摄像机标定和 3D 重构

摄像机标定
目标
  • 学习摄像机畸变以及摄像机的内部参数和外部参数
  • 学习找到这些参数,对畸变图像进行修复
  
基础
  今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来,但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸出来了。你可以通过访问Distortion (optics)获得更多相关细节。
  
这种畸变可以通过下面的方程组进行纠正:


  于此相似,另外一个畸变是切向畸变,这是由于透镜与成像平面不可能绝对平行造成的。这种畸变会造成图像中的某些点看上去的位置会比我们认为的位置要近一些。它可以通过下列方程组进行校正:
  
  简单来说,如果我们想对畸变的图像进行校正就必须找到五个造成畸变的系数:
  
  除此之外,我们还需要再找到一些信息,比如摄像机的内部和外部参数。内部参数是摄像机特异的。它包括的信息有焦距(fx{{f}_{x}}fx​, fy{{f}_{y}}fy​),光学中心(cx{{c}_{x}}cx​, cy{{c}_{y}}cy​)等。这也被称为摄像机矩阵。它完全取决于摄像机自身,只需要计算一次,以后就可以已知使用了。可以用下面的 3x3 的矩阵表示:
  
  外部参数与旋转和变换向量相对应,它可以将 3D 点的坐标转换到坐标系统中。
  在 3D 相关应用中,必须要先校正这些畸变。为了找到这些参数,我们必须要提供一些包含明显图案模式的样本图片(比如说棋盘)。我们可以在上面找到一些特殊点(如棋盘的四个角点)。我们起到这些特殊点在图片中的位置以及它们的真是位置。有了这些信息,我们就可以使用数学方法求解畸变系数。这就是整个故事的摘要了。为了得到更好的结果,我们至少需要 10 个这样的图案模式。
  
代码
  如上所述,我们至少需要 10 图案模式来进行摄像机标定。OpenCV 自带了一些棋盘图像(/sample/cpp/left001.jpg–left14.jpg), 所以我们可以使用它们。为了便于理解,我们可以认为仅有一张棋盘图像。重要的是在进行摄像机标定时我们要输入一组 3D 真实世界中的点以及与它们对应 2D 图像中的点。2D 图像的点可以在图像中很容易的找到。(这些点在图像中的位置是棋盘上两个黑色方块相互接触的地方)
  那么真实世界中的 3D 的点呢?这些图像来源与静态摄像机和棋盘不同的摆放位置和朝向。所以我们需要知道(X,Y,Z)的值。但是为了简单,我们可以说棋盘在 XY 平面是静止的,(所以 Z 总是等于 0)摄像机在围着棋盘移动。这种假设让我们只需要知道 X,Y 的值就可以了。现在为了求 X, Y 的值,我们只需要传入这些点(0,0),(1,0),(2,0)…,它们代表了点的位置。在这个例子中,我们的结果的单位就是棋盘(单个)方块的大小。但是如果我们知道单个方块的大小(加入说 30mm),我们输入的值就可以是(0,0),(30,0),(60,0)…,结果的单位就是 mm。(在本例中我们不知道方块的大小,因为不是我们拍的,所以只能用前一种方法了)。
  3D 点被称为对象点,2D 图像点被称为图像点

设置
  为了找到棋盘的图案,我们要使用函数cv2.findChessboardCorners()。我们还需要传入图案的类型,比如说 8x8 的格子或 5x5 的格子等。在本例中我们使用的恨死 7x8 的格子。(通常情况下棋盘都是 8x8 或者 7x7)。它会返回角点,如果得到图像的话返回值类型(Retval)就会是 True。这些角点会按顺序排列(从左到右,从上到下)。

其他:这个函数可能不会找出所有图像中应有的图案。所以一个好的方法是编写代码,启动摄像机并在每一帧中检查是否有应有的图案。在我们获得图案之后我们要找到角点并把它们保存成一个列表。在读取下一帧图像之前要设置一定的间隔,这样我们就有足够的时间调整棋盘的方向。继续这个过程直到我们得到足够多好的图案。就算是我们举得这个例子,在所有的 14 幅图像中也不知道有几幅是好的。所以我们要读取每一张图像从其中找到好的能用的。

其他:除了使用棋盘之外,我们还可以使用环形格子,但是要使用函数cv2.findCirclesGrid() 来找图案。据说使用环形格子只需要很少的图像就可以了。

在找到这些角点之后我们可以使用函数 cv2.cornerSubPix() 增加准确度。我们使用函数 cv2.drawChessboardCorners() 绘制图案。所有的这些步骤都被包含在下面的代码中了:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 28 08:53:34 2014
@author: duan
"""
import numpy as np
import cv2
import glob
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('*.jpg')
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (7,6), corners2,ret)
cv2.imshow('img',img)
cv2.waitKey(500)
cv2.destroyAllWindows()

一副图像和被绘制在上边的图案:

标定
  在得到了这些对象点和图像点之后,我们已经准备好来做摄像机标定了。我们要使用的函数是 cv2.calibrateCamera()。它会返回摄像机矩阵,畸变系数,旋转和变换向量等。

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)

畸变校正
  现在我们找到我们想要的东西了,我们可以找到一幅图像来对他进行校正了。OpenCV 提供了两种方法,我们都学习一下。不过在那之前我们可以使用从函数 cv2.getOptimalNewCameraMatrix() 得到的自由缩放系数对摄像机矩阵进行优化。如果缩放系数 alpha = 0,返回的非畸变图像会带有最少量的不想要的像素。它甚至有可能在图像角点去除一些像素。如果 alpha = 1,所有的像素都会被返回,还有一些黑图像。它还会返回一个 ROI 图像,我们可以用来对结果进行裁剪。
  我们读取一个新的图像(left2.ipg)

img = cv2.imread('left12.jpg')
h, w = img.shape[:2]
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))

使用 cv2.undistort() 这是最简单的方法。只需使用这个函数和上边得到的 ROI 对结果进行裁剪。

# undistort
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

使用 remapping 这应该属于“曲线救国”了。首先我们要找到从畸变图像到非畸变图像的映射方程。再使用重映射方程。

# undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

这两中方法给出的结果是相同的。结果如下所示:

  你会发现结果图像中所有的边界都变直了。
  现在我们可以使用 Numpy 提供写函数(np.savez,np.savetxt 等)将摄像机矩阵和畸变系数保存以便以后使用。
  
反向投影误差
  我们可以利用反向投影误差对我们找到的参数的准确性进行估计。得到的结果越接近 0 越好。有了内部参数,畸变参数和旋转变换矩阵,我们就可以使用cv2.projectPoints() 将对象点转换到图像点。然后就可以计算变换得到图像与角点检测算法的绝对差了。然后我们计算所有标定图像的误差平均值。

mean_error = 0
for i in xrange(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
tot_error += error
print "total error: ", mean_error/len(objpoints)

摄像机标定和 3D 重构相关推荐

  1. [OpenCV-Python] OpenCV 中摄像机标定和 3D 重构 部分 VII

    部分 VII 摄像机标定和 3D 重构 OpenCV-Python 中文教程(搬运)目录 42 摄像机标定 目标 • 学习摄像机畸变以及摄像机的内部参数和外部参数 • 学习找到这些参数,对畸变图像进行 ...

  2. 十五天掌握OpenCV——摄像机标定和3D重构!—摄像机标定

    魏老师学生--Cecil:学习OpenCV-机器视觉之旅 基础 代码 设置 标定 畸变校正 反向投影误差 代码演示 Aim: 学习摄像机畸变以及摄像机的内部参数和外部参数: 对畸变图像进行修复. 基础 ...

  3. 【笔记】摄像机标定和3D重构

    目录 一.摄像机标定 1.设置 2.标定 3.畸变矫正 4.反向投影差 三.对极几何 四.深度地图 一.摄像机标定 单孔摄像机(照相机)会给图像带来很多畸变,畸变主要有 "径向畸变" ...

  4. OpenCV-Python] OpenCV 中摄像机标定和 3D 重构 部分 VII

    https://www.cnblogs.com/Undo-self-blog/p/8448500.html 42 摄像机标定 目标 • 学习摄像机畸变以及摄像机的内部参数和外部参数 • 学习找到这些参 ...

  5. Opencv相机标定与3D重构---使用棋盘格来进行摄像机标定

    让我们写一点代码来检测在一幅图像中的棋盘格,并获取他到摄像机的距离. 你可以使用同样的方法来针对任何已知三维几何结构的物体,这个物体可以在一幅图像中被检测到. 创建一个空的控制台项目. 载入一幅图片: ...

  6. 2019-9-29 opencv摄像机标定与三维重构4-Depth Map from Stereo Images立体图像中的深度图(视差图)

    官网参见https://docs.opencv.org/3.4.1/dd/d53/tutorial_py_depthmap.html 上一节中,我们学习了极线约束的概念和相关术语.主要包含:如果我们有 ...

  7. 双目立体视觉源代码 双目立体视觉匹配程序 双目视觉3d成像(三维重构图像处理) 基于双目视觉的深度计算和三维重建 opencv写的双目视觉摄像机标定和三维重建代码

    双目视觉/双目标定源码/图片集标定匹配三维重建坐标计算OpenCV 1.双目立体视觉源代码(包括标定,匹配,三维重建) 2.双目视觉实验图片集(双目立体视觉中使用的标准实验图,适合初学者进 行实验使用 ...

  8. 畸变的单目摄像机标定

    畸变的单目摄像机标定 Deep Single Image Camera Calibration with Radial Distortion 摘要 单图像标定是从一幅图像中预测摄像机参数的问题.在处理 ...

  9. Python+OpenCV学习(17)---摄像机标定

    Python+OpenCV学习(17)---摄像机标定 原文:http://blog.csdn.net/firemicrocosm/article/details/48594897 利用python学 ...

  10. Python+OpenCV:摄像机标定(Camera Calibration)

    Python+OpenCV:摄像机标定(Camera Calibration) 理论 Some pinhole cameras introduce significant distortion to ...

最新文章

  1. 免费下载 | 超级APP背后的移动端技术大揭秘
  2. JS组件系列——Bootstrap Table 表格行拖拽(二:多行拖拽)
  3. 如何在 ASP.Net Core 使用 内存缓存
  4. linux php生产环境搭建,linux php 环境搭建
  5. (王道408考研操作系统)第五章输入/输出(I/O)管理-第一节1:I/O设备的概念和分类
  6. centos mysql安装
  7. SAP License:SAP实施项目中顾问与客户的有效沟通
  8. 通用版程序在the new iPad与Xcode4.3中的不兼容。
  9. centos6.5 tomcat开机启动
  10. 【转】wcf configuration
  11. 在测试中发现错误,不要着急去改,静下心来,想一想错误的关联性( 错误展开确认 )。
  12. SQL Server where和having区别
  13. 应用软件暗藏猫腻,信息安全咋保障
  14. elisa数据处理过程图解_(完整版)ELISA原理和分类(附图解)
  15. GSMA TAC核发及IMEI编码规则
  16. Syn-QG: Syntactic and Shallow S emantic Rules for Question Generation阅读笔记
  17. php excel水印图片大小,PHPExcel:如何在第一页标题中插入图像并将其放大以适合其内容?...
  18. machine learning分类方法的详细总结
  19. 【pytest官方文档】解读- 如何自定义mark标记,并将测试用例的数据传递给fixture函数
  20. Android 各版本演变特性整理

热门文章

  1. dirent struct_file属性读取 Struct dirent struct stat
  2. Excel连接MySQL数据库进行数据的可视化
  3. 慧荣SM2259XT主控贴镁光B27A测试分享,SM2258XT、SM2259XT2可参考
  4. dual thrust 交易_国债期货常见的量化对冲交易策略
  5. 安卓开发基础知识4(三星 、ARM 为大朋背书,详解VR一体机解决方案)
  6. PS2015下载PSCC2015安装教程
  7. ArcGIS 10 SP5 (Desktop, Engine, Server)中文版 补丁
  8. 微机原理是微型计算机与接口技术吗,《微机原理与接口技术》课程教学大纲
  9. windows消息钩子研究资料整理
  10. linux的防火墙端口配置