外面沙尘滚滚一直向北去了,意识到年关到了,码农们都回乡过年去了,而我却留在这里玩弄“拉链”。不要想歪了,我说的不是裤裆拉链而是scalaz Zipper,一种泛函数据结构游标(cursor)。在函数式编程模式里的集合通常是不可变的(immutable collection),我们会发现在FP编程过程中处理不可变集合(immutable collection)数据的方式好像总是缺些什么,比如在集合里左右逐步游动像moveNext,movePrev等等,在一个集合的中间进行添加、更新、删除的功能更是欠奉了,这主要是因为操作效率问题。不可变集合只有对前置操作(prepend operation)才能获得可靠的效率,即对集合首位元素的操作,能得到相当于O(1)的速度,其它操作基本上都是O(n)速度,n是集合的长度,也就是随着集合的长度增加,操作效率会以倍数下降。还有一个原因就是编程时会很不方便,因为大多数程序都会对各种集合进行大量的操作,最终也会导致程序的复杂臃肿,不符合函数式编程要求的精简优雅表达形式。我想可能就是因为以上各种原因,scalaz提供了Zipper typeclass帮助对不可变集合操作的编程。Zipper的定义如下:scalaz/Zipper.scala

final case class Zipper[+A](lefts: Stream[A], focus: A, rights: Stream[A])

它以Stream为基础,A可以是任何类型,无论基础类型或高阶类型。Zipper的结构如上:当前焦点窗口、左边一串数据元素、右边一串,形似拉链,因而命名Zipper。或者这样看会更形象一点:

final case class Zipper[+A](lefts: Stream[A], focus: A, rights: Stream[A])

scalaz提供了Zipper构建函数可以直接用Stream生成一个Zipper:

trait StreamFunctions {
...final def toZipper[A](as: Stream[A]): Option[Zipper[A]] = as match {case Empty   => Nonecase h #:: t => Some(Zipper.zipper(empty, h, t))}final def zipperEnd[A](as: Stream[A]): Option[Zipper[A]] = as match {case Empty => Nonecase _     =>val x = as.reverseSome(Zipper.zipper(x.tail, x.head, empty))}
...

zipperEnd生成倒排序的Zipper:

1   Stream(1,2,3).toZipper                          //> res2: Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 1, <rights>))
2   Stream("A","B","C").toZipper                    //> res3: Option[scalaz.Zipper[String]] = Some(Zipper(<lefts>, A, <rights>))
3   Stream(Stream(1,2),Stream(3,4)).toZipper        //> res4: Option[scalaz.Zipper[scala.collection.immutable.Stream[Int]]] = Some(Z
4                                                   //| ipper(<lefts>, Stream(1, ?), <rights>))
5   Stream(1,2,3).zipperEnd                         //> res5: Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 3, <rights>))

scalaz也为List,NonEmptyList提供了Zipper构建函数:

trait ListFunctions {
...final def toZipper[A](as: List[A]): Option[Zipper[A]] =stream.toZipper(as.toStream)final def zipperEnd[A](as: List[A]): Option[Zipper[A]] =stream.zipperEnd(as.toStream)
...final class NonEmptyList[+A] private[scalaz](val head: A, val tail: List[A]) {
...def toZipper: Zipper[A] = zipper(Stream.Empty, head, tail.toStream)def zipperEnd: Zipper[A] = {import Stream._tail.reverse match {case Nil     => zipper(empty, head, empty)case t :: ts => zipper(ts.toStream :+ head, t, empty)}}
...

都是先转换成Stream再生成Zipper的。Zipper本身的构建函数是zipper,在NonEmptyList的Zipper生成中调用过:

trait ZipperFunctions {def zipper[A](ls: Stream[A], a: A, rs: Stream[A]): Zipper[A] =Zipper(ls, a, rs)
}

用这些串形结构的构建函数产生Zipper同样很简单:

1 List(1,2,3,4).toZipper                          //> res0: Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 1, <rights>))
2   List(List(1,2),List(2,3)).toZipper              //> res1: Option[scalaz.Zipper[List[Int]]] = Some(Zipper(<lefts>, List(1, 2), <r
3                                                   //| ights>))
4   NonEmptyList("A","C","E").toZipper              //> res2: scalaz.Zipper[String] = Zipper(<lefts>, A, <rights>)
5   NonEmptyList(1,2,3).zipperEnd                   //> res3: scalaz.Zipper[Int] = Zipper(<lefts>, 3, <rights>)
6  

有了串形集合的Zipper构建方法后我们再看看一下Zipper的左右游动函数:

final case class Zipper[+A](lefts: Stream[A], focus: A, rights: Stream[A]) {
.../*** Possibly moves to next element to the right of focus.*/def next: Option[Zipper[A]] = rights match {case Stream.Empty => Nonecase r #:: rs     => Some(zipper(Stream.cons(focus, lefts), r, rs))}/*** Possibly moves to next element to the right of focus.*/def nextOr[AA >: A](z: => Zipper[AA]): Zipper[AA] =next getOrElse z/*** Possibly moves to the previous element to the left of focus.*/def previous: Option[Zipper[A]] = lefts match {case Stream.Empty => Nonecase l #:: ls     => Some(zipper(ls, l, Stream.cons(focus, rights)))}/*** Possibly moves to previous element to the left of focus.*/def previousOr[AA >: A](z: => Zipper[AA]): Zipper[AA] =previous getOrElse z/*** Moves focus n elements in the zipper, or None if there is no such element.** @param  n  number of elements to move (positive is forward, negative is backwards)*/def move(n: Int): Option[Zipper[A]] = {@tailrecdef move0(z: Option[Zipper[A]], n: Int): Option[Zipper[A]] =if (n > 0 && rights.isEmpty || n < 0 && lefts.isEmpty) Noneelse {if (n == 0) zelse if (n > 0) move0(z flatMap ((_: Zipper[A]).next), n - 1)else move0(z flatMap ((_: Zipper[A]).previous), n + 1)}move0(Some(this), n)}/*** Moves focus to the start of the zipper.*/def start: Zipper[A] = {val rights = this.lefts.reverse ++ focus #:: this.rightsthis.copy(Stream.Empty, rights.head, rights.tail)}/*** Moves focus to the end of the zipper.*/def end: Zipper[A] = {val lefts = this.rights.reverse ++ focus #:: this.leftsthis.copy(lefts.tail, lefts.head, Stream.empty)}/*** Moves focus to the nth element of the zipper, or the default if there is no such element.*/def moveOr[AA >: A](n: Int, z: => Zipper[AA]): Zipper[AA] =move(n) getOrElse z
...

start,end,move,next,previous移动方式都齐了。还有定位函数:

...
/*** Moves focus to the nearest element matching the given predicate, preferring the left,* or None if no element matches.*/def findZ(p: A => Boolean): Option[Zipper[A]] =if (p(focus)) Some(this)else {val c = this.positionsstd.stream.interleave(c.lefts, c.rights).find((x => p(x.focus)))}/*** Moves focus to the nearest element matching the given predicate, preferring the left,* or the default if no element matches.*/def findZor[AA >: A](p: A => Boolean, z: => Zipper[AA]): Zipper[AA] =findZ(p) getOrElse z/*** Given a traversal function, find the first element along the traversal that matches a given predicate.*/def findBy[AA >: A](f: Zipper[AA] => Option[Zipper[AA]])(p: AA => Boolean): Option[Zipper[AA]] = {@tailrecdef go(zopt: Option[Zipper[AA]]): Option[Zipper[AA]] = {zopt match {case Some(z) => if (p(z.focus)) Some(z) else go(f(z))case None    => None}}go(f(this))}/*** Moves focus to the nearest element on the right that matches the given predicate,* or None if there is no such element.*/def findNext(p: A => Boolean): Option[Zipper[A]] = findBy((z: Zipper[A]) => z.next)(p)/*** Moves focus to the previous element on the left that matches the given predicate,* or None if there is no such element.*/def findPrevious(p: A => Boolean): Option[Zipper[A]] = findBy((z: Zipper[A]) => z.previous)(p)
...

操作函数如下:

.../*** An alias for insertRight*/def insert[AA >: A]: (AA => Zipper[AA]) = insertRight(_: AA)/*** Inserts an element to the left of focus and focuses on the new element.*/def insertLeft[AA >: A](y: AA): Zipper[AA] = zipper(lefts, y, focus #:: rights)/*** Inserts an element to the right of focus and focuses on the new element.*/def insertRight[AA >: A](y: AA): Zipper[AA] = zipper(focus #:: lefts, y, rights)/*** An alias for `deleteRight`*/def delete: Option[Zipper[A]] = deleteRight/*** Deletes the element at focus and moves the focus to the left. If there is no element on the left,* focus is moved to the right.*/def deleteLeft: Option[Zipper[A]] = lefts match {case l #:: ls     => Some(zipper(ls, l, rights))case Stream.Empty => rights match {case r #:: rs     => Some(zipper(Stream.empty, r, rs))case Stream.Empty => None}}/*** Deletes the element at focus and moves the focus to the left. If there is no element on the left,* focus is moved to the right.*/def deleteLeftOr[AA >: A](z: => Zipper[AA]): Zipper[AA] =deleteLeft getOrElse z/*** Deletes the element at focus and moves the focus to the right. If there is no element on the right,* focus is moved to the left.*/def deleteRight: Option[Zipper[A]] = rights match {case r #:: rs     => Some(zipper(lefts, r, rs))case Stream.Empty => lefts match {case l #:: ls     => Some(zipper(ls, l, Stream.empty))case Stream.Empty => None}}/*** Deletes the element at focus and moves the focus to the right. If there is no element on the right,* focus is moved to the left.*/def deleteRightOr[AA >: A](z: => Zipper[AA]): Zipper[AA] =deleteRight getOrElse z/*** Deletes all elements except the focused element.*/def deleteOthers: Zipper[A] = zipper(Stream.Empty, focus, Stream.Empty)
.../*** Update the focus in this zipper.*/def update[AA >: A](focus: AA) = {this.copy(this.lefts, focus, this.rights)}/*** Apply f to the focus and update with the result.*/def modify[AA >: A](f: A => AA) = this.update(f(this.focus))
...

insert,modify,delete也很齐备。值得注意的是多数Zipper的移动函数和操作函数都返回Option[Zipper[A]]类型,如此我们可以用flatMap把这些动作都连接起来。换句话说就是我们可以用for-comprehension在Option的context内实现行令编程(imperative programming)。我们可以通过一些例子来示范Zipper用法:

 1 val zv = for {
 2     z <- List(2,8,1,5,4,11).toZipper
 3     s1 <- z.next
 4     s2 <- s1.modify{_ + 2}.some
 5   } yield s2                                      //> zv  : Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 10, <rights>))
 6
 7   zv.get.show          //> res8: scalaz.Cord = Zipper(Stream(2), 10, Stream(1,5,4,11))
 8   zv.get.toList        //> res9: List[Int] = List(2, 10, 1, 5, 4, 11)
 9 ...
10 val zv = for {
11     z <- List(2,8,1,5,4,11).toZipper
12     s1 <- z.next
13     s2 <- s1.modify{_ + 2}.some
14     s3 <- s2.move(1)
15     s4 <- s3.delete
16   } yield s4                                      //> zv  : Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 5, <rights>))
17
18   zv.get.show       //> res8: scalaz.Cord = Zipper(Stream(10,2), 5, Stream(4,11))
19   zv.get.toList     //> res9: List[Int] = List(2, 10, 5, 4, 11)
20 ...
21 val zv = for {
22     z <- List(2,8,1,5,4,11).toZipper
23     s1 <- z.next
24     s2 <- s1.modify{_ + 2}.some
25     s3 <- s2.move(1)
26     s4 <- s3.delete
27     s5 <- s4.findZ {_ === 11}
28     s6 <- if (s5.focus === 12) s5.delete else s2.insert(12).some
29   } yield s6                                      //> zv  : Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 12, <rights>))
30
31   zv.get.show        //> res8: scalaz.Cord = Zipper(Stream(10,2), 12, Stream(1,5,4,11))
32   zv.get.toList      //> res9: List[Int] = List(2, 10, 12, 1, 5, 4, 11)
33 ...
34 val zv = for {
35     z <- List(2,8,1,5,4,11).toZipper
36     s1 <- z.next
37     s2 <- s1.modify{_ + 2}.some
38     s3 <- s2.move(1)
39     s4 <- s3.delete
40     s5 <- s4.findZ {_ === 11}
41     s6 <- if (s5.focus === 12) s5.delete else s2.insert(12).some
42     s7 <- s6.end.delete
43     s8 <- s7.start.some
44   } yield s8                                      //> zv  : Option[scalaz.Zipper[Int]] = Some(Zipper(<lefts>, 2, <rights>))
45
46   zv.get.show         //> res8: scalaz.Cord = Zipper(Stream(), 2, Stream(10,12,1,5,4))
47   zv.get.toList       //> res9: List[Int] = List(2, 10, 12, 1, 5, 4)

我在上面的程序里在for{...}yield里面逐条添加指令从而示范游标当前焦点和集合元素跟随着的变化。这段程序可以说就是一段行令程序。
回到上面提到的效率和代码质量讨论。我们提过scalaz提供Zipper就是为了使集合操作编程更简明优雅,实际情况是怎样的呢?

举个例子:有一串数字,比如:List(1,4,7,9,5,6,10), 我想找出第一个高点元素,它的左边低,右边高,在我们的例子里是元素9。如果我们尝试用习惯的行令方式用索引去编写这个函数:

def peak(list: List[Int]): Option[Int] = { list.indices.find { index =>val x = list(index)index > 0 && index < list.size - 1 &&x > list(index - 1) && x > list(index + 1) }.map(list(_))
}

哇!这东西不但极其复杂难懂而且效率低下,重复用find索引导致速度降到O(n * n)。如果用Array会把效率提高到O(n),不过我们希望用immutable方式。那么用函数式编程方式呢?

def peak_fp(list: List[Int]): Option[Int] = list match { case x :: y :: z :: tl if y > x && y > z => Some(y) case x :: tl => peak(tl)case Nil => None
}  

用模式匹配(pattern matching)和递归算法(recursion),这段程序好看多了,而且效率也可以提高到O(n)。

但我们再把情况搞得复杂一点:把高点值增高一点(+1)。还是用FP方式编写:

def raisePeak(list: List[Int]): Option[List[Int]] = {def rec(head: List[Int], tail: List[Int]): Option[List[Int]] = tail match {case x :: y :: z :: tl if y > x && y > z => Some((x :: head).reverse ::: ((y +1) :: z :: tl))case x :: tl => rec(x :: head, tl) case Nil => None}rec(List.empty, list)
}

代码又变得臃肿复杂起来。看来仅仅用FP编程方式还不足够,还需要用一些新的数据结构什么的来帮助。scalaz的Zipper可以在这个场景里派上用场了:

def raisePeak_z(list: List[Int]): Option[List[Int]] = { for {zipper <- list.toZipperpeak <- zipper.positions.findNext( z =>(z.previous, z.next) match {case (Some(p), Some(n)) => p.focus < z.focus && n.focus < z.focus case _ => false})} yield (peak.focus.modify(_ + 1).toStream.toList)
}

用Zipper来写程序表达清楚许多。这里用上了Zipper.positions:

/*** A zipper of all positions of the zipper, with focus on the current position.*/def positions: Zipper[Zipper[A]] = {val left = std.stream.unfold(this)(_.previous.map(x => (x, x)))val right = std.stream.unfold(this)(_.next.map(x => (x, x)))zipper(left, this, right)}

positions函数返回类型是Zipper[Zipper[A]]符合findNext使用。我们前面已经提到:使用Zipper的成本约为O(n)。

转载于:https://www.cnblogs.com/tiger-xc/p/5107491.html

Scalaz(23)- 泛函数据结构: Zipper-游标定位相关推荐

  1. 23王道数据结构代码题全解(二)

    计划更新23王道数据结构所有课后代码习题的实现,虽然考试写的一般都是伪代码,但是强迫症的我还是全部实现了一遍,仓库在这里 代码全部是用 C++ 写的,都可以编译运行,包含暴力解和最优解. 持续更新,目 ...

  2. 23王道数据结构代码题全解(一)

    计划更新23王道数据结构所有课后代码习题的实现,虽然考试写的一般都是伪代码,但是强迫症的我还是全部实现了一遍,仓库在这里 代码全部是用 C++ 写的,都可以编译运行,包含暴力解和最优解. 持续更新,目 ...

  3. 23王道数据结构代码题全解(三)

    计划更新23王道数据结构所有课后代码习题的实现,虽然考试写的一般都是伪代码,但是强迫症的我还是全部实现了一遍,仓库在这里 代码全部是用 C++ 写的,都可以编译运行,包含暴力解和最优解. 持续更新,目 ...

  4. 游标定位:Cursor类

    关于 Cursor Cursor 是每行的集合. 使用 moveToFirst() 定位第一行. 你必须知道每一列的名称. 你必须知道每一列的数据类型. Cursor 是一个随机的数据源. 所有的数据 ...

  5. 23王道数据结构二叉搜索树(BST)算法题(6-11题)总结(伪代码)

    6.判断给定的二叉树是否是二叉排序树 算法思想:中序遍历,一棵树为二叉排序树即左右子树为二叉排序树,且当前根节点和左右子树呈递增序列,对左右子树也是如此判断,显然是个递归过程              ...

  6. innodb对B树游标的定位过程以及对“小于(等于)B树最小记录”的特殊处理

    innodb对B树进行游标定位时,主要通过函数btr_cur_search_to_nth_level进行,该函数从根页开始向下层页迭代,直到指定的层级level,最终将B树游标定位在第一个大/小于(等 ...

  7. T-SQL游标学习总结

    T-SQL查询进阶-10分钟理解游标 http://www.cnblogs.com/CareySon/archive/2011/11/01/2231381.html 概述 在关系数据库中,我们对于查询 ...

  8. SQL游标(cursor)详细说明及内部循环使用示例

    游标 游标(cursor)是系统为用户开设的一个数据缓冲区,存放SQL语句的执行结果.每个游标区都有一个名字,用户可以用SQL语句逐一从游标中获取记录,并赋给主变量,交由主语言进一步处理. 游标是处理 ...

  9. SQLServer 游标简介与使用说明[转]

    游标(Cursor)是处理数据的一种方法,为了查看或者处理结果集中的数据,游标提供了在结果集中一次以行或者多行前进或向后浏览数据的能力.我们可以把游标当作一个指针,它可以指定结果中的任何位置,然后允许 ...

最新文章

  1. python tensorflow教程_TensorFlow入门教程TensorFlow 基本使用T
  2. 【Verilog HDL 训练】第 02 天
  3. SAP CRM my task 6个roundtrip的原理讲解
  4. 【mysql】提取字符串中的数字、字母、中文,或任意组合
  5. BZOJ 4810 [Ynoi2017]由乃的玉米田(莫队+bitset)
  6. es6=unicode码详解
  7. ldd3笔记_3_编译模块【ZT】
  8. Ubuntu下如何使用虚拟机安装WindowsXP?(2)【转】
  9. App 抓包-Fiddler简单使用教程
  10. DAO与Servlet
  11. 语音计算机怎么切换音乐模式,如何把微信里收藏的语音音乐转换成mp3格式?
  12. 介绍dbt,ETL和ELT Disrupter
  13. 强化学习原理及应用作业之动态规划算法【SYSU_2023SpringRL】
  14. HashMap的底层实现
  15. python与分形0021 - 【教程】奥林匹克五环
  16. 解决mysql的赋权操作之GRANT ALL PRIVILEGES ON *.* TO ‘root‘@‘%‘ IDENTIFIED BY ‘123456‘ WITH GRANT OPTION问题
  17. C++工程编译链接错误汇总VisualStudio
  18. 关于仙童八叛徒(转)
  19. windows cmd 命令大全
  20. Android在线预览pdf文件的几种方式

热门文章

  1. 中国研究的超级系统计算机,学习电脑 - Book3 - V1.30 - 超级系统恢复
  2. php透明颜色的代码,PHP 透明水印生成代码参考
  3. mysql登陆 host_mysql远程可以登陆本地登陆不了(user表中host字段的通配符%)
  4. 【深夜思考】转行学java找不到工作
  5. 目标检测R-CNN模型的CNN模块微调过程分析【全网最易懂】
  6. linux技术工程师,LINUX系统工程师技术(Engineer)-------第四天
  7. 关于 Quartz 框架如何引入 Dubbo 服务
  8. 网站单页面SEO关键词该如何布局更好?
  9. 企业网站建设量身定做的三项基本要素
  10. 网站SEO优化中长尾关键词的特征有哪些?