文章目录

  • The Wireless Channel: Propagation and Fading
    • 1.1 Large-Scale Fading
      • 1.1.1 General Path Loss Model
      • 1.1.2 Okumura/Hata Model
      • 1.1.3 IEEE 802.16d Model
    • 1.2 Small-Scale Fading
      • 1.2.1 Parameters for Small-Scale Fading
        • 1. Mean excess delay
        • 2. RMS delay spread
      • 1.2.2 Time-Dispersive vs. Frequency-Dispersive Fading
        • 1.2.2.1 Fading Due to Time Dispersion: Frequency-Selective Fading Channel
        • 1.2.2.2 Fading Due to Frequency Dispersion: Time-Selective Fading Channel
      • 1.2.3 Statistical Characterization and Generation of Fading Channel
        • 1.2.3.1 Statistical Characterization of Fading Channel
        • 1.2.3.2 Generation of Fading Channels

The Wireless Channel: Propagation and Fading

Classification of fading channels:

1.1 Large-Scale Fading

1.1.1 General Path Loss Model

1.1.2 Okumura/Hata Model

1.1.3 IEEE 802.16d Model

1.2 Small-Scale Fading

  • Small-scale fading: rapid variation of the received signal level in the short term as the user terminal moves a short distance.
  • Small-scale fading is attributed to multi-path propagation, mobile speed, speed of surrounding objects, and transmission bandwidth of signal.

1.2.1 Parameters for Small-Scale Fading

  • Characteristics of multipath fading channel are often specified by a power delay profile (PDP).
  • ‘path’ may also be referred as ‘tap’.

1. Mean excess delay

The mean excess delay τ ‾ \overline\tau τ is given by the first moment of PDP as
τ ‾ = ∑ k a k 2 τ k ∑ k a k 2 = ∑ k τ k P ( τ k ) ∑ k P ( τ k ) \overline{\tau}=\frac{\sum_{k}{a_k^2\tau_k}}{\sum_{k}{a_k^2}}=\frac{\sum_{k}{\tau_kP(\tau_k)}}{\sum_{k}{P(\tau_k)}} τ=∑k​ak2​∑k​ak2​τk​​=∑k​P(τk​)∑k​τk​P(τk​)​
where τ k \tau_k τk​, a k a_k ak​ and P ( τ k ) P(\tau_k) P(τk​) is the channel delay, amplitude and power of the k k kth path, repectively.

2. RMS delay spread

RMS delay spread σ τ \sigma_\tau στ​ is given by the square root of the second central moment of PDP as
σ τ = τ 2 ‾ − ( τ ‾ ) 2 \sigma_\tau=\sqrt{\overline{\tau^2}-(\overline\tau)^2} στ​=τ2−(τ)2 ​
where
τ 2 ‾ = ∑ k a k 2 τ k 2 ∑ k a k 2 = ∑ k τ k 2 P ( τ k ) ∑ k P ( τ k ) \overline{\tau^2}=\frac{\sum_k{a_k^2}\tau_k^2}{\sum_ka_k^2}=\frac{\sum_k{\tau_k^2P(\tau_k)}}{\sum_kP(\tau_k)} τ2=∑k​ak2​∑k​ak2​τk2​​=∑k​P(τk​)∑k​τk2​P(τk​)​
Coherence bandwidth B c B_c Bc​ is generally inversely-proportional to the RMS delay spread, i.e.
B c ≈ 1 σ τ B_c\approx\frac{1}{\sigma_\tau} Bc​≈στ​1​
【About coherence bandwidth: 窄带与宽带】

1.2.2 Time-Dispersive vs. Frequency-Dispersive Fading

Wireless channels can be characterized by two different channel parameters, multipath delay spread and Doppler spread, which cause time dispersion and frequency dispersion, respectively.

1.2.2.1 Fading Due to Time Dispersion: Frequency-Selective Fading Channel

  • For the given channel frequency response, frequency selectivity is generally governed by signal bandwidth.
  • Due to time dispersion according to multi-paths, channel response varies with frequency.
  • Signal bandwidth is narrow: frequency-non-selective fading / flat fading
    • B s ≪ B c B_s \ll B_c Bs​≪Bc​ and T s ≫ σ τ T_s \gg \sigma_\tau Ts​≫στ​
      where B s B_s Bs​ and T s T_s Ts​ are the bandwidth and symbol period of the transmit signal, while B c B_c Bc​ and σ τ \sigma_\tau στ​ is the coherence bandwidth and RMS delay spread.
    • ‘Narrow’ means symbol period T s T_s Ts​ is greater than the delay spread τ \tau τ of the multipath channel h ( t , τ ) h(t,\tau) h(t,τ).
    • The wireless channel maintains a constant (or slowly time-varying) amplitude and linear phase response within a passband.
    • T s T_s Ts​ is greater than τ \tau τ means the current symbol does not affect the subsequent symbol as much over the next symbol period, implying that inter-symbol interference (ISI) is not significant.
  • Signal bandwidth is wide: frequency-selective fading
    • B s > B c B_s > B_c Bs​>Bc​ and T s < σ τ T_s < \sigma_\tau Ts​<στ​
    • The channel impulse response has a larger delay spread than a symbol period of the transmit signal, so the multiple-delayed copies of the transmit signal is significantly overlapped with the subsequent symbol, incurring ISI.
    • Frequency-selective fading channel, also referred as wideband channel, since the signal bandwidth is larger than the bandwidth of channel impulse response.

1.2.2.2 Fading Due to Frequency Dispersion: Time-Selective Fading Channel

  • Depending on the extent of the Doppler spread, the received signal undergoes fast or slow fading.
  • Variation in the time domain is related to movement of the transmitter or receiver, which incurs a spread in the frequency domain, known as Doppler shift. f m f_m fm​ is the maximum Doppler shift and B d = 2 f m B_d = 2f_m Bd​=2fm​ is the bandwidth of Doppler spectrum. The coherence time T c T_c Tc​ is inversely proportional to Doppler spread, i.e. T c ≈ 1 / f m T_c \approx 1/f_m Tc​≈1/fm​.
  • In a fast fading channel, the coherence time is smaller than the symbol period and thus a channel impulse response quickly varies within the symbol period, i.e.
    T s > T c a n d B s < B d T_s > T_c\quad {\rm and} \quad B_s<B_d Ts​>Tc​andBs​<Bd​
  • In a slow fading channel, the channel impulse response varies slowly as compared to variation in the baseband transmit signal, so we can assume that the channel does not change over the duration of one/more symbols (static channel), which implies that the Doppler spread is much smaller than the bandwidth of the baseband transmit signal, i.e.
    T s ≪ T c a n d B s ≫ B d T_s \ll T_c \quad {\rm and}\quad B_s \gg B_d Ts​≪Tc​andBs​≫Bd​

1.2.3 Statistical Characterization and Generation of Fading Channel

1.2.3.1 Statistical Characterization of Fading Channel

  • N N N planewaves with arbitrary carrier phases, each coming from an arbitrary direction under the assumption that each planewave has the same average power.

  • In the following figure, the planewave arrives from angle θ \theta θ with respect to the direction of terminal movement.

  • The passband transmit signal is
    x ~ ( t ) = R e [ x ( t ) e j 2 π f c t ] \tilde{x}(t)={\rm Re}\left[x(t)e^{j2\pi f_ct}\right] x~(t)=Re[x(t)ej2πfc​t]
    where x ( t ) x(t) x(t) is the baseband transmit signal.

  • Passing through a scattered channel of I I I different propagation paths with different Doppler shifts, the passband received signal can be represented as
    y ~ ( t ) = R e [ ∑ i = 1 I C i e j 2 π ( f c + f i ) ( t − τ i ) x ( t − τ i ) ] = R e [ y ( t ) e j 2 π f c t ] \tilde{y}(t)={\rm Re}\left[\sum_{i=1}^I{C_ie^{j2\pi (f_c+f_i)(t-\tau_i)}x(t-\tau_i)}\right] ={\rm Re}\left[y(t)e^{j2\pi f_ct}\right] y~​(t)=Re[i=1∑I​Ci​ej2π(fc​+fi​)(t−τi​)x(t−τi​)]=Re[y(t)ej2πfc​t]
    where C i C_i Ci​, τ i \tau_i τi​ and f i f_i fi​ denote the channel gain, delay and Doppler shift for the i i ith propagation path, respectively.
    With speed v v v and wavelength λ \lambda λ, the Doppler shift is given as
    f i = f m c o s θ i = v λ c o s θ i f_i=f_m{\rm cos}\theta_i=\frac{v}{\lambda}{\rm cos}\theta_i fi​=fm​cosθi​=λv​cosθi​
    where f m f_m fm​ is the maximum Doppler shift and θ i \theta_i θi​ is the AOA for the i i ith planewave.

  • The baseband received signal is
    y ( t ) = ∑ i = 1 I C i e − j ϕ i ( t ) x ( t − τ i ) y(t)=\sum_{i=1}^I{C_ie^{-j\phi_i(t)}x(t-\tau_i)} y(t)=i=1∑I​Ci​e−jϕi​(t)x(t−τi​)
    where ϕ i ( t ) = 2 π { ( f c + f i ) τ i − f i t i } \phi_i(t)=2\pi\{(f_c+f_i)\tau_i-f_it_i\} ϕi​(t)=2π{(fc​+fi​)τi​−fi​ti​}.
    Therefore, the corresponding channel can be modeled as a linear time-varying filter with the following complex baseband impulse response
    h ( t , τ ) = ∑ i = 1 I C i e − j ϕ i ( t ) δ ( t − τ i ) h(t,\tau)=\sum_{i=1}^I{C_ie^{-j\phi_i(t)}\delta(t-\tau_i)} h(t,τ)=i=1∑I​Ci​e−jϕi​(t)δ(t−τi​)

  • If the difference is the path delay is much less than the sampling period T s T_s Ts​, then the above equation can be rewrited as
    h ( t , τ ) = h ( t ) δ ( t − τ ^ ) h(t,\tau)=h(t)\delta(t-\hat\tau) h(t,τ)=h(t)δ(t−τ^)
    where h ( t ) = ∑ i = 1 I C i e − j ϕ i ( t ) h(t)=\sum_{i=1}^{I}{C_ie^{-j\phi_i(t)}} h(t)=∑i=1I​Ci​e−jϕi​(t).

  • Assuming that x ( t ) = 1 x(t)=1 x(t)=1, the received passband signal is
    y ~ ( t ) = R e [ y ( t ) e j 2 π f c t ] = R e [ { h I ( t ) + j h Q ( t ) } e j 2 π f c t ] = h I ( t ) c o s ( 2 π f c t ) − h Q ( t ) s i n ( 2 π f c t ) \begin{aligned} \tilde{y}(t)&={\rm Re}\left[y(t)e^{j2\pi f_ct}\right]\\ &={\rm Re}\left[\left\{h_I(t)+jh_Q(t)\right\}e^{j2\pi f_ct}\right]\\ &=h_I(t){\rm cos}(2\pi f_ct)-h_Q(t){\rm sin}(2\pi f_ct) \end{aligned} y~​(t)​=Re[y(t)ej2πfc​t]=Re[{hI​(t)+jhQ​(t)}ej2πfc​t]=hI​(t)cos(2πfc​t)−hQ​(t)sin(2πfc​t)​
    where
    h I ( t ) = ∑ i = 1 I C i c o s ϕ i ( t ) , h Q ( t ) = ∑ i = 1 I C i s i n ϕ i ( t ) h_I(t)=\sum_{i=1}^{I}{C_i{\rm cos}\phi_i(t)},\quad h_Q(t)=\sum_{i=1}^{I}{C_i{\rm sin}\phi_i(t)} hI​(t)=i=1∑I​Ci​cosϕi​(t),hQ​(t)=i=1∑I​Ci​sinϕi​(t)

  • According to the Central Limit Theorem, h I ( t ) h_I(t) hI​(t) and h Q ( t ) h_Q(t) hQ​(t) can be approximated as Gaussian random variables if I I I is large enough.

    • The amplitude of the received signal y ~ ( t ) = h I 2 ( t ) + h Q 2 ( t ) \tilde{y}(t) = \sqrt{h_I^2(t)+h_Q^2(t)} y~​(t)=hI2​(t)+hQ2​(t) ​ follows the Rayleigh distribution.
    • The power spectrum density (PSD) of the fading process is found by the Fourier transform of the autocorrelation function of y ~ ( t ) \tilde{y}(t) y~​(t)
      S y ~ y ~ ( f ) = { Ω p 4 π f m 1 1 − ( f − f c f m ) 2 , ∣ f − f c ∣ ≤ f m 0 , o t h e r w i s e S_{\tilde{y}\tilde{y}}(f)= \begin{cases} \frac{\Omega_p}{4\pi f_m}\frac{1}{\sqrt{1-\left(\frac{f-f_c}{f_m}\right)^2}},&|f-f_c|\leq f_m\\ 0,&{\rm otherwise} \end{cases} Sy~​y~​​(f)=⎩⎨⎧​4πfm​Ωp​​1−(fm​f−fc​​)2 ​1​,0,​∣f−fc​∣≤fm​otherwise​
      where Ω p = E { h I 2 ( t ) } + E { h Q 2 ( t ) } = ∑ i = 1 I C i 2 \Omega_p=E\left\{h_I^2(t)\right\}+E\left\{h_Q^2(t)\right\}=\sum_{i=1}^{I}C_i^2 Ωp​=E{hI2​(t)}+E{hQ2​(t)}=∑i=1I​Ci2​.
      This PSD is often referred to as the classical Doppler spectrum.
    • If some of the scattering components are much stronger than most of the others, then the amplitude follows the Rician distribution.
      • The strongest scattering component: line-of-sight (LOS) / specular components. All other components: non-line-of-sight (NLOS) / scattering components.
      • The probability density function (PDF) of AoA for all components is
        p ( θ ) = 1 K + 1 p ~ ( θ ) + K K + 1 δ ( θ − θ 0 ) p(\theta)=\frac{1}{K+1}\tilde{p}(\theta)+\frac{K}{K+1}\delta(\theta-\theta_0) p(θ)=K+11​p~​(θ)+K+1K​δ(θ−θ0​)
        where p ~ ( θ ) \tilde p(\theta) p~​(θ) is the PDF of AoA for scattering components, θ 0 \theta_0 θ0​ is the AoA of the specular component, K K K is the Rician factor defined as the ratio of the specular component power c 2 c^2 c2 and the scattering component power 2 σ 2 2\sigma^2 2σ2, i.e.
        K = c 2 2 σ 2 K=\frac{c^2}{2\sigma^2} K=2σ2c2​

1.2.3.2 Generation of Fading Channels

  • Any received signal can be considered as the sum of the received signals from an infinite number of scatters. According to the central limit theorem, the received signal can be represented by a Gaussian random variable W 1 + j W 2 W_1+jW_2 W1​+jW2​, where W 1 W_1 W1​ and W 2 W_2 W2​ are the independent and identically-distributed (i.i.d.) Gaussian random variables with zero mean and variance σ 2 \sigma^2 σ2.
  • Assume X = W 1 2 + W 2 2 X=\sqrt{W_1^2+W_2^2} X=W12​+W22​ ​ is the amplitude of the complex Gaussian random variable, then X X X is a Rayleigh random variable with the following PDF
    f X ( x ) = x σ 2 e − x 2 2 σ 2 f_X(x)=\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}} fX​(x)=σ2x​e−2σ2x2​
    where 2 σ 2 = E { X 2 } 2\sigma^2=E\{X^2\} 2σ2=E{X2}. Furthermore, X 2 X^2 X2 is a chi-square ( χ 2 \chi^2 χ2) random variable (卡方分布).
  • In the LOS environment, the amplitude of the received signal can be expressed as X = c + W 1 + j W 2 X=c+W_1+jW_2 X=c+W1​+jW2​ where c c c is the LOS component. X X X is the Rician random variable with PDF
    f X ( x ) = x σ 2 e − x 2 + c 2 2 σ 2 I 0 ( x c σ 2 ) f_X(x)=\frac{x}{\sigma^2}e^{-\frac{x^2+c^2}{2\sigma^2}I_0\left(\frac{xc}{\sigma^2}\right)} fX​(x)=σ2x​e−2σ2x2+c2​I0​(σ2xc​)
    where I 0 ( ⋅ ) I_0(\cdot) I0​(⋅) is the modified zeroth-order Bessel function of the first kind.
    K ∼ − 40 d B K\sim~-40dB K∼ −40dB is Rayleigh fading and K > 15 d B K>15dB K>15dB is Gaussian channel.

【MIMO-OFDM Wireless Communications with MATLAB】Ch1 - The Wireless Channel: Propagation and Fading相关推荐

  1. 【TCP-IP详解卷一:协议】ch1概述

    目录 1. 分层 2. 互联网的地址 三类IP地址: 3. 域名系统(DNS) 4. 封装 5. 分用 6. 客户-服务器模型 6.1 重复型服务器 6.2 并发型服务器 7. 端口号 7.1 服务器 ...

  2. 【MIMO】两种空间相关信道生成方式的记录(公式+MATLAB代码)

    文章目录 前言 一. Kronecker相关信道模型 二.生成方式1 1.公式 2.MATLAB代码 三.生成方式2-complex correlation 1.公式 2.MATLAB代码 四.生成方 ...

  3. 【 MATLAB 】【 MATLAB 】DFT的性质讨论(三)序列的循环卷积及其 MATLAB 实现

    这篇博文要将的是循环卷积,循环卷积和线性卷积还是有很大区别的,我们都知道,两个N点序列之间的线性卷积会得出一个更长的序列,不得不再一次要将区间限制在 0 <= n <= N -1.因此代替 ...

  4. 【 MATLAB 】DFT的性质讨论(二)序列的循环移位及其 MATLAB 实现(频域方法)

    上篇博文:[ MATLAB ]DFT的性质讨论(二)序列的循环移位及其 MATLAB 实现(时域方法) 提到了对序列x(n)做循环移位后的DFT形式为: 上篇博文已经讨论过了第一种实现循环移位的方法, ...

  5. 【 MATLAB 】DFT性质讨论(一)线性、循环反转、共轭与实序列的对称性的MATLAB实现

    上篇博文通过在理论上讨论了DFT的三个性质:[ MATLAB ]DFT性质讨论(一)线性.循环反转与共轭 分别讨论: 一.线性 给出一个例子,给出x1和x2,x3 = 0.3*x1+0.8*x2; 之 ...

  6. 【 MATLAB 】rem 函数介绍

    rem函数和mod函数很相似,二者认真看一个,另一个看一下区别即可. mod函数介绍:[ MATLAB ]mod 函数介绍 rem Remainder after division Syntax r ...

  7. 【 MATLAB 】通过不同样本数的同一个有限长序列作 DTFT 对比

    上篇博文我们讨论了:[ MATLAB ]使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本) 可是还是觉得不过瘾,还有下面的情况需 ...

  8. 【 MATLAB 】使用 MATLAB 作图讨论有限长序列的 N 点 DFT(强烈推荐)(含MATLAB脚本)

    这篇博文本来是和上篇博文一起写的:[ MATLAB ]离散傅里叶级数(DFS)与DFT.DTFT及 z变换之间的关系 但是这篇博文我最初设计的是使用MATLAB脚本和图像来讨论的,而上篇博文全是公式, ...

  9. 【 MATLAB 】离散傅里叶级数(DFS)与DFT、DTFT及 z变换之间的关系

    上篇博文我们简单的讨论了离散傅里叶级数DFS和离散傅里叶变换DFT之间的关系,简单地说,DFT就是DFS在一个周期内的表现. [ MATLAB ]离散傅里叶变换(DFT)以及逆变换(IDFT)的MAT ...

最新文章

  1. 软件测试中英文词汇汇总
  2. 类与面向对象的精华:继承【C++继承】
  3. Redis 远程字典服务及shell全部命令汇总【点击可查看高清原图】(附 xmind思维导图原文件 百度网盘)
  4. [导入]毕业的大学生的100条忠告
  5. jqgrid定义多选操作
  6. 【RippleNet】(一)preprocessor.py【未完】
  7. mysql中日期相减_MySQL环境配置和10分钟快速入门
  8. 【重点!DP】LeetCode 639. Decode Ways II
  9. 如何根据DBC计算CAN与CANFD的负载率
  10. 使用思维导图提高工作效率的秘诀:6种工作思维导图模板分享
  11. springboot Validation
  12. Git Branching基础操作学习笔记
  13. 评论采集-评论采集器-评论采集插件-评论采集工具免费下载
  14. PAKDD2020:阿里巴巴算法大赛中的得与失
  15. python随机生成licence plate numer
  16. 虚拟机安装Ubuntu后的问题(不能全屏、不能上网;换源挂代理;安装搜狗输入法;pycharm的sudo模式启动快捷方式)
  17. Java泛型方法与普通成员方法以及案例说明(五)
  18. 小试牛刀-利用AST平坦化一段瑞数代码
  19. 电子西塔琴音源 Orange Tree Samples Evolution Sitardelic Kontakt
  20. 机遇与风险并存,新手棋牌创业需谨慎

热门文章

  1. RabbitMQ默认端口
  2. 我与python约个会:18. 再说循环~列表和循环的高级操作
  3. requests整合selenium爬取网站关键词排名
  4. Flutter webView加载html富文本
  5. nmap端口扫描参数设置
  6. c++进制转化(超级简单实现)
  7. 20230116英语学习
  8. vue 项目中使用键盘回车或空格按键触发事件
  9. mysql字段类型原理_mysql数据类型和字段属性原理与用法详解
  10. Linux系统配置(PXE批量装机)