正向传播反向传播是什么?

题主问的应该是神经网络中的问题。正向传播是指数据从X传入到神经网络,经过各个隐藏层得到最终损失的过程。

反向传播主要是针对神经网络优化的过程中进行,在L端计算总的损失函数,然后根据梯度递减公式,逐层的向前反馈,形成反向传播机制,可以优化参数。

谷歌人工智能写作项目:神经网络伪原创

神经网络中的前向和后向算法

神经网络中的前向和后向算法看了一段时间的深度网络模型,也在tf和theano上都跑了一些模型,但是感觉没有潜下去,对很多东西的理解都只停留在“这个是干什么的”层次上面好文案

昨天在和小老师一起看一篇文章的时候,就被问到RNN里面的后向传播算法具体是怎么推。当时心里觉得BP算法其实很熟悉啊,然后在推导的过程中就一脸懵逼了。

于是又去网上翻了翻相关内容,自己走了一遍,准备做个笔记,算是个交代。准备一个神经网络模型,比如:其中,[i1,i2]代表输入层的两个结点,[h1,h2]代表隐藏层的两个结点,[o1,o2]为输出。

[b1,b2]为偏置项。连接每个结点之间的边已经在图中标出。

来了解一下前向算法:前向算法的作用是计算输入层结点对隐藏层结点的影响,也就是说,把网络正向的走一遍:输入层—->隐藏层—->输出层计算每个结点对其下一层结点的影响。

??例如,我们要算结点h1的值,那么就是:是一个简单的加权求和。这里稍微说一下,偏置项和权重项的作用是类似的,不同之处在于权重项一般以乘法的形式体现,而偏置项以加法的形式体现。

??而在计算结点o1时,结点h1的输出不能简单的使用neth1的结果,必须要计算激活函数,激活函数,不是说要去激活什么,而是要指“激活的神经元的特征”通过函数保留并映射出来。

以sigmoid函数为例,h1的输出:于是最后o1的输出结果,也就是整个网络的一个输出值是:按照上面的步骤计算出out02,则[outo1,outo2]就是整个网络第一次前向运算之后得到的结果。

后向算法:??在实际情况中,因为是随机给定的权值,很大的可能(几乎是100%)得到的输出与实际结果之间的偏差非常的大,这个时候我们就需要比较我们的输出和实际结果之间的差异,将这个残差返回给整个网络,调整网络中的权重关系。

这也是为什么我们在神经网络中需要后向传播的原因。

其主要计算步骤如下:1.计算总误差2.隐藏层的权值更新在要更新每个边的权重之前,必须要知道这条边对最后输出结果的影响,可以用整体误差对w5求偏导求出:具体计算的时候,可以采用链式法则展开:在计算的时候一定要注意每个式子里面哪些自变量是什么,求导千万不要求错了。

??需要讲出来的一个地方是,在计算w1的权重时,Etotal中的两部分都需要对它进行求导,因为这条边在前向传播中对两个残差都有影响3.更新权重这一步里面就没什么东西了,直接根据学习率来更新权重:至此,一次正向+反向传播过程就到此为止,接下来只需要进行迭代,不断调整边的权重,修正网络的输出和实际结果之间的偏差(也就是training整个网络)。

如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。

其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。1.变量定义上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。

如图,先定义一些变量:表示第层的第个神经元连接到第层的第个神经元的权重;表示第层的第个神经元的偏置;表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。

2.代价函数代价函数被用来计算ANN输出值与实际值之间的误差。

常用的代价函数是二次代价函数(Quadraticcostfunction):其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

3.公式及其推导本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。

首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:本文将以一个输入样本为例进行说明,此时代价函数表示为:公式1(计算最后一层神经网络产生的错误):其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。

公式1的推导过程如下:公式2(由后往前,计算每一层神经网络产生的错误):推导过程:公式3(计算权重的梯度):推导过程:公式4(计算偏置的梯度):推导过程:4.反向传播算法伪代码输入训练集对于训练集中的每个样本x,设置输入层(Inputlayer)对应的激活值:前向传播:,计算输出层产生的错误:反向传播错误:

BP人工神经网络

人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。

神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。

岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。

工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。

BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。

网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。

正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。

BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。

但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。

(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。

(4)BP人工神经网络系统具有非线性、智能的特点。

较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。

因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。

BP人工神经网络方法

(一)方法原理人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。

人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。

神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。

常见的激活函数为Sigmoid型。

人工神经元的输入与输出的关系为地球物理勘探概论式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。

正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。

此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。

在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。

其中输入层的输出等于输入样本值,隐含层和输出层的输入为地球物理勘探概论输出为地球物理勘探概论式中:f为阈值逻辑函数,一般取Sigmoid函数,即地球物理勘探概论式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。

较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差地球物理勘探概论式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值地球物理勘探概论式中:地球物理勘探概论地球物理勘探概论(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。

在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。

在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。S4井位于测区西南部5线25点,是区内唯一已知井。

该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。

取S4井周围9个点,即4~6线的23~25点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。

BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4塔北雅克拉地区BP神经网络聚类结果(据刘天佑等,1997)由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。

神经网络中的前向指的是什么?反向指的是什么?

BP神经网络(误差反传网络)

虽然每个人工神经元很简单,但是只要把多个人工神经元按一定方式连接起来就构成了一个能处理复杂信息的神经网络。采用BP算法的多层前馈网络是目前应用最广泛的神经网络,称之为BP神经网络。

它的最大功能就是能映射复杂的非线性函数关系。

对于已知的模型空间和数据空间,我们知道某个模型和他对应的数据,但是无法写出它们之间的函数关系式,但是如果有大量的一一对应的模型和数据样本集合,利用BP神经网络可以模拟(映射)它们之间的函数关系。

一个三层BP网络如图8.11所示,分为输入层、隐层、输出层。它是最常用的BP网络。理论分析证明三层网络已经能够表达任意复杂的连续函数关系了。只有在映射不连续函数时(如锯齿波)才需要两个隐层[8]。

图8.11中,X=(x1,…,xi,…,xn)T为输入向量,如加入x0=-1,可以为隐层神经元引入阀值;隐层输出向量为:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以为输出层神经元引入阀值;输出层输出向量为:O=(o1,…,oi,…,ol)T;输入层到隐层之间的权值矩阵用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隐层第j个神经元的权值向量;隐层到输出层之间的权值矩阵用W表示,W=(W1,…,Wk,…,Wl)T,其中列向量Wk表示输出层第k个神经元的权值向量。

图8.11三层BP网络[8]BP算法的基本思想是:预先给定一一对应的输入输出样本集。学习过程由信号的正向传播与误差的反向传播两个过程组成。

正向传播时,输入样本从输入层传入,经过各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播。

将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有神经元,获得各层的误差信号,用它们可以对各层的神经元的权值进行调整(关于如何修改权值参见韩立群著作[8]),循环不断地利用输入输出样本集进行权值调整,以使所有输入样本的输出误差都减小到满意的精度。

这个过程就称为网络的学习训练过程。当网络训练完毕后,它相当于映射(表达)了输入输出样本之间的函数关系。

在地球物理勘探中,正演过程可以表示为如下函数:d=f(m)(8.31)它的反函数为m=f-1(d)(8.32)如果能够获得这个反函数,那么就解决了反演问题。

一般来说,难以写出这个反函数,但是我们可以用BP神经网络来映射这个反函数m=f-1(d)。

对于地球物理反问题,如果把观测数据当作输入数据,模型参数当作输出数据,事先在模型空间随机产生大量样本进行正演计算,获得对应的观测数据样本,利用它们对BP网络进行训练,则训练好的网络就相当于是地球物理数据方程的反函数。

可以用它进行反演,输入观测数据,网络就会输出它所对应的模型。BP神经网络在能够进行反演之前需要进行学习训练。训练需要大量的样本,产生这些样本需要大量的正演计算,此外在学习训练过程也需要大量的时间。

但是BP神经网络一旦训练完毕,在反演中的计算时间可以忽略。要想使BP神经网络比较好地映射函数关系,需要有全面代表性的样本,但是由于模型空间的无限性,难以获得全面代表性的样本集合。

用这样的样本训练出来的BP网络,只能反映样本所在的较小范围数据空间和较小范围模型空间的函数关系。对于超出它们的观测数据就无法正确反演。

目前BP神经网络在一维反演有较多应用,在二维、三维反演应用较少,原因就是难以产生全面代表性的样本空间。

神经网络前向传播过程,神经网络反向传播相关推荐

  1. 深度学习之前馈神经网络(前向传播和误差反向传播)

    转自:https://www.cnblogs.com/Luv-GEM/p/10694471.html 这篇文章主要整理三部分内容,一是常见的三种神经网络结构:前馈神经网络.反馈神经网络和图网络:二是整 ...

  2. 深度学习(四):卷积神经网络(CNN)模型结构,前向传播算法和反向传播算法介绍。

    在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...

  3. 神经网络正向传播步骤和反向传播

    神经网络的训练的过程中通常有个正向过程(forward pass)或者叫做正向传播步骤(forward propagation step)接着会有个反向步骤(backward pass)也叫反向传播步 ...

  4. 图像分类_04神经网络最优化过程:反向传播+代码实现

    logistic模型原理与推导过程分析(1)https://blog.csdn.net/qq_39237205/article/details/121031296https://blog.csdn.n ...

  5. 机器学习入门(14)— 神经网络学习整体流程、误差反向传播代码实现、误差反向传播梯度确认、误差反向传播使用示例

    1. 神经网络学习整体流程 神经网络学习的步骤如下所示. 前提 神经网络中有合适的权重和偏置,调整权重和偏置以便拟合训练数据的过程称为学习.神经网络的学习分为下面 4 个步骤. 步骤1(mini-ba ...

  6. 【阿里云课程】卷积神经网络:结构单元、卷积层反向传播求解与典型模型

    大家好,继续更新有三AI与阿里天池联合推出的深度学习系列课程,本次更新内容为第5课中的两节,介绍如下: 第1节:卷积神经网络(上) 第1节课内容为:卷积神经网络的上篇,简单介绍卷积神经网络的生物学机制 ...

  7. 深度学习与神经网络(三)——多层感知机 反向传播 优化实战

    介绍一个完完整整的,与我们实际使用一摸一样的多层感知机的反向传播方式 多层感知机MLP & 反向传播 与多输出感知机相比 有多层节点(绿色的) δkk是由Okk和tk得到的 所以δ一共有k个 ...

  8. 前向传播算法和反向传播算法

      最近在看神经网络中的前向传播算法(FP)和反向传播算法(BP),特地进行总结一下,方便以后理解. 1.基本概念   上图是一张自己画的神经网络的图.假设每一层都添加了偏度单元(即值为1的神经元), ...

  9. 温故知新——前向传播算法和反向传播算法(BP算法)及其推导

    1. 前向传播算法 所谓的前向传播算法就是:将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止. 从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果使用矩阵法则比较的简 ...

最新文章

  1. qt 自定义窗口customwindow
  2. RDKit:基于支持向量回归预测logP
  3. 《C++应用程序性能优化::第五章动态内存管理》学习和理解
  4. 从user 登陆開始
  5. 快速幂(二进制,十进制)
  6. Android TV开发焦点动作控制小技巧
  7. 【若依(ruoyi)】 Shiro 向 ShiroFilterFactoryBean 中添加自定义过滤器
  8. stk在计算机仿真中的应用_浅析仿真技术在激光系统设计中的应用
  9. Asia Yokohama Regional Contest 2018 G题 What Goes Up Must Come Down(树状数组求逆序对)
  10. criteria函数_干货铺 | 二级MS office考试中一些常考函数(2)
  11. input搜索mysql_实现input输入时智能搜索
  12. python多进程运行MIC(最大信息系数)
  13. 在网络上请求网页为什么会用到工业以太网协议_网络知识总结
  14. Rocket - config - DefaultConfig
  15. php二叉排序树,二叉排序树(建树)
  16. 2020爱分析·智能通讯云厂商全景报告
  17. OMAPL138 DSP程序固化
  18. 微创器械行业调研报告 - 市场现状分析与发展前景预测
  19. c++三子棋游戏程序
  20. 【HBZ分享】数仓里面的概念-宽表-维度表-事实表概念讲解

热门文章

  1. MATLAB 2021b详解
  2. SQL Server Browser是什么
  3. 132计算机毕业设计
  4. 用Python选一个自己的股票池2
  5. BS1059-基于java+springboot +工业智能实现自动化浇花系统
  6. 树莓派安装emby,ipv6外网访问,个人家庭影院
  7. DC综合基本概念-timing rpt issue: reset, set
  8. 通俗讲解支持向量机SVM(一)面试官:什么?线性模型你不会不清楚吧?
  9. netstat查看CLOSE_WAIT过多
  10. 网站被挂木马,中毒了