭圆面积公式:S=扇形面积公式:S=(其中l为弧长,r为半径,θ为夹角(用π表示))\begin{aligned} & \\ & 球表面积公式:S= \\ \\ & 球体积公式:V = \\ \\ & 圆锥体积公式:V= \\\\ & 椭圆面积公式: S= \\ \\ & 扇形面积公式: S= ~~~~~(其中l为弧长,r为半径,\theta为夹角(用\pi表示)) \end{aligned} ​球表面积公式:S=球体积公式:V=圆锥体积公式:V=椭圆面积公式:S=扇形面积公式:S=     (其中l为弧长,r为半径,θ为夹角(用π表示))​

一元二次方程基础

一元二次方程:根的公式:韦达定理:x1+x2=x1x2=判别式:Δ=b2−4ac⟹{Δ>0Δ=0Δ<0抛物线y=ax2+bx+c的顶点:()\begin{aligned} & \\ & 一元二次方程: \\ \\ & 根的公式: ~~~~ \\ \\ & 韦达定理: x_1 + x_2 = ~~~~~~~ x_1 x_2 = \\ \\ & 判别式: \Delta=b^2 - 4ac \implies \begin{cases} \Delta >0 \\ \Delta =0 \\ \Delta <0 \\ \end{cases} \\\\ & 抛物线~ y=ax^2 + bx + c 的顶点:() \end{aligned} ​一元二次方程:根的公式:    韦达定理:x1​+x2​=       x1​x2​=判别式:Δ=b2−4ac⟹⎩⎪⎨⎪⎧​Δ>0Δ=0Δ<0​抛物线 y=ax2+bx+c的顶点:()​

极坐标方程与直角坐标转换

直角坐标化极坐标{x=y=⟹x2+y2=极坐标化直角坐标:ρ2=x2+y2⟹tan⁡θ=\begin{aligned} &直角坐标化极坐标 \begin{cases} x = \\ y = \end{cases} \implies x^2+y^2= \\\\ &极坐标化直角坐标 :\rho ^2 = x^2+y^2 \implies \tan \theta = \\\\ \end{aligned} ​直角坐标化极坐标{x=y=​⟹x2+y2=极坐标化直角坐标:ρ2=x2+y2⟹tanθ=​

切线与法线方程

切线方程:法线方程:\begin{aligned} & 切线方程: \\ \\ & 法线方程: \end{aligned} ​切线方程:法线方程:​

因式分解公式

(a+b)2=(a−b)2=(a+b)3=(a−b)3=(a+b)(a−b)=a3+b3=a3−b3=an−bn=(a+b)n=\begin{aligned} & \\ & (a+b)^2 = \\ \\ & (a-b)^2 = \\ \\ & (a+b)^3 = \\ \\ & (a-b)^3 = \\ \\ & (a+b)(a-b) = \\ \\ & a^3 + b^3 = \\ \\ & a^3-b^3 = \\ \\ & a^n-b^n = \\ \\ & (a+b)^n = \end{aligned} ​(a+b)2=(a−b)2=(a+b)3=(a−b)3=(a+b)(a−b)=a3+b3=a3−b3=an−bn=(a+b)n=​

阶乘与双阶乘

n!=(规定0!=?)(2n)!!=(2n−1)!!=\begin{aligned} & n! = ~~~~~(规定0!=?) \\ \\ & (2n)!! = \\ \\ & (2n-1)!! = \end{aligned} ​n!=     (规定0!=?)(2n)!!=(2n−1)!!=​

函数的奇偶性

定义在[−a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和:f(x)=\begin{aligned} & 定义在[-a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和: \\ \\ & f(x) = \end{aligned} ​定义在[−a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和:f(x)=​

排列组合

Anm=Cnm=\begin{aligned} A_n^m & = \\\\ C_n^m & = \end{aligned} Anm​Cnm​​==​

等差数列

an=Sn=Sn=\begin{aligned} & a_n = \\ \\ & S_n = \\ \\ & S_n = \\ \\ \end{aligned} ​an​=Sn​=Sn​=​

等比数列

an=Sn=\begin{aligned} & a_n = \\ \\ & S_n = \end{aligned} ​an​=Sn​=​

常用数列前n项和

∑k=1nk=1+2+3+⋯+n=∑k=1n(2k−1)=1+3+5+⋯+(2n−1)=∑k=1nk2=12+22+32+⋯+n2=∑k=1nk3=13+23+33+⋯+n3=∑k=1nk(k+1)=1×2+2×3+3×4+⋯+n(n+1)=∑k=1n1k(k+1)=11×2+12×3+13×4+⋯+1n(n+1)=\begin{aligned} & \\ & \sum_{k=1}^n k = 1 + 2+3+\cdots + n= \\ \\ & \sum_{k=1}^n (2k-1) = 1+ 3 + 5 + \cdots + (2n-1) = \\ \\ & \sum_{k=1}^n k^2 = 1^2+2^2+3^2+\cdots +n^2 = \\ \\ & \sum_{k=1}^n k^3 = 1^3 + 2^3 +3^3 +\cdots + n^3 = \\ \\ & \sum_{k=1}^n k(k+1) = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1) = \\\\ & \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{n(n+1)} = \end{aligned} ​k=1∑n​k=1+2+3+⋯+n=k=1∑n​(2k−1)=1+3+5+⋯+(2n−1)=k=1∑n​k2=12+22+32+⋯+n2=k=1∑n​k3=13+23+33+⋯+n3=k=1∑n​k(k+1)=1×2+2×3+3×4+⋯+n(n+1)=k=1∑n​k(k+1)1​=1×21​+2×31​+3×41​+⋯+n(n+1)1​=​

不等式

?≤a2+b2?≤∣a∣+∣b∣?≤∣a−b∣?≤∣a1∣+∣a2∣+⋅⋅⋅+∣an∣?≤∫ab∣f(x)∣dx(a<b)ab?a+b2?a2+b22(a,b>0)abc3?a+b+c3?a2+b2+c23(a,b,c>0)?a1+a2+...+ann??xpp+xqq(ac+bd)2?(a2+b2)(c2+d2)(a1b1+a2b2+a3b3)2?(a12+a22+a32)(b12+b22+b32)[∫abf(x)⋅g(x)dx]2≤sin⁡x?x?tan⁡x(0<x<π2)arctan⁡x?x?arcsin⁡x(0≤x≤1)x+1?exln⁡x?x−1?<ln⁡(1+1x)<?(x>0)\begin{aligned} & \\ & ? \le a ^ 2 + b^2 \\ \\ & ? \le |a| + |b| \\ \\ & ? \le |a-b| \\ \\ & ? \le |a_1| + |a_2| + \cdot\cdot\cdot + |a_n| \\ \\ & ? \le \int_a^b |f(x)| dx ~~~~~(a<b) \\ \\ & \sqrt{ab} ~~~?~~~ \frac{a+b}{2} ~~~?~~~ \sqrt{\frac{a^2+b^2}{2}} ~~~~~(a,b>0) \\ \\ & \sqrt[3]{abc} ~~~?~~~ \frac{a+b+c}{3} ~~~?~~~ \sqrt{\frac{a^2+b^2+c^2}{3}} ~~~~~(a,b,c>0) \\ \\ & ~~~?~~~ \frac{a_1+a_2+...+a_n}{n} ~~~?~~~\\ \\ & ~~~?~~~ \frac{x^p}{p} + \frac{x^q}{q} \\ \\ & (ac+bd)^2 ~~~?~~~ (a^2+b^2)(c^2+d^2) \\ \\ & (a_1 b_1 + a_2 b_2 + a_3 b_3)^2 ~~~?~~~ ({a_1}^2 + {a_2}^2 + {a_3}^2)({b_1}^2 + {b_2}^2 + {b_3}^2) \\ \\ & [\int_a^b f(x)\cdot g(x) dx]^2 \le \\ \\ & \sin x ~~~?~~~x ~~~?~~~ \tan x ~~~~~(0<x<\frac{\pi}{2}) \\ \\ & \arctan x ~~~?~~~ x ~~~?~~~ \arcsin x ~~~~~(0\le x \le 1) \\ \\ & x+1 ~~~?~~~ e^x \\ \\ & \ln x ~~~?~~~ x-1 \\ \\ & ? < \ln (1+\frac{1}{x}) < ? ~~~~~(x>0) \end{aligned} ​?≤a2+b2?≤∣a∣+∣b∣?≤∣a−b∣?≤∣a1​∣+∣a2​∣+⋅⋅⋅+∣an​∣?≤∫ab​∣f(x)∣dx     (a<b)ab​   ?   2a+b​   ?   2a2+b2​​     (a,b>0)3abc​   ?   3a+b+c​   ?   3a2+b2+c2​​     (a,b,c>0)   ?   na1​+a2​+...+an​​   ?      ?   pxp​+qxq​(ac+bd)2   ?   (a2+b2)(c2+d2)(a1​b1​+a2​b2​+a3​b3​)2   ?   (a1​2+a2​2+a3​2)(b1​2+b2​2+b3​2)[∫ab​f(x)⋅g(x)dx]2≤sinx   ?   x   ?   tanx     (0<x<2π​)arctanx   ?   x   ?   arcsinx     (0≤x≤1)x+1   ?   exlnx   ?   x−1?<ln(1+x1​)<?     (x>0)​

三角函数公式

诱导公式

sin⁡(−α)=cos⁡(−α)=sin⁡(π2−α)=cos⁡(π2−α)=sin⁡(π2+α)=cos⁡(π2+α)=sin⁡(π−α)=cos⁡(π−α)=sin⁡(π+α)=cos⁡(π+α)=\begin{aligned} & \sin (-\alpha) = \\ \\ & \cos (-\alpha) = \\ \\ & \sin (\frac{\pi}{2} - \alpha) = \\ \\ & \cos (\frac{\pi}{2} - \alpha) = \\ \\ & \sin (\frac{\pi}{2} + \alpha) = \\ \\ & \cos (\frac{\pi}{2} + \alpha) = \\ \\ & \sin (\pi - \alpha) = \\ \\ & \cos (\pi - \alpha) = \\ \\ & \sin (\pi + \alpha) = \\ \\ & \cos (\pi + \alpha) = \\ \\ \\ \end{aligned} ​sin(−α)=cos(−α)=sin(2π​−α)=cos(2π​−α)=sin(2π​+α)=cos(2π​+α)=sin(π−α)=cos(π−α)=sin(π+α)=cos(π+α)=​

平方关系

1+tan⁡2α=1+cot⁡2α=sin⁡2α+cos⁡2α=\begin{aligned} & \\ & 1 + \tan ^2 \alpha = \\ \\ & 1 + \cot^2 \alpha = \\ \\ & \sin^2 \alpha + \cos ^2 \alpha = \end{aligned} ​1+tan2α=1+cot2α=sin2α+cos2α=​

两角和与差的三角函数

sin⁡(α+β)=cos⁡(α+β)=sin⁡(α−β)=cos⁡(α−β)=tan⁡(α+β)=tan⁡(α−β)=\begin{aligned} & \sin (\alpha + \beta) = \\ \\ & \cos (\alpha + \beta) = \\ \\ & \sin (\alpha - \beta) = \\ \\ & \cos (\alpha - \beta) = \\ \\ & \tan (\alpha + \beta) = \\ \\ & \tan (\alpha - \beta) = \end{aligned} ​sin(α+β)=cos(α+β)=sin(α−β)=cos(α−β)=tan(α+β)=tan(α−β)=​

积化和差公式

cos⁡αcos⁡β=cos⁡αsin⁡β=sin⁡αcos⁡β=sin⁡αsin⁡β=\begin{aligned} & \cos \alpha \cos \beta = \\ \\ & \cos \alpha \sin \beta = \\ \\ & \sin \alpha \cos \beta = \\ \\ & \sin \alpha \sin \beta = \end{aligned} ​cosαcosβ=cosαsinβ=sinαcosβ=sinαsinβ=​

和差化积公式

sin⁡α+sin⁡β=sin⁡α−sin⁡β=cos⁡α+cos⁡β=cos⁡α−cos⁡β=\begin{aligned} & \sin \alpha + \sin \beta = \\ \\ & \sin \alpha - \sin \beta = \\ \\ & \cos \alpha + \cos \beta = \\ \\ & \cos \alpha - \cos \beta = \end{aligned} ​sinα+sinβ=sinα−sinβ=cosα+cosβ=cosα−cosβ=​

倍角公式

sin⁡2α=cos⁡2α=sin⁡3α=cos⁡3α=sin⁡2α=cos⁡2α=tan⁡2α=cot⁡2α=\begin{aligned} & \sin 2\alpha = \\ \\ & \cos 2\alpha = \\ \\ & \sin 3\alpha = \\ \\ & \cos 3 \alpha = \\ \\ & \sin^2 \alpha = \\ \\ & \cos^2 \alpha = \\ \\ & \tan 2\alpha = \\ \\ & \cot 2\alpha = \end{aligned} ​sin2α=cos2α=sin3α=cos3α=sin2α=cos2α=tan2α=cot2α=​

半角公式

sin⁡2α2=cos⁡2α2=sin⁡α2=cos⁡α2=tan⁡α2=cot⁡α2=\begin{aligned} & \sin^2 \frac{\alpha}{2} = \\ \\ & \cos^2 \frac{\alpha}{2} = \\ \\ & \sin \frac{\alpha}{2} = \\ \\ & \cos \frac{\alpha}{2} =\\ \\ & \tan \frac{\alpha}{2} = \\ \\ & \cot \frac{\alpha}{2} = \end{aligned} ​sin22α​=cos22α​=sin2α​=cos2α​=tan2α​=cot2α​=​

万能公式

sin⁡α=cos⁡α=\begin{aligned} & \sin \alpha = \\ \\ & \cos \alpha = \end{aligned} ​sinα=cosα=​

其他公式

1+sin⁡α=1−sin⁡α=\begin{aligned} & 1 + \sin \alpha = \\ \\ & 1 - \sin \alpha = \end{aligned} ​1+sinα=1−sinα=​

反三角函数恒等式

arcsin⁡x+arccos⁡x=arctan⁡x+arccotx=sin⁡(arccos⁡x)=cos⁡(arcsin⁡x)=sin⁡(arcsin⁡x)=arcsin⁡(sin⁡x)=cos⁡(arccos⁡x)=arccos⁡(cos⁡x)=arccos⁡(−x)=\begin{aligned} & \arcsin x + \arccos x = \\ \\ & \arctan x + arccot ~x= \\ \\ & \sin(\arccos x) = \\ \\ & \cos(\arcsin x) = \\ \\ & \sin(\arcsin x) = \\ \\ & \arcsin (\sin x) = \\ \\ & \cos (\arccos x) = \\ \\ & \arccos (\cos x) = \\ \\ & \arccos (-x) = \end{aligned} ​arcsinx+arccosx=arctanx+arccot x=sin(arccosx)=cos(arcsinx)=sin(arcsinx)=arcsin(sinx)=cos(arccosx)=arccos(cosx)=arccos(−x)=​

极限相关公式

数列极限递推式

an+1=f(an)结论一:f′(x)>0,{a2>a1⟹{an}单调递?a2<a1⟹{an}单调递?结论二(压缩映像原理):?\begin{aligned} & a_{n+1} = f(a_n) \\\\ 结论一: & f'(x) > 0 , \begin{cases} a_2 > a_1 \implies \{ a_n \} 单调递? \\ a_2 < a_1 \implies \{ a_n \} 单调递? \end{cases} \\\\ 结论二(压缩映像原理):? \end{aligned} 结论一:结论二(压缩映像原理):?​an+1​=f(an​)f′(x)>0,{a2​>a1​⟹{an​}单调递?a2​<a1​⟹{an​}单调递?​​

重要极限公式

lim⁡x→0+xαln⁡x=lim⁡x→0+xα(ln⁡x)k=lim⁡x→+∞xαe−δx=lim⁡x→0sin⁡xx=lim⁡x→0(1+x)1x=lim⁡n→∞nn=lim⁡n→∞an=\begin{aligned} & \lim_{x \to 0^+} x^\alpha \ln x = \\\\ & \lim_{x \to 0^+} x^\alpha (\ln x)^k = \\\\ & \lim_{x \to +\infty} x^\alpha e^{-\delta x} = \\\\ & \lim_{x\to 0} \frac{\sin x}{x} = \\ \\ & \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \\\\ & \lim_{n \to \infty} \sqrt[n]{n} = \\\\ & \lim_{n \to \infty} \sqrt[n]{a} = \\\\ \end{aligned} ​x→0+lim​xαlnx=x→0+lim​xα(lnx)k=x→+∞lim​xαe−δx=x→0lim​xsinx​=x→0lim​(1+x)x1​=n→∞lim​nn​=n→∞lim​na​=​

常用等价无穷小

x→0时,x∼???????,1−cos⁡x∼?,(1+x)a−1∼?,ax−1∼?\begin{aligned} & x \to 0 时,\\\\ & x \sim??????? ~~,~~ 1- \cos x \sim ? ~~, \\ \\ & (1+x)^a - 1 \sim ? ~~,~~ a^x - 1 \sim ? \end{aligned} ​x→0时,x∼???????  ,  1−cosx∼?  ,(1+x)a−1∼?  ,  ax−1∼?​

1^∞ 型

lim⁡uv=e?\lim u^v = e^? limuv=e?

导数相关公式

导数定义

f′(x0)=f′(x0)=\begin{aligned} & f'(x_0) = \\\\ & f'(x_0) = \end{aligned} ​f′(x0​)=f′(x0​)=​

微分定义

Δy=Δy=AΔx=\begin{aligned} & \Delta y = \\ \\ & \Delta y = \\ \\ & A\Delta x = \end{aligned} ​Δy=Δy=AΔx=​

连续,可导及可微关系

一元函数

#mermaid-svg-LEQGcx6PS0m9y1ev .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .label text{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .node rect,#mermaid-svg-LEQGcx6PS0m9y1ev .node circle,#mermaid-svg-LEQGcx6PS0m9y1ev .node ellipse,#mermaid-svg-LEQGcx6PS0m9y1ev .node polygon,#mermaid-svg-LEQGcx6PS0m9y1ev .node path{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-LEQGcx6PS0m9y1ev .node .label{text-align:center;fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .node.clickable{cursor:pointer}#mermaid-svg-LEQGcx6PS0m9y1ev .arrowheadPath{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .edgePath .path{stroke:#333;stroke-width:1.5px}#mermaid-svg-LEQGcx6PS0m9y1ev .flowchart-link{stroke:#333;fill:none}#mermaid-svg-LEQGcx6PS0m9y1ev .edgeLabel{background-color:#e8e8e8;text-align:center}#mermaid-svg-LEQGcx6PS0m9y1ev .edgeLabel rect{opacity:0.9}#mermaid-svg-LEQGcx6PS0m9y1ev .edgeLabel span{color:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .cluster rect{fill:#ffffde;stroke:#aa3;stroke-width:1px}#mermaid-svg-LEQGcx6PS0m9y1ev .cluster text{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:12px;background:#ffffde;border:1px solid #aa3;border-radius:2px;pointer-events:none;z-index:100}#mermaid-svg-LEQGcx6PS0m9y1ev .actor{stroke:#ccf;fill:#ECECFF}#mermaid-svg-LEQGcx6PS0m9y1ev text.actor>tspan{fill:#000;stroke:none}#mermaid-svg-LEQGcx6PS0m9y1ev .actor-line{stroke:grey}#mermaid-svg-LEQGcx6PS0m9y1ev .messageLine0{stroke-width:1.5;stroke-dasharray:none;stroke:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .messageLine1{stroke-width:1.5;stroke-dasharray:2, 2;stroke:#333}#mermaid-svg-LEQGcx6PS0m9y1ev #arrowhead path{fill:#333;stroke:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .sequenceNumber{fill:#fff}#mermaid-svg-LEQGcx6PS0m9y1ev #sequencenumber{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev #crosshead path{fill:#333;stroke:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .messageText{fill:#333;stroke:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .labelBox{stroke:#ccf;fill:#ECECFF}#mermaid-svg-LEQGcx6PS0m9y1ev .labelText,#mermaid-svg-LEQGcx6PS0m9y1ev .labelText>tspan{fill:#000;stroke:none}#mermaid-svg-LEQGcx6PS0m9y1ev .loopText,#mermaid-svg-LEQGcx6PS0m9y1ev .loopText>tspan{fill:#000;stroke:none}#mermaid-svg-LEQGcx6PS0m9y1ev .loopLine{stroke-width:2px;stroke-dasharray:2, 2;stroke:#ccf;fill:#ccf}#mermaid-svg-LEQGcx6PS0m9y1ev .note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-LEQGcx6PS0m9y1ev .noteText,#mermaid-svg-LEQGcx6PS0m9y1ev .noteText>tspan{fill:#000;stroke:none}#mermaid-svg-LEQGcx6PS0m9y1ev .activation0{fill:#f4f4f4;stroke:#666}#mermaid-svg-LEQGcx6PS0m9y1ev .activation1{fill:#f4f4f4;stroke:#666}#mermaid-svg-LEQGcx6PS0m9y1ev .activation2{fill:#f4f4f4;stroke:#666}#mermaid-svg-LEQGcx6PS0m9y1ev .mermaid-main-font{font-family:"trebuchet ms", verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .section{stroke:none;opacity:0.2}#mermaid-svg-LEQGcx6PS0m9y1ev .section0{fill:rgba(102,102,255,0.49)}#mermaid-svg-LEQGcx6PS0m9y1ev .section2{fill:#fff400}#mermaid-svg-LEQGcx6PS0m9y1ev .section1,#mermaid-svg-LEQGcx6PS0m9y1ev .section3{fill:#fff;opacity:0.2}#mermaid-svg-LEQGcx6PS0m9y1ev .sectionTitle0{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .sectionTitle1{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .sectionTitle2{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .sectionTitle3{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .sectionTitle{text-anchor:start;font-size:11px;text-height:14px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .grid .tick{stroke:#d3d3d3;opacity:0.8;shape-rendering:crispEdges}#mermaid-svg-LEQGcx6PS0m9y1ev .grid .tick text{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .grid path{stroke-width:0}#mermaid-svg-LEQGcx6PS0m9y1ev .today{fill:none;stroke:red;stroke-width:2px}#mermaid-svg-LEQGcx6PS0m9y1ev .task{stroke-width:2}#mermaid-svg-LEQGcx6PS0m9y1ev .taskText{text-anchor:middle;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .taskText:not([font-size]){font-size:11px}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutsideRight{fill:#000;text-anchor:start;font-size:11px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutsideLeft{fill:#000;text-anchor:end;font-size:11px}#mermaid-svg-LEQGcx6PS0m9y1ev .task.clickable{cursor:pointer}#mermaid-svg-LEQGcx6PS0m9y1ev .taskText.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutsideLeft.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutsideRight.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LEQGcx6PS0m9y1ev .taskText0,#mermaid-svg-LEQGcx6PS0m9y1ev .taskText1,#mermaid-svg-LEQGcx6PS0m9y1ev .taskText2,#mermaid-svg-LEQGcx6PS0m9y1ev .taskText3{fill:#fff}#mermaid-svg-LEQGcx6PS0m9y1ev .task0,#mermaid-svg-LEQGcx6PS0m9y1ev .task1,#mermaid-svg-LEQGcx6PS0m9y1ev .task2,#mermaid-svg-LEQGcx6PS0m9y1ev .task3{fill:#8a90dd;stroke:#534fbc}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutside0,#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutside2{fill:#000}#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutside1,#mermaid-svg-LEQGcx6PS0m9y1ev .taskTextOutside3{fill:#000}#mermaid-svg-LEQGcx6PS0m9y1ev .active0,#mermaid-svg-LEQGcx6PS0m9y1ev .active1,#mermaid-svg-LEQGcx6PS0m9y1ev .active2,#mermaid-svg-LEQGcx6PS0m9y1ev .active3{fill:#bfc7ff;stroke:#534fbc}#mermaid-svg-LEQGcx6PS0m9y1ev .activeText0,#mermaid-svg-LEQGcx6PS0m9y1ev .activeText1,#mermaid-svg-LEQGcx6PS0m9y1ev .activeText2,#mermaid-svg-LEQGcx6PS0m9y1ev .activeText3{fill:#000 !important}#mermaid-svg-LEQGcx6PS0m9y1ev .done0,#mermaid-svg-LEQGcx6PS0m9y1ev .done1,#mermaid-svg-LEQGcx6PS0m9y1ev .done2,#mermaid-svg-LEQGcx6PS0m9y1ev .done3{stroke:grey;fill:#d3d3d3;stroke-width:2}#mermaid-svg-LEQGcx6PS0m9y1ev .doneText0,#mermaid-svg-LEQGcx6PS0m9y1ev .doneText1,#mermaid-svg-LEQGcx6PS0m9y1ev .doneText2,#mermaid-svg-LEQGcx6PS0m9y1ev .doneText3{fill:#000 !important}#mermaid-svg-LEQGcx6PS0m9y1ev .crit0,#mermaid-svg-LEQGcx6PS0m9y1ev .crit1,#mermaid-svg-LEQGcx6PS0m9y1ev .crit2,#mermaid-svg-LEQGcx6PS0m9y1ev .crit3{stroke:#f88;fill:red;stroke-width:2}#mermaid-svg-LEQGcx6PS0m9y1ev .activeCrit0,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCrit1,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCrit2,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCrit3{stroke:#f88;fill:#bfc7ff;stroke-width:2}#mermaid-svg-LEQGcx6PS0m9y1ev .doneCrit0,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCrit1,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCrit2,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCrit3{stroke:#f88;fill:#d3d3d3;stroke-width:2;cursor:pointer;shape-rendering:crispEdges}#mermaid-svg-LEQGcx6PS0m9y1ev .milestone{transform:rotate(45deg) scale(0.8, 0.8)}#mermaid-svg-LEQGcx6PS0m9y1ev .milestoneText{font-style:italic}#mermaid-svg-LEQGcx6PS0m9y1ev .doneCritText0,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCritText1,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCritText2,#mermaid-svg-LEQGcx6PS0m9y1ev .doneCritText3{fill:#000 !important}#mermaid-svg-LEQGcx6PS0m9y1ev .activeCritText0,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCritText1,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCritText2,#mermaid-svg-LEQGcx6PS0m9y1ev .activeCritText3{fill:#000 !important}#mermaid-svg-LEQGcx6PS0m9y1ev .titleText{text-anchor:middle;font-size:18px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev g.classGroup text{fill:#9370db;stroke:none;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:10px}#mermaid-svg-LEQGcx6PS0m9y1ev g.classGroup text .title{font-weight:bolder}#mermaid-svg-LEQGcx6PS0m9y1ev g.clickable{cursor:pointer}#mermaid-svg-LEQGcx6PS0m9y1ev g.classGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-LEQGcx6PS0m9y1ev g.classGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev .classLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.5}#mermaid-svg-LEQGcx6PS0m9y1ev .classLabel .label{fill:#9370db;font-size:10px}#mermaid-svg-LEQGcx6PS0m9y1ev .relation{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-LEQGcx6PS0m9y1ev .dashed-line{stroke-dasharray:3}#mermaid-svg-LEQGcx6PS0m9y1ev #compositionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #compositionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #aggregationStart{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #aggregationEnd{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #dependencyStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #dependencyEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #extensionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev #extensionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev .commit-id,#mermaid-svg-LEQGcx6PS0m9y1ev .commit-msg,#mermaid-svg-LEQGcx6PS0m9y1ev .branch-label{fill:lightgrey;color:lightgrey;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .pieTitleText{text-anchor:middle;font-size:25px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .slice{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev g.stateGroup text{fill:#9370db;stroke:none;font-size:10px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev g.stateGroup text{fill:#9370db;fill:#333;stroke:none;font-size:10px}#mermaid-svg-LEQGcx6PS0m9y1ev g.statediagram-cluster .cluster-label text{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev g.stateGroup .state-title{font-weight:bolder;fill:#000}#mermaid-svg-LEQGcx6PS0m9y1ev g.stateGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-LEQGcx6PS0m9y1ev g.stateGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-LEQGcx6PS0m9y1ev .transition{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-LEQGcx6PS0m9y1ev .stateGroup .composit{fill:white;border-bottom:1px}#mermaid-svg-LEQGcx6PS0m9y1ev .stateGroup .alt-composit{fill:#e0e0e0;border-bottom:1px}#mermaid-svg-LEQGcx6PS0m9y1ev .state-note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-LEQGcx6PS0m9y1ev .state-note text{fill:black;stroke:none;font-size:10px}#mermaid-svg-LEQGcx6PS0m9y1ev .stateLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.7}#mermaid-svg-LEQGcx6PS0m9y1ev .edgeLabel text{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .stateLabel text{fill:#000;font-size:10px;font-weight:bold;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LEQGcx6PS0m9y1ev .node circle.state-start{fill:black;stroke:black}#mermaid-svg-LEQGcx6PS0m9y1ev .node circle.state-end{fill:black;stroke:white;stroke-width:1.5}#mermaid-svg-LEQGcx6PS0m9y1ev #statediagram-barbEnd{fill:#9370db}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-cluster rect{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-cluster rect.outer{rx:5px;ry:5px}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-state .divider{stroke:#9370db}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-state .title-state{rx:5px;ry:5px}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-cluster.statediagram-cluster .inner{fill:white}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-cluster.statediagram-cluster-alt .inner{fill:#e0e0e0}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-cluster .inner{rx:0;ry:0}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-state rect.basic{rx:5px;ry:5px}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-state rect.divider{stroke-dasharray:10,10;fill:#efefef}#mermaid-svg-LEQGcx6PS0m9y1ev .note-edge{stroke-dasharray:5}#mermaid-svg-LEQGcx6PS0m9y1ev .statediagram-note rect{fill:#fff5ad;stroke:#aa3;stroke-width:1px;rx:0;ry:0}:root{--mermaid-font-family: '"trebuchet ms", verdana, arial';--mermaid-font-family: "Comic Sans MS", "Comic Sans", cursive}#mermaid-svg-LEQGcx6PS0m9y1ev .error-icon{fill:#522}#mermaid-svg-LEQGcx6PS0m9y1ev .error-text{fill:#522;stroke:#522}#mermaid-svg-LEQGcx6PS0m9y1ev .edge-thickness-normal{stroke-width:2px}#mermaid-svg-LEQGcx6PS0m9y1ev .edge-thickness-thick{stroke-width:3.5px}#mermaid-svg-LEQGcx6PS0m9y1ev .edge-pattern-solid{stroke-dasharray:0}#mermaid-svg-LEQGcx6PS0m9y1ev .edge-pattern-dashed{stroke-dasharray:3}#mermaid-svg-LEQGcx6PS0m9y1ev .edge-pattern-dotted{stroke-dasharray:2}#mermaid-svg-LEQGcx6PS0m9y1ev .marker{fill:#333}#mermaid-svg-LEQGcx6PS0m9y1ev .marker.cross{stroke:#333}:root { --mermaid-font-family: "trebuchet ms", verdana, arial;}#mermaid-svg-LEQGcx6PS0m9y1ev {color: rgba(0, 0, 0, 0.75);font: ;}

可微
连续
可导

多元函数

#mermaid-svg-LSrS0N1Gym7YRcT4 .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .label text{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .node rect,#mermaid-svg-LSrS0N1Gym7YRcT4 .node circle,#mermaid-svg-LSrS0N1Gym7YRcT4 .node ellipse,#mermaid-svg-LSrS0N1Gym7YRcT4 .node polygon,#mermaid-svg-LSrS0N1Gym7YRcT4 .node path{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-LSrS0N1Gym7YRcT4 .node .label{text-align:center;fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .node.clickable{cursor:pointer}#mermaid-svg-LSrS0N1Gym7YRcT4 .arrowheadPath{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .edgePath .path{stroke:#333;stroke-width:1.5px}#mermaid-svg-LSrS0N1Gym7YRcT4 .flowchart-link{stroke:#333;fill:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .edgeLabel{background-color:#e8e8e8;text-align:center}#mermaid-svg-LSrS0N1Gym7YRcT4 .edgeLabel rect{opacity:0.9}#mermaid-svg-LSrS0N1Gym7YRcT4 .edgeLabel span{color:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .cluster rect{fill:#ffffde;stroke:#aa3;stroke-width:1px}#mermaid-svg-LSrS0N1Gym7YRcT4 .cluster text{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:12px;background:#ffffde;border:1px solid #aa3;border-radius:2px;pointer-events:none;z-index:100}#mermaid-svg-LSrS0N1Gym7YRcT4 .actor{stroke:#ccf;fill:#ECECFF}#mermaid-svg-LSrS0N1Gym7YRcT4 text.actor>tspan{fill:#000;stroke:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .actor-line{stroke:grey}#mermaid-svg-LSrS0N1Gym7YRcT4 .messageLine0{stroke-width:1.5;stroke-dasharray:none;stroke:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .messageLine1{stroke-width:1.5;stroke-dasharray:2, 2;stroke:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 #arrowhead path{fill:#333;stroke:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .sequenceNumber{fill:#fff}#mermaid-svg-LSrS0N1Gym7YRcT4 #sequencenumber{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 #crosshead path{fill:#333;stroke:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .messageText{fill:#333;stroke:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .labelBox{stroke:#ccf;fill:#ECECFF}#mermaid-svg-LSrS0N1Gym7YRcT4 .labelText,#mermaid-svg-LSrS0N1Gym7YRcT4 .labelText>tspan{fill:#000;stroke:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .loopText,#mermaid-svg-LSrS0N1Gym7YRcT4 .loopText>tspan{fill:#000;stroke:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .loopLine{stroke-width:2px;stroke-dasharray:2, 2;stroke:#ccf;fill:#ccf}#mermaid-svg-LSrS0N1Gym7YRcT4 .note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-LSrS0N1Gym7YRcT4 .noteText,#mermaid-svg-LSrS0N1Gym7YRcT4 .noteText>tspan{fill:#000;stroke:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .activation0{fill:#f4f4f4;stroke:#666}#mermaid-svg-LSrS0N1Gym7YRcT4 .activation1{fill:#f4f4f4;stroke:#666}#mermaid-svg-LSrS0N1Gym7YRcT4 .activation2{fill:#f4f4f4;stroke:#666}#mermaid-svg-LSrS0N1Gym7YRcT4 .mermaid-main-font{font-family:"trebuchet ms", verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .section{stroke:none;opacity:0.2}#mermaid-svg-LSrS0N1Gym7YRcT4 .section0{fill:rgba(102,102,255,0.49)}#mermaid-svg-LSrS0N1Gym7YRcT4 .section2{fill:#fff400}#mermaid-svg-LSrS0N1Gym7YRcT4 .section1,#mermaid-svg-LSrS0N1Gym7YRcT4 .section3{fill:#fff;opacity:0.2}#mermaid-svg-LSrS0N1Gym7YRcT4 .sectionTitle0{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .sectionTitle1{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .sectionTitle2{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .sectionTitle3{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .sectionTitle{text-anchor:start;font-size:11px;text-height:14px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .grid .tick{stroke:#d3d3d3;opacity:0.8;shape-rendering:crispEdges}#mermaid-svg-LSrS0N1Gym7YRcT4 .grid .tick text{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .grid path{stroke-width:0}#mermaid-svg-LSrS0N1Gym7YRcT4 .today{fill:none;stroke:red;stroke-width:2px}#mermaid-svg-LSrS0N1Gym7YRcT4 .task{stroke-width:2}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText{text-anchor:middle;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText:not([font-size]){font-size:11px}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutsideRight{fill:#000;text-anchor:start;font-size:11px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutsideLeft{fill:#000;text-anchor:end;font-size:11px}#mermaid-svg-LSrS0N1Gym7YRcT4 .task.clickable{cursor:pointer}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutsideLeft.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutsideRight.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText0,#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText1,#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText2,#mermaid-svg-LSrS0N1Gym7YRcT4 .taskText3{fill:#fff}#mermaid-svg-LSrS0N1Gym7YRcT4 .task0,#mermaid-svg-LSrS0N1Gym7YRcT4 .task1,#mermaid-svg-LSrS0N1Gym7YRcT4 .task2,#mermaid-svg-LSrS0N1Gym7YRcT4 .task3{fill:#8a90dd;stroke:#534fbc}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutside0,#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutside2{fill:#000}#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutside1,#mermaid-svg-LSrS0N1Gym7YRcT4 .taskTextOutside3{fill:#000}#mermaid-svg-LSrS0N1Gym7YRcT4 .active0,#mermaid-svg-LSrS0N1Gym7YRcT4 .active1,#mermaid-svg-LSrS0N1Gym7YRcT4 .active2,#mermaid-svg-LSrS0N1Gym7YRcT4 .active3{fill:#bfc7ff;stroke:#534fbc}#mermaid-svg-LSrS0N1Gym7YRcT4 .activeText0,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeText1,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeText2,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeText3{fill:#000 !important}#mermaid-svg-LSrS0N1Gym7YRcT4 .done0,#mermaid-svg-LSrS0N1Gym7YRcT4 .done1,#mermaid-svg-LSrS0N1Gym7YRcT4 .done2,#mermaid-svg-LSrS0N1Gym7YRcT4 .done3{stroke:grey;fill:#d3d3d3;stroke-width:2}#mermaid-svg-LSrS0N1Gym7YRcT4 .doneText0,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneText1,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneText2,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneText3{fill:#000 !important}#mermaid-svg-LSrS0N1Gym7YRcT4 .crit0,#mermaid-svg-LSrS0N1Gym7YRcT4 .crit1,#mermaid-svg-LSrS0N1Gym7YRcT4 .crit2,#mermaid-svg-LSrS0N1Gym7YRcT4 .crit3{stroke:#f88;fill:red;stroke-width:2}#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCrit0,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCrit1,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCrit2,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCrit3{stroke:#f88;fill:#bfc7ff;stroke-width:2}#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCrit0,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCrit1,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCrit2,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCrit3{stroke:#f88;fill:#d3d3d3;stroke-width:2;cursor:pointer;shape-rendering:crispEdges}#mermaid-svg-LSrS0N1Gym7YRcT4 .milestone{transform:rotate(45deg) scale(0.8, 0.8)}#mermaid-svg-LSrS0N1Gym7YRcT4 .milestoneText{font-style:italic}#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCritText0,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCritText1,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCritText2,#mermaid-svg-LSrS0N1Gym7YRcT4 .doneCritText3{fill:#000 !important}#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCritText0,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCritText1,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCritText2,#mermaid-svg-LSrS0N1Gym7YRcT4 .activeCritText3{fill:#000 !important}#mermaid-svg-LSrS0N1Gym7YRcT4 .titleText{text-anchor:middle;font-size:18px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 g.classGroup text{fill:#9370db;stroke:none;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:10px}#mermaid-svg-LSrS0N1Gym7YRcT4 g.classGroup text .title{font-weight:bolder}#mermaid-svg-LSrS0N1Gym7YRcT4 g.clickable{cursor:pointer}#mermaid-svg-LSrS0N1Gym7YRcT4 g.classGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-LSrS0N1Gym7YRcT4 g.classGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 .classLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.5}#mermaid-svg-LSrS0N1Gym7YRcT4 .classLabel .label{fill:#9370db;font-size:10px}#mermaid-svg-LSrS0N1Gym7YRcT4 .relation{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .dashed-line{stroke-dasharray:3}#mermaid-svg-LSrS0N1Gym7YRcT4 #compositionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #compositionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #aggregationStart{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #aggregationEnd{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #dependencyStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #dependencyEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #extensionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 #extensionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 .commit-id,#mermaid-svg-LSrS0N1Gym7YRcT4 .commit-msg,#mermaid-svg-LSrS0N1Gym7YRcT4 .branch-label{fill:lightgrey;color:lightgrey;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .pieTitleText{text-anchor:middle;font-size:25px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .slice{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 g.stateGroup text{fill:#9370db;stroke:none;font-size:10px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 g.stateGroup text{fill:#9370db;fill:#333;stroke:none;font-size:10px}#mermaid-svg-LSrS0N1Gym7YRcT4 g.statediagram-cluster .cluster-label text{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 g.stateGroup .state-title{font-weight:bolder;fill:#000}#mermaid-svg-LSrS0N1Gym7YRcT4 g.stateGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-LSrS0N1Gym7YRcT4 g.stateGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-LSrS0N1Gym7YRcT4 .transition{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-LSrS0N1Gym7YRcT4 .stateGroup .composit{fill:white;border-bottom:1px}#mermaid-svg-LSrS0N1Gym7YRcT4 .stateGroup .alt-composit{fill:#e0e0e0;border-bottom:1px}#mermaid-svg-LSrS0N1Gym7YRcT4 .state-note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-LSrS0N1Gym7YRcT4 .state-note text{fill:black;stroke:none;font-size:10px}#mermaid-svg-LSrS0N1Gym7YRcT4 .stateLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.7}#mermaid-svg-LSrS0N1Gym7YRcT4 .edgeLabel text{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .stateLabel text{fill:#000;font-size:10px;font-weight:bold;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-LSrS0N1Gym7YRcT4 .node circle.state-start{fill:black;stroke:black}#mermaid-svg-LSrS0N1Gym7YRcT4 .node circle.state-end{fill:black;stroke:white;stroke-width:1.5}#mermaid-svg-LSrS0N1Gym7YRcT4 #statediagram-barbEnd{fill:#9370db}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-cluster rect{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-cluster rect.outer{rx:5px;ry:5px}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-state .divider{stroke:#9370db}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-state .title-state{rx:5px;ry:5px}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-cluster.statediagram-cluster .inner{fill:white}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-cluster.statediagram-cluster-alt .inner{fill:#e0e0e0}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-cluster .inner{rx:0;ry:0}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-state rect.basic{rx:5px;ry:5px}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-state rect.divider{stroke-dasharray:10,10;fill:#efefef}#mermaid-svg-LSrS0N1Gym7YRcT4 .note-edge{stroke-dasharray:5}#mermaid-svg-LSrS0N1Gym7YRcT4 .statediagram-note rect{fill:#fff5ad;stroke:#aa3;stroke-width:1px;rx:0;ry:0}:root{--mermaid-font-family: '"trebuchet ms", verdana, arial';--mermaid-font-family: "Comic Sans MS", "Comic Sans", cursive}#mermaid-svg-LSrS0N1Gym7YRcT4 .error-icon{fill:#522}#mermaid-svg-LSrS0N1Gym7YRcT4 .error-text{fill:#522;stroke:#522}#mermaid-svg-LSrS0N1Gym7YRcT4 .edge-thickness-normal{stroke-width:2px}#mermaid-svg-LSrS0N1Gym7YRcT4 .edge-thickness-thick{stroke-width:3.5px}#mermaid-svg-LSrS0N1Gym7YRcT4 .edge-pattern-solid{stroke-dasharray:0}#mermaid-svg-LSrS0N1Gym7YRcT4 .edge-pattern-dashed{stroke-dasharray:3}#mermaid-svg-LSrS0N1Gym7YRcT4 .edge-pattern-dotted{stroke-dasharray:2}#mermaid-svg-LSrS0N1Gym7YRcT4 .marker{fill:#333}#mermaid-svg-LSrS0N1Gym7YRcT4 .marker.cross{stroke:#333}:root { --mermaid-font-family: "trebuchet ms", verdana, arial;}#mermaid-svg-LSrS0N1Gym7YRcT4 {color: rgba(0, 0, 0, 0.75);font: ;}

一阶偏导数连续
可微
连续
可导

导数四则运算

[u(x)±v(x)]′=[u(x)v(x)]′=[u(x)v(x)w(x)]′=[u(x)v(x)]′=\begin{aligned} & [u(x) \pm v(x)]' = \\ \\ & [u(x)v(x)]' = \\ \\ & [u(x)v(x)w(x)]' = \\ \\ & \begin{bmatrix}\frac{u(x)}{v(x)} \end{bmatrix}' = \\ \\ \end{aligned} ​[u(x)±v(x)]′=[u(x)v(x)]′=[u(x)v(x)w(x)]′=[v(x)u(x)​​]′=​

复合函数求导

{f[g(x)]}′=\{ f[g(x)] \}' = {f[g(x)]}′=

反函数求导

y=f(x),x=φ(y)⟹φ′(y)=yx′=yxx′′=\begin{aligned} & y = f(x), x = \varphi(y) \implies \varphi ' (y) = \\ \\ & y'_x = \\ \\ & y^{''}_{xx} = \end{aligned} ​y=f(x),x=φ(y)⟹φ′(y)=yx′​=yxx′′​=​

参数方程求导

{x=φ(t)y=ψ(t)dydx=d2ydx2=\begin{aligned} & \begin{cases} x = \varphi (t) \\ y = \psi (t) \end{cases} \\\\ & \frac{dy}{dx} = \\ \\ & \frac{d^2 y}{dx^2} = \end{aligned} ​{x=φ(t)y=ψ(t)​dxdy​=dx2d2y​=​

变限积分求导公式

设F(x)=∫φ1(x)φ2(x)f(t)dt,则F′(x)=\begin{aligned} & 设 F(x) = \int ^{\varphi_2(x)}_{\varphi_1(x)} f(t) dt, 则 \\ \\ & F'(x) = \end{aligned} ​设F(x)=∫φ1​(x)φ2​(x)​f(t)dt,则F′(x)=​

基本初等函数的导数公式(❤❤❤)

(xa)′=(ax)′=(ex)′=(logax)′=(ln⁡x)′=(sin⁡x)′=(cos⁡x)′=(arcsin⁡x)′=(arccos⁡x)′=(tan⁡x)′=(cot⁡x)′=(arctan⁡x)′=(arccotx)′=(sec⁡x)′=(csc⁡x)′=[ln⁡(x+x2+1)]′=[ln⁡(x+x2−1)]′=\begin{aligned} & (x^a)' = \\ \\ & (a^x)' = \\ \\ & (e^x)' = \\ \\ & (log_a x)' = \\ \\ & (\ln x)' = \\ \\ & (\sin x)' = \\ \\ & (\cos x)' = \\ \\ & (\arcsin x)' = \\ \\ & (\arccos x)' = \\ \\ & (\tan x)' = \\ \\ & (\cot x)' = \\ \\ & (\arctan x)' = \\ \\ & (arccot ~ x)' = \\ \\ & (\sec x)' = \\ \\ & (\csc x)' = \\ \\ & [\ln (x+\sqrt{x^2+1})]' = \\ \\ & [\ln (x+\sqrt{x^2-1})]' = \\ \\ \end{aligned} ​(xa)′=(ax)′=(ex)′=(loga​x)′=(lnx)′=(sinx)′=(cosx)′=(arcsinx)′=(arccosx)′=(tanx)′=(cotx)′=(arctanx)′=(arccot x)′=(secx)′=(cscx)′=[ln(x+x2+1​)]′=[ln(x+x2−1​)]′=​

高阶导数的运算

[u±v](n)=[u \pm v ]^{(n)} = [u±v](n)=
(uv)(n)=\begin{aligned} (uv)^{(n)} & = \\ \end{aligned} (uv)(n)​=​

常用初等函数的n阶导数公式

(ax)(n)=(ex)(n)=(sin⁡kx)(n)=(cos⁡kx)(n)=(ln⁡x)(n)=[ln⁡(1+x)](n)=[(x+x0)m](n)=(1x+a)(n)=\begin{aligned} & (a^x)^{(n)} = \\ \\ & (e^x)^{(n)} = \\ \\ & (\sin kx)^{(n)} = \\ \\ & (\cos kx)^{(n)} = \\ \\ & (\ln x) ^ {(n)} = \\ \\ & [\ln(1+x)]^{(n)} = \\ \\ & [(x+x_0)^m]^{(n)} = \\ \\ & (\frac{1}{x+a})^{(n)} = \\ \\ \end{aligned} ​(ax)(n)=(ex)(n)=(sinkx)(n)=(coskx)(n)=(lnx)(n)=[ln(1+x)](n)=[(x+x0​)m](n)=(x+a1​)(n)=​

极值判别条件

{1.f′(x)左右异号⟹{左正右负⟹极?值左负右正⟹极?值2.f′(x)=0,f′′(x)≠0⟹{f′′(x)<0⟹极?值f′′(x)>0⟹极?值3.f′′(x)到f(n−1)(x)=0,f(n)(x)≠0,n为?数⟹{f(n)(x)<0⟹极?值f(n)(x)>0⟹极?值\begin{cases} 1.~~f'(x)左右异号 \implies \begin{cases} 左正右负 \implies 极?值 \\ 左负右正 \implies 极?值 \end{cases} \\ \\ 2.~~f'(x)=0, f''(x)\ne 0 \implies \begin{cases} f''(x) < 0 \implies 极?值 \\ f''(x)>0 \implies 极?值 \end{cases} \\ \\ 3. ~~f''(x) 到 f^{(n-1)}(x)=0 ,f^{(n)}(x) \ne 0, n为?数 \implies \begin{cases} f^{(n)}(x) < 0 \implies 极?值 \\ f^{(n)}(x) > 0 \implies 极?值 \end{cases} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​1.  f′(x)左右异号⟹{左正右负⟹极?值左负右正⟹极?值​2.  f′(x)=0,f′′(x)​=0⟹{f′′(x)<0⟹极?值f′′(x)>0⟹极?值​3.  f′′(x)到f(n−1)(x)=0,f(n)(x)​=0,n为?数⟹{f(n)(x)<0⟹极?值f(n)(x)>0⟹极?值​​

凹凸性判定

1.{f(x1+x22)<f(x1)+f(x2)2⟹?f(x1+x22)>f(x1)+f(x2)2⟹?2.{f′′(x)>0⟹?f′′(x)<0⟹?\begin{aligned} 1.&\begin{cases} f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2} \implies ? \\\\ f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2} \implies ? \end{cases} \\\\ 2.&\begin{cases} f''(x) > 0 \implies ? \\\\ f''(x) < 0 \implies ? \end{cases} \end{aligned} 1.2.​⎩⎪⎨⎪⎧​f(2x1​+x2​​)<2f(x1​)+f(x2​)​⟹?f(2x1​+x2​​)>2f(x1​)+f(x2​)​⟹?​⎩⎪⎨⎪⎧​f′′(x)>0⟹?f′′(x)<0⟹?​​

拐点判别条件

{1.f′′(x)左右异号⟹{左负右正⟹?左正右负⟹?2.f′′(x)=0,f′′′(x)≠0⟹{f′′′(x)<0⟹?f′′′(x)>0⟹?3.f′′(x)到f(n−1)(x)=0,f(n)(x)≠0,n为?数⟹{f(n)(x)<0⟹?f(n)(x)>0⟹?\begin{cases} 1.~~f''(x)左右异号 \implies \begin{cases} 左负右正 \implies ? \\ 左正右负 \implies ? \end{cases} \\ \\ 2.~~f''(x)=0, f'''(x)\ne 0 \implies \begin{cases} f'''(x) < 0 \implies ? \\ f'''(x)>0 \implies ? \end{cases} \\ \\ 3. ~~f''(x) 到 f^{(n-1)}(x)=0 ,f^{(n)}(x) \ne 0, n为?数 \implies \begin{cases} f^{(n)}(x) < 0 \implies ? \\ f^{(n)}(x) > 0 \implies ? \end{cases} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​1.  f′′(x)左右异号⟹{左负右正⟹?左正右负⟹?​2.  f′′(x)=0,f′′′(x)​=0⟹{f′′′(x)<0⟹?f′′′(x)>0⟹?​3.  f′′(x)到f(n−1)(x)=0,f(n)(x)​=0,n为?数⟹{f(n)(x)<0⟹?f(n)(x)>0⟹?​​

斜渐近线

lim⁡x→??=alim⁡x→?(?)=b⟹斜渐近线为:y=ax+b\lim_{x \to ?} ? = a ~~~~\lim_{x \to ?}(?) = b \implies 斜渐近线为: y=ax+b x→?lim​?=a    x→?lim​(?)=b⟹斜渐近线为:y=ax+b

曲率

密切圆半径r=?曲率K=?曲率圆?\begin{aligned} 密切圆半径 ~~~~~ & r = ? \\ \\ 曲率 ~~~~~ &K = ? \\ \\ 曲率圆 ~~~~~& ? \end{aligned} 密切圆半径     曲率     曲率圆     ​r=?K=??​

积分相关公式

定积分的精确定义

∫abf(x)dx=?常用:∫01f(x)dx=?∫0kf(x)dx=?二重定积分精确定义:∬Df(x,y)dσ=?常用:∫01∫01f(x,y)dxdy=?\begin{aligned} & \int_a^b f(x) dx = ? \\ \\ \\ 常用:& \int_0^1 f(x) dx = ? \\ \\ & \int_0^k f(x) dx = ? \\ \\ \\ 二重定积分精确定义:& \iint\limits_D f(x,y) d\sigma = ? \\ \\ \\ 常用:&\int_0^1 \int_0^1 f(x,y) dxdy = ? \end{aligned} 常用:二重定积分精确定义:常用:​∫ab​f(x)dx=?∫01​f(x)dx=?∫0k​f(x)dx=?D∬​f(x,y)dσ=?∫01​∫01​f(x,y)dxdy=?​

分布积分公式

∫udv=?∫uv(n+1)dx=?\begin{aligned} & \int u dv = ? \\ & \int uv^{(n+1)}dx = ? \end{aligned} ​∫udv=?∫uv(n+1)dx=?​

分部积分表格法

?? ?

区间再现公式

∫abf(x)dx=?\int_a^b f(x) dx = ? ∫ab​f(x)dx=?

华里士公式

?? ?

敛散性判别公式

∫1+∞1xpdx⟹?∫011xpdx⟹?\begin{aligned} & \int_1^{+\infty} \frac{1}{x^p} dx \implies ? \\\\ & \int_0^1 \frac{1}{x^p} dx \implies & ? \\\\ \end{aligned} ​∫1+∞​xp1​dx⟹?∫01​xp1​dx⟹​?​

基本积分公式

以下公式中,α与a均为常数,除声明者外,a>0∫xαdx=?∫1xdx=?∫axdx=?∫exdx=?∫sin⁡xdx=?∫cos⁡xdx=?∫tan⁡xdx=?∫cot⁡xdx=?∫sec⁡xdx=?∫csc⁡xdx=?∫sec⁡2xdx=?∫csc⁡2xdx=?∫1a2+x2dx=?∫1a2−x2dx=?∫1a2−x2dx=?∫1x2±a2dx=?\begin{aligned} & 以下公式中,\alpha 与 a 均为常数,除声明者外,a>0 \\ \\ & \int x^\alpha dx = ? \\ \\ & \int \frac{1}{x} dx =?\\ \\ & \int a^x dx =? \\ \\ & \int e^x dx = ? \\ \\ & \int \sin x dx =? \\ \\ & \int \cos x dx =? \\ \\ & \int \tan x dx = ? \\ \\ & \int \cot xdx =? \\ \\ & \int \sec x dx =? \\ \\ & \int \csc x dx =? \\ \\ & \int \sec ^2 x dx = ? \\ \\ & \int \csc^2x dx = ? \\ \\ & \int \frac{1}{a^2 + x^2} dx = ? \\ \\ & \int \frac{1}{a^2-x^2} dx =? \\ \\ & \int \frac{1}{\sqrt{a^2-x^2}} dx =? \\ \\ & \int \frac{1}{\sqrt{x^2 \pm a^2}} dx = ? \end{aligned} ​以下公式中,α与a均为常数,除声明者外,a>0∫xαdx=?∫x1​dx=?∫axdx=?∫exdx=?∫sinxdx=?∫cosxdx=?∫tanxdx=?∫cotxdx=?∫secxdx=?∫cscxdx=?∫sec2xdx=?∫csc2xdx=?∫a2+x21​dx=?∫a2−x21​dx=?∫a2−x2​1​dx=?∫x2±a2​1​dx=?​

重要积分公式

∫−∞+∞e−x2dx=?=?∫0+∞xne−xdx=?∫−aaf(x)dx=∫0a?dx∫0πxf(sin⁡x)dx=?=?∫abf(x)dx=?∫01?dx\begin{aligned} & \int_{-\infty}^{+\infty} e^{-x^2} dx = ? = ? \\ \\ & \int_{0}^{+\infty} x^n e^{-x} dx = ? \\ \\ & \int_{-a}^{a} f(x) dx = \int_0^a ?dx \\ \\ & \int_0^\pi xf(\sin x) dx = ?=? \\ \\ & \int_a^b f(x) dx = ? \int_0^1 ? dx \end{aligned} ​∫−∞+∞​e−x2dx=?=?∫0+∞​xne−xdx=?∫−aa​f(x)dx=∫0a​?dx∫0π​xf(sinx)dx=?=?∫ab​f(x)dx=?∫01​?dx​

积分求平均值

f(x)在[a,b]上的平均值为:?f(x) 在[a,b]上的平均值为: ? f(x)在[a,b]上的平均值为:?

定积分应用

定积分求平面图形面积

y=y1(x)与y=y2(x),及x=a,x=b(a<b)所围成的平面图形面积:S=?曲线r=r1(θ)与r=r2(θ)与两射线θ=α与θ=β(0<β−α≤2π)所围成的曲边扇形的面积:S=?\begin{aligned} & y=y_1(x) 与 y=y_2(x),及x=a,x=b(a<b)所围成的平面图形面积:\\ \\ & S= ? \\ \\ \\ & 曲线 r=r_1(\theta) 与 r=r_2(\theta) 与 两射线 \theta = \alpha 与 \theta = \beta (0<\beta - \alpha \le 2\pi)所围成的曲边扇形的面积:\\ \\ & S = ? \end{aligned} ​y=y1​(x)与y=y2​(x),及x=a,x=b(a<b)所围成的平面图形面积:S=?曲线r=r1​(θ)与r=r2​(θ)与两射线θ=α与θ=β(0<β−α≤2π)所围成的曲边扇形的面积:S=?​

定积分求旋转体的体积

曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积V=?曲线y=y1(x)≥0与y=y2(x)≥0及x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积V=?曲线y=y(x)与x=a,x=b(0≤a<b)及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积Vy=?曲线y=y1(x)与y=y2(x)及x=a,x=b(0≤a≤b)所围成的圆形绕y轴旋转一周所成的旋转体的体积V=?\begin{aligned} & 曲线 y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积 \\ \\ & V = ? \\ \\ \\ & 曲线y=y_1(x) \ge 0 与 y = y_2(x) \ge 0 及 x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积 \\ \\ & V = ? \\ \\ \\ & 曲线 y=y(x) 与 x=a,x=b(0\le a < b) 及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积 \\ \\ & V_y = ?\\ \\ \\ & 曲线y=y_1(x)与y=y_2(x)及x=a,x=b(0\le a \le b)所围成的圆形绕y轴旋转一周所成的旋转体的体积 \\\\ & V= ? \end{aligned} ​曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积V=?曲线y=y1​(x)≥0与y=y2​(x)≥0及x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积V=?曲线y=y(x)与x=a,x=b(0≤a<b)及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积Vy​=?曲线y=y1​(x)与y=y2​(x)及x=a,x=b(0≤a≤b)所围成的圆形绕y轴旋转一周所成的旋转体的体积V=?​

平面曲线的弧长

L=∫ab?dxL=∫αβ?dtL=∫αβ?dθ\begin{aligned} & L = \int_a^b ?dx \\ \\ & L = \int_\alpha^\beta ?dt \\ \\ & L = \int_\alpha^\beta ?d\theta \end{aligned} ​L=∫ab​?dxL=∫αβ​?dtL=∫αβ​?dθ​

旋转曲面的面积

曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积”S=?dxS=?dt\begin{aligned} & 曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积” \\\\ & S = ?dx \\ \\ & S = ?dt \end{aligned} ​曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积”S=?dxS=?dt​

平面截面面积为已知的立体体积

在区间[a,b]上,垂直于x轴的平面截立体Ω所得到截面面积为x的连续函数A(x),则Ω的体积为V=?\begin{aligned} & 在区间[a,b]上,垂直于x轴的平面截立体\Omega所得到截面面积为x的连续函数A(x),则\Omega的体积为 \\ \\ & V = ? \end{aligned} ​在区间[a,b]上,垂直于x轴的平面截立体Ω所得到截面面积为x的连续函数A(x),则Ω的体积为V=?​

变力沿直线做功

设力函数为F(x)(a≤x≤b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为W=?\begin{aligned} & 设力函数为F(x) (a\le x \le b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为 \\\\ & W = ? \end{aligned} ​设力函数为F(x)(a≤x≤b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为W=?​

抽水做功

W=?\begin{aligned} & W = ? ~~~~~\\\\ \end{aligned} ​W=?

水压力

P=?\begin{aligned} & P = ? ~~~~~\\\\ \end{aligned} ​P=?

质心

直线段的质心(一维)

xˉ=\begin{aligned} & \bar{x} = \end{aligned} ​xˉ=​

不均匀薄片质心(二维)

xˉ=yˉ=\begin{aligned} & \bar{x} = \\\\ & \bar{y} = \\\\ \end{aligned} ​xˉ=yˉ​=​

形心

xˉ=yˉ=\begin{aligned} & \bar{x} = \\\\ & \bar{y} = \\\\ \end{aligned} ​xˉ=yˉ​=​

质量

m=∬D?dxdym = \iint\limits_D ?dxdy m=D∬​?dxdy

转动惯量

Ix=Iy=\begin{aligned} & I_x = & I_y = \end{aligned} ​Ix​=​Iy​=​

物理公式

浮力公式:F浮=压强:P=压强与气体体积成反比:水深h处的压强:P=在水中的压力:F压=力:F=做功:W功=引力:F=\begin{aligned} 浮力公式:~~~ & F_{浮} = \\\\ 压强:~~~& P = \\\\ 压强与气体体积成反比:~~~& \\\\ 水深h处的压强:~~~& P=\ \\\\ 在水中的压力:~~~& F_{_压} = \\ \\ 力:~~~& F = \\ \\ 做功:~~~& W_功 = \\\\ 引力:~~~ & F = \end{aligned} 浮力公式:   压强:   压强与气体体积成反比:   水深h处的压强:   在水中的压力:   力:   做功:   引力:   ​F浮​=P=P= F压​​=F=W功​=F=​

泰勒公式

f(x)=\begin{aligned} f(x) & = \\ \\ \end{aligned} f(x)​=

拉格朗日余项的泰勒公式

f(x)=f(x) = f(x)=

佩亚诺余项的泰勒公式

f(x)=f(x) = f(x)=

常用的泰勒展开式

sin⁡x=cos⁡x=arcsin⁡x=(1+x)α=11−x=11+x=ln⁡(1+x)=11+x2=arctan⁡x=tan⁡x=ex=\begin{aligned} & \sin x = \\ \\ & \cos x = \\ \\ & \arcsin x = \\ \\ \\ & (1+x)^\alpha =\\ \\ & \frac{1}{1-x} = \\ \\ & \frac{1}{1+x} = \\ \\ & \ln (1+x) = \\ \\ & \frac{1}{1+x^2} = \\ \\ & \arctan x = \\ \\ & \tan x = \\ \\ \\ & e^x = \end{aligned} ​sinx=cosx=arcsinx=(1+x)α=1−x1​=1+x1​=ln(1+x)=1+x21​=arctanx=tanx=ex=​

中值定理

罗尔定理

罗尔定理推论

若?至多?个根⟹至多?个根若?至多?个根 \implies 至多?个根 若?至多?个根⟹至多?个根

罗尔定理证明题辅助函数构造

f′′(x)+g(x)f′(x)=0⟹F(x)=f(x)+g(x)∫0xf(t)dt=0⟹F(x)=f′(x)+g(x)[f(x)−1]=0⟹F(x)=⋅⋅⋅⋅⋅⋅⋅⋅\begin{aligned} & f''(x) + g(x)f'(x) = 0 \implies F(x) = \\ \\ & f(x) + g(x)\int_0^x f(t)dt = 0 \implies F(x) = \\ \\ & f'(x) + g(x)[f(x)-1] =0 \implies F(x) = \\ \\ & \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot \end{aligned} ​f′′(x)+g(x)f′(x)=0⟹F(x)=f(x)+g(x)∫0x​f(t)dt=0⟹F(x)=f′(x)+g(x)[f(x)−1]=0⟹F(x)=⋅⋅⋅⋅⋅⋅⋅⋅​

拉格朗日中值定理

柯西中值定理

积分中值定理

f(x)在[a,b]上连续⟹存在η∈[a,b],使得∫abf(x)dx=f(x),g(x)在[a,b]上连续,且g(x)不变号⟹∫abf(x)g(x)dx=二重积分中值定理,D上连续,A为D的面积⟹∬Df(x,y)dxdy=\begin{aligned} & f(x)在[a,b]上连续 \implies 存在 \eta \in [a,b], 使得 \\ & \int_a^b f(x) dx = \\ \\ \\ & f(x),g(x)在[a,b]上连续,且g(x)不变号 \implies \\ & \int_a^b f(x)g(x)dx = \\\\\\ & 二重积分中值定理,D上连续,A为D的面积 \implies \\ & \iint\limits_D f(x,y) dxdy = \end{aligned} ​f(x)在[a,b]上连续⟹存在η∈[a,b],使得∫ab​f(x)dx=f(x),g(x)在[a,b]上连续,且g(x)不变号⟹∫ab​f(x)g(x)dx=二重积分中值定理,D上连续,A为D的面积⟹D∬​f(x,y)dxdy=​

多元微积分相关公式

多元微分定义

定义:Δz=全增量:Δz=线性增量:可微判定:\begin{aligned} 定义:& \Delta z = \\ \\ 全增量:& \Delta z = \\ \\ 线性增量:& \\ \\ 可微判定:& \end{aligned} 定义:全增量:线性增量:可微判定:​Δz=Δz=​

多元隐函数求导

∂z∂x=∂z∂y=\begin{aligned} & \frac{\partial z}{\partial x} = \\ \\ & \frac{\partial z}{\partial y} = \\ \end{aligned} ​∂x∂z​=∂y∂z​=​

极坐标下二重积分计算法

∬Df(x,y)dσ=\underset{D}{\iint} f(x,y)d\sigma = D∬​f(x,y)dσ=

隐函数存在定理

?

多元函数极值判定

?

拉格朗日数乘法求最值

?

多重积分的应用

空间曲面的面积

A=?\begin{aligned} & \\ & A = ? \end{aligned} ​A=?​

微分方程

一阶线性微分方程

y′+p(x)y=q(x)其中p(x),q(x)为连续函数⟹\begin{aligned} & y' + p(x)y = q(x) ~~~~~其中p(x),q(x)为连续函数 \implies \\\\ \end{aligned} ​y′+p(x)y=q(x)     其中p(x),q(x)为连续函数⟹

二阶常系数齐次线性微分方程的通解

y′′+py′+qy=0p,q为常数⇒特征方程为λ2+pλ+q=0⟹?\begin{aligned} & y'' + py' + qy =0 ~~~~~~~~p,q为常数 \\ \\ \xRightarrow{特征方程为} & ~~ \lambda^2 + p\lambda + q = 0 \implies ? \end{aligned} 特征方程为​​y′′+py′+qy=0        p,q为常数  λ2+pλ+q=0⟹?​

三阶常系数齐次线性微分方程的通解

y′′′+py′′+qy′+ry=0p,q,r为常数⇒特征方程为λ3+pλ2+qλ+r=0⟹?\begin{aligned} & y''' + py'' + qy' +ry =0 ~~~~~~~~p,q,r为常数 \\ \\ \xRightarrow{特征方程为} & ~~ \lambda^3 + p\lambda^2 + q\lambda + r = 0 \implies ? \end{aligned} 特征方程为​​y′′′+py′′+qy′+ry=0        p,q,r为常数  λ3+pλ2+qλ+r=0⟹?​

二阶常系数非齐次线性微分方程的特解

y′′+py′+qy=f(x)(1)自由项f(x)=Pn(x)eax时,特解为y∗=?(2)自由项f(x)=eax[Pm(x)cos⁡βx+Pn(x)sin⁡βx]时,y∗=?\begin{aligned} & y'' + py'+qy = f(x) \\ \\ (1)& 自由项f(x)=P_n(x)e^{ax} ~时,特解为 ~ y^*= ? \\ \\ \\ \\ \\ (2) & 自由项~ f(x) = e^{ax}[P_m(x) \cos \beta x + P_n(x) \sin \beta x] ~时, \\ \\ & y^* = ? \end{aligned} (1)(2)​y′′+py′+qy=f(x)自由项f(x)=Pn​(x)eax 时,特解为 y∗=?自由项 f(x)=eax[Pm​(x)cosβx+Pn​(x)sinβx] 时,y∗=?​

“算子法”求二阶常系数非齐次线性微分方程的特解

?

线性代数

行列式

∣A∣=∣AT∣∣kA∣=?∣AB∣=∣A∣∣B∣Aij=?Mij\begin{aligned} & |A| = |A^T| \\ \\ & |kA| = ? \\ \\ & |AB| = |A||B| \\ \\ & A_{ij} = ?M_{ij} \\ \\ \end{aligned} ​∣A∣=∣AT∣∣kA∣=?∣AB∣=∣A∣∣B∣Aij​=?Mij​​

几个重要的行列式

∣a110…00a22…0⋮⋮⋮00…ann∣=∣a110…0a21a22…0⋮⋮⋮an1an2…ann∣=∣a11a12…a1n0a22…a2n⋮⋮⋮00…ann∣=?∣0…0a1n0…a2,n−10⋮⋮⋮an1…00∣=∣0…0a1n0…a2,n−1⋮an1∣=∣a1na2,n−10⋮⋮an1…00∣=?∣11⋯1x1x2⋯xnx12x22⋯xn2⋮⋮⋮x1n−1x2n−1⋯xnn−1∣=?∣abb⋯bbab⋯bbba⋯b⋮⋮⋮⋮bbb⋯a∣=?∣AOOB∣=∣ACOB∣=∣AOCB∣=∣OAn×nBm×mO∣=∣OABC∣=∣CABO∣=\begin{aligned} & \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = ? \\ \\ \\ & \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & \\ \vdots & & & \\ a_{n1} & & & \end{vmatrix} = \begin{vmatrix} & & & a_{1n} \\ & & a_{2,n-1} & 0 \\ & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = ? \\ \\ \\ & \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ \end{vmatrix} = ? \\ \\ \\ & \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \\ \end{vmatrix} = ? \\ \\ \\ & \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = \\ \\ \\ & \begin{vmatrix} O & A_{n\times n} \\ B_{m\times m} & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = \begin{vmatrix} C & A \\ B & O \end{vmatrix} = \end{aligned} ​∣∣∣∣∣∣∣∣∣​a11​0⋮0​0a22​⋮0​………​00⋮ann​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​a11​a21​⋮an1​​0a22​⋮an2​​………​00⋮ann​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​a11​0⋮0​a12​a22​⋮0​………​a1n​a2n​⋮ann​​∣∣∣∣∣∣∣∣∣​=?∣∣∣∣∣∣∣∣∣​00⋮an1​​………​0a2,n−1​⋮0​a1n​0⋮0​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​00⋮an1​​……​0a2,n−1​​a1n​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​an1​​…​a2,n−1​⋮0​a1n​0⋮0​∣∣∣∣∣∣∣∣∣​=?∣∣∣∣∣∣∣∣∣∣∣​1x1​x12​⋮x1n−1​​1x2​x22​⋮x2n−1​​⋯⋯⋯⋯​1xn​xn2​⋮xnn−1​​∣∣∣∣∣∣∣∣∣∣∣​=?∣∣∣∣∣∣∣∣∣∣∣​abb⋮b​bab⋮b​bba⋮b​⋯⋯⋯⋯​bbb⋮a​∣∣∣∣∣∣∣∣∣∣∣​=?∣∣∣∣​AO​OB​∣∣∣∣​=∣∣∣∣​AO​CB​∣∣∣∣​=∣∣∣∣​AC​OB​∣∣∣∣​=∣∣∣∣​OBm×m​​An×n​O​∣∣∣∣​=∣∣∣∣​OB​AC​∣∣∣∣​=∣∣∣∣​CB​AO​∣∣∣∣​=​

矩阵

(AT)T=(kA)T=(A+B)T=(AB)T=AA∗=A∗A=∣A∗∣=A−1==∣A∣(A∗)−1(A−1)−1=(kA)−1=(AB)−1=(AT)−1=(AT)∗=(A−1)∗=(AB)∗=(A∗)∗=∣A−1∣=[A∣E]→初等行变换[E∣A−1][A∣B]→初等行变换[E∣?]\begin{aligned} & (A^T)^T = \\ \\ & (kA)^T = \\ \\ & (A+B)^T = \\ \\ & (AB)^T = \\ \\ & AA^* = A^*A = \\ \\ & |A^*|= \\ \\ & A^{-1} = \\ \\ & = |A|(A^*)^{-1} \\ \\ & (A^{-1})^{-1} = \\ \\ & (kA)^{-1} = \\ \\ & (AB)^{-1} = \\ \\ & (A^T)^{-1} = \\ \\ & (A^T)^* = \\ \\ & (A^{-1})^* = \\ \\ & (AB)^* = \\ \\ & (A^*)^* = \\ \\ & |A^{-1}| = \\ \\ & [A|E] \xrightarrow{初等行变换}[E|A^{-1}] \\\\ & [A|B] \xrightarrow{初等行变换}[E|?] \\\\ \end{aligned} ​(AT)T=(kA)T=(A+B)T=(AB)T=AA∗=A∗A=∣A∗∣=A−1==∣A∣(A∗)−1(A−1)−1=(kA)−1=(AB)−1=(AT)−1=(AT)∗=(A−1)∗=(AB)∗=(A∗)∗=∣A−1∣=[A∣E]初等行变换​[E∣A−1][A∣B]初等行变换​[E∣?]​

分块矩阵

[AOOB]n=\begin{aligned} \begin{bmatrix} A & O \\ O & B \end{bmatrix}^n = \end{aligned} [AO​OB​]n=​

正交矩阵

A是正交矩阵⟺⟺⟺⟹∣A∣=⟹λ=\begin{aligned} & A是正交矩阵 \\\\ \iff & \\ \\ \iff &\\ \\ \iff & \\ \\ \implies & |A| = \\ \\ \implies & \lambda = \\ \\ \end{aligned} ⟺⟺⟺⟹⟹​A是正交矩阵∣A∣=λ=​

施密特正交化

β1=β2=β3=⋯⋯βn=\begin{aligned} & \beta_1 = \\ \\ & \beta_2 = \\ \\ & \beta_3 =\\ \\ & \cdots\cdots \\\\ & \beta_n = \\ \\ \\ \end{aligned} ​β1​=β2​=β3​=⋯⋯βn​=​

可逆矩阵

A可逆⟺⟺⟺Ax=0⟺Ax=b⟺r(A)=⟺特征值\begin{aligned} & A可逆 \\\\ \iff & \\ \\ \iff & \\\\ \iff & Ax=0 \\\\ \iff & Ax=b \\\\ \iff & r(A)= \\\\ \iff & 特征值 \end{aligned} ⟺⟺⟺⟺⟺⟺​A可逆Ax=0Ax=br(A)=特征值​

等价矩阵

A,B等价⟺A≅B⟺⟺{α1,α2,⋯,αs}≅{β1,β2,⋯,βt}⟺⟺⟺\begin{aligned} & A, B等价 \\\\ \iff & A \cong B \\ \\ \iff & \\ \\ \iff & \\\\\\ & \{\alpha_1,\alpha_2, \cdots, \alpha_s\} \cong \{\beta_1,\beta_2, \cdots, \beta_t \} \\ \\ \iff & \\ \\ \iff & \\ \\ \iff & \\ \\ \end{aligned} ⟺⟺⟺⟺⟺⟺​A,B等价A≅B{α1​,α2​,⋯,αs​}≅{β1​,β2​,⋯,βt​}​

秩相关公式

A是m×n矩阵,则:r(A)≤min{m,n}r(AT)=r(kA)=r(A+B)≤r(AB)≤r(A)+r(B)−?≤r(A)+r(B)≤?(其中,AB=O,n是A的列数或B的行数)r(AOOB)=?≤r(AOCB)≤??=r(ATA)r(A)=1⟹∃非零α,β,使得A=?r(ααT)=?{r(A)=?⟹r(A∗)=?r(A)=?⟹r(A∗)=?r(A)<?⟹r(A∗)=?\begin{aligned} & A是m\times n矩阵,则:\\\\ & r(A) \le min\{m,n\} \\ \\ & r(A^T) = \\ \\ & r(kA) = \\ \\ & r(A+B) \le \\ \\ & r(AB) \le \\ \\ & r(A) + r(B) -? \le \\ \\ & r(A) + r(B) \le ? ~~~~(其中,AB=O,n是A的列数或B的行数) \\\\ & r\begin{pmatrix} A & O \\ O & B \end{pmatrix} =\\ \\ & ?\le r\begin{pmatrix} A & O \\ C & B \end{pmatrix} \le ? \\\\ & ?= r(A^T A) \\ \\ & r(A) = 1 \implies \exists 非零 \alpha, \beta ,使得 A = ? \\ \\ & r(\alpha \alpha^T) = ? \\ \\ & \begin{cases} r(A) = ? ~~~ \implies ~~~ r(A^*) = ? \\ r(A) = ? ~~~ \implies ~~~ r(A^*) = ? \\ r(A) < ? ~~~ \implies ~~~ r(A^*) = ? \\ \end{cases} \\\\ \end{aligned} ​A是m×n矩阵,则:r(A)≤min{m,n}r(AT)=r(kA)=r(A+B)≤r(AB)≤r(A)+r(B)−?≤r(A)+r(B)≤?    (其中,AB=O,n是A的列数或B的行数)r(AO​OB​)=?≤r(AC​OB​)≤??=r(ATA)r(A)=1⟹∃非零α,β,使得A=?r(ααT)=?⎩⎪⎨⎪⎧​r(A)=?   ⟹   r(A∗)=?r(A)=?   ⟹   r(A∗)=?r(A)<?   ⟹   r(A∗)=?​​

特征值与特征向量

∑i=1nλi=∏i=1nλi=\begin{aligned} & \sum_{i=1}^n \lambda_i =\\ \\ & \prod_{i=1}^n \lambda_i = \\\\ \end{aligned} ​i=1∑n​λi​=i=1∏n​λi​=​

矩阵AkAAkf(A)A−1A∗A−1+f(A)特征值对应的特征向量\def\arraystretch{2} \begin{array}{c:c:c:c:c:c:c:c} 矩阵 & A & kA & A^k & f(A) & A^{-1} & A^* & A^{-1} + f(A) \\ \hline 特征值 & & & & & & & \\ \hline 对应的特征向量 & & &&&&& \end{array} 矩阵特征值对应的特征向量​A​kA​Ak​f(A)​A−1​A∗​A−1+f(A)​​

相似矩阵

A∼B⟺⟺?(判断两矩阵是否相似)⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹\begin{aligned} & A \sim B \\ \\ \iff & \\\\ \iff & ?(判断两矩阵是否相似)\\\\\\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & \\ \\ \end{aligned} ⟺⟺⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹​A∼B?(判断两矩阵是否相似)​

相似对角化

A∼Λ⟺⟺A=AT(A是实对称矩阵)⟹⟹⟹\begin{aligned} & A \sim \Lambda \\ \\ \iff & \\\\ \iff & \\ \\ \\ \\ & A = A^T ~~~~~(A是实对称矩阵) \\ \\ \implies & \\ \\ \implies & \\\\ \implies & \\ \\ \end{aligned} ⟺⟺⟹⟹⟹​A∼ΛA=AT     (A是实对称矩阵)​

正定二次型

f=xTAx正定⟺⟺⟺⟺⟺⟺⟹⟹⟹?正定(AOOB)正定⟺\begin{aligned} & f=x^TAx正定 \\\\ \iff & \\ \\ \iff &\\ \\ \iff & \\ \\ \iff & \\ \\ \iff & \\ \\ \iff & \\ \\ \implies & \\ \\ \implies & \\ \\ \implies & ?正定 \\ \\ \\ & \begin{pmatrix} A & O \\ O & B \end{pmatrix} 正定 \iff \end{aligned} ⟺⟺⟺⟺⟺⟺⟹⟹⟹​f=xTAx正定?正定(AO​OB​)正定⟺​

考研公式大全-提问版-数学二相关推荐

  1. 三角形的几何公式大全_椰岛数学:超全高中数学公式记忆表(文末分享PDF)

    点击蓝字关注我们 椰岛数学,做自己喜欢的数学                椰 岛 数 学 期 待 您 的 关 注 距高考还有33天>>>>  阅读推荐甭找了!干货全在这儿1. ...

  2. 常用傅里叶变换公式大全_高二数学常用导数公式大全

    在学习数学的时候公式是一定要牢牢记住的,下面为大家带来了高二数学常用导数公式大全,一起来回顾一下吧! 导数(Derivative)是微积分中的重要基础概念.当函数y=f(x)的自变量X在一点x0上产生 ...

  3. 三角形的几何公式大全_2020高中数学必备公式大全

    无论你是理科生还是文科生,数学公式,你必须掌握.小编提醒广大考生,基础知识在高考中占到80%.数学公式就是基础知识的重中之重.数学公式怎么记呢,小编给大家支支招. 公式巧记小贴士 做数学题时,把用到的 ...

  4. 用c语言解三角函数公式大全初中,初中数学必背三角函数公式大全

    初中数学必背的知识点,三角函数公式大全同学们总结归纳过吗?如果没有快来小编这里瞧瞧.下面是由出国留学网小编为大家整理的"初中数学必背三角函数公式大全",仅供参考,欢迎大家阅读. 初 ...

  5. 用c语言解三角函数公式大全初中,初中数学三角函数公式必备大全

    对于初中数学来说,让学生头痛的一部分就是三角函数部分公式不能够数量的记忆和掌握.很多同学对与三角函数中正弦.余弦.正切.余切中的公式容易混淆,导致在做题的时候不能够运用正确的公式,以至于三角函数题成为 ...

  6. 叉乘点乘混合运算公式_人教版小学二年级数学概念、公式汇总(附应用题),开学前给孩子预习!...

    二年级数学概念.公式 第一单元 长度单位 1.常用的长度单位:米.厘米. 2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位. 3.测量物体长度的方法:将物体的左端对准直尺 的"0 ...

  7. java调用一个方法后怎么继续执行不等待该方法的返回_Java面试题大全2020版(二)...

    今天给大家推送第二部分,主要的大块内容分为:多线程.反射.对象拷贝.三大块内容中涉及到的考点如下: 三.多线程 35. 并行和并发有什么区别? 并行是指两个或者多个事件在同一时刻发生:而并发是指两个或 ...

  8. 2019高考(高中)数学必背重点公式大全

    2019年高考来临了,在高中数学数学上有很多高中数学公式,同学们在复习的时候都会用到,高中数学有哪些重点公式,老师整理成2019高考数学必背重点公式大全. 高中数学必考重点公式总结归纳 好了,今天就分 ...

  9. 计算机工程说课稿,人教版数学说课稿集合五篇

    人教版数学说课稿集合五篇 在教学工作者实际的教学活动中,时常需要用到说课稿,编写说课稿助于积累教学经验,不断提高教学质量.如何把说课稿做到重点突出呢?下面是小编为大家整理的人教版数学说课稿5篇,欢迎大 ...

最新文章

  1. Office 365系列(7)------ Exchange 2013与Office 365 Hybrid混合部署Step by Step参考
  2. ORACLE 字符串超长问题解决方案
  3. 平行志愿计算机录取顺序,2020平行志愿的录取顺序你知道吗?
  4. Java - 文件(IO流)
  5. 让不支持h5新标签的浏览器支持新标签
  6. python-opencv学习笔记(三)
  7. 敏捷开发:影响地图工作坊的反思
  8. 通用easyui查询页面组件
  9. python星空画法教程_教程 | 美轮美奂的星空画法
  10. Mysql 第一范式入门
  11. SpringBoot2.x填坑(四):生产上SpringBoot2.x Scheduled定时任务重复执行两次解决方案
  12. HTML资源嗅探,scrapy-2 嗅探网站,解析HTML
  13. 宏基4750网卡驱动linux,宏碁4750g无线网卡驱动下载
  14. 用python 创建英语自定义词典
  15. GAN系列学习(1)——前生今世
  16. OSS上传txt文件乱码问题
  17. C++之vector<int> nums
  18. runtime无法执行grep_Runtime.getRuntime.exec()执行linux脚本导致程序卡死有关问题
  19. MySQL的基本用法
  20. win7系统无法激活问题

热门文章

  1. Unreal4 入门
  2. PhotoShop永久序列号
  3. lintcode 873 模拟松鼠(JavaScript)
  4. 模拟电路学习-之容抗和感抗
  5. 电商快递电子面单对接使用方法
  6. HTML5期末大作业:出行网站设计——西安旅游-高质量(9页) HTML+CSS+JavaScript 学生DW网页设计
  7. 怎么在图片中添加表格?
  8. 个人逾期,失信黑名单
  9. 自动化情侣微信早安信息定时推送
  10. javascript判断文本语言类型