Lagrange对偶问题

The dual function provides a lower bound on the optimal value for convex optimization problems only.

对偶函数可以为任意优化问题的最优值提供下界。

The dual function of an optimization problem evaluated at some (λ,ν), with λ⪰0, is equal to 42. Enter a number that can represent the optimal value of the original problem.

因为对偶函数为优化问题的最优值提供下界,只有最优值大于等于42即可。

强弱对偶性

Consider a convex optimization problem

that satisfies Slater's constraint qualification.

Which of the following are true?

当原问题是凸问题,且满足Slater约束时,满足强对偶性,所以选项1正确。但是强对偶性成立,并不代表原问题和对有问题可行,选项2,3不正确。

几何解释

If the feasible set of an optimization problem is not convex, then the duality gap is always nonzero.

优化问题的可行集是凸集,大部分情况下对偶间隙是0,即强对偶性成立。但可行集不是凸集时,也可能对偶间隙为0.

优化条件

Consider a convex optimization problem

that satisfies Slater's constraint qualification.

What is the value of  if   ?

凸优化问题满足Slater约束条件,所以强对偶性成立,所以

所以

所以当时,

扰动及灵敏度分析

Consider the convex optimization problem

with variable , where s is some fixed real number. Let  be an optimal dual variable (Lagrange multiplier) associated with the constraint . Below we consider scenarios in which we change the value of s, and then solve the modified problem. We are interested in the optimal objective value of this modified problem, compared to the original one above.

If  is large, then decreasing s

If  is small, then increasing s

If =0, then increasing s

根据灵敏度分析:

  1. 如果比较大,加强第i个约束,即,减小s,则最优值会大幅增加。
  2. 如果比较小,放松第i个约束,即,增大s,则最优值不会减小太多。
  3. 如果为0,第i个约束对最优值无影响。

例子

When you apply a transformation of an optimization problem (for example, introduce new variables and new constraints), the dual problem does not change.

广义不等式

Every element of a generalized Lagrange multiplier λ associated with a vector inequality constraint has to satisfy  for dual feasibility.

不等式约束满足,即满足对偶锥非负。

Numerical perturbation analysis example

Consider the quadratic program

with variables , and parameters .

(a) Solve this QP, for parameter values , to find optimal primal variable values  and , and optimal dual variable values  and . Let denote the optimal objective value. Verify that the KKT conditions hold for the optimal primal and dual variables you found (within reasonable numerical accuracy).

Hint: See §§4.7 of the CVX users' guide to find out how to retrieve optimal dual variables. To specify the quadratic objective, use quad_form().

What is ? Enter your result rounded to two decimal places.

What is ? Enter your result rounded to two decimal places.

KKT条件:

解方程组。

(b) We will now solve some perturbed versions of the QP, with

where  and  each take values from {−0.1,0,0.1}. (There are a total of nine such combinations, including the original problem with δ1=δ2=0.) For each combination of   and , make a prediction  of the optimal value of the perturbed QP, and compare it to , the exact optimal value of the perturbed QP (obtained by solving the perturbed QP). Find the values that belong in the two righthand columns in a table with the form shown below. Check that the inequality holds.

不明白咋回事。

A simple example

Consider the optimization problem

with variable x∈R.

(a) Analysis of primal problem. What is the optimal value?

b) Lagrangian and dual function. Plot the objective  versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian L(x,λ)versus x for a few positive values of λ. Verify the lower bound property (for λ≥0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem. The Lagrange dual problem is

The correct equation that fills the blank spot is

解:

对x进行极小化,

令其为0,解得

所以

Note that the dual problem is convex. What is the dual optimal solution ?

解:带入,求出

Note that strong duality holds.

(d) Sensitivity analysis. Let  denote the optimal value of the problem

as a function of the parameter u.

We can show that

The correct equation that fills the blank spot is

Note that .

KKT条件:

从上图可看出,当,最优值解时两函数图像在左侧的交点,求得

带入目标函数,得到最优值为

Lagrangian relaxation of Boolean LP

Boolean linear program is an optimization problem of the form

and is, in general, very difficult to solve. In exercise 4.15 we studied the LP relaxation of this problem,

which is far easier to solve, and gives a lower bound on the optimal value of the Boolean LP. In this problem we derive another lower bound for the Boolean LP, and work out the relation between the two lower bounds.

(a) Lagrangian relaxation. The Boolean LP can be reformulated as the problem

which has quadratic equality constraints. The Lagrange dual of this problem is

The correct equation that fills the blank spot is

解:

The optimal value of the dual problem (which is convex) gives a lower bound on the optimal value of the Boolean LP. This method of finding a lower bound on the optimal value is called Lagrangian relaxation.

(b) The lower bound obtained via Lagrangian relaxation, and via the LP relaxation are the same. The dual of the LP relaxation is

The correct equation that fills the blank spot is

Option Price Bounds

In this problem we use the methods and results of Example 5.10 to give bounds on the arbitrage-free price of an option. (See Exercise 5.38 for a simple version of option pricing.) We will use all the notation and definitions from Example 5.10.

We consider here options on an underlying asset (such as a stock); these have a payoff or value that depends on S, the value of the underlying asset at the end of the investment period. We will assume that the underying asset can only take on m different values, . These correspond to the m possible scenarios or outcomes described in Example 5.10.

A risk-free asset has value r>1 in every scenario.

A put option at strike price K gives the owner the right to sell one unit of the underlying stock at price K. At the end of the investment period, if the stock is trading at a price S, then the put option has payoff  (K−S)+=max{0,K−S} (since the option is exercised only if K>S). Similarly a call option at strike price K gives the buyer the right to buy a unit of stock at price K. A call option has payoff .

A collar is an option with payoff

where F is the floor, C is the cap and  is the price of the underlying at the start of the investment period. This option limits both the upside and downside of payoff.

Now we consider a specific problem. The price of the risk-free asset, with r=1.05, is 1. The price of the underlying asset is . We will use m=200 scenarios, with uniformly spaced from to . The following options are traded on an exchange, with prices listed below.

Type Strike Price
Call 1.1 0.06
Call 1.2 0.03
Put 0.8 0.02
Put 0.7 0.01

A collar with floor F=0.9 and cap C=1.15 is not traded on an exchange. Find the range of prices for this collar, consistent with the absence of arbitrage and the prices given above. Enter your results rounded to three decimal places.

Lower bound =

Upper bound =

来源:https://blog.csdn.net/wangchy29/article/details/87070999

凸优化第五章对偶 作业题相关推荐

  1. 凸优化第五章对偶 5.1 Lagrange对偶函数

    5.1 Lagrange对偶函数 Lagrange Lagrange对偶函数 最优值的下界 例子 Lagrange对偶函数和共轭函数 Lagrange 标准形式的优化问题: 其中,问题的定义域,注意这 ...

  2. 凸优化第五章对偶 5.1Lagrange对偶函数

    5.1Lagrange对偶函数 Lagrange Lagrange对偶函数 最优值的下界 例子 Lagrange对偶函数和共轭函数 Lagrange 标准形式的优化问题: 其中,问题的定义域,注意这里 ...

  3. 《C++应用程序性能优化::第五章动态内存管理》学习和理解

    <C++应用程序性能优化::第五章动态内存管理>学习和理解 说明:<C++应用程序性能优化> 作者:冯宏华等 2007年版. 2010.8.29 cs_wuyg@126.com ...

  4. 凸优化 matlab-cvx-第十一章ADVANCED TOPICS

    注意:在本节中,我们描述了CVX的一些更高级的功能.我们建议你先跳过这一节,直到你对上面描述的基本能力感到满意为止. 11.1消除二次型 我们强烈建议的一个特殊的改写是消除二次型- -即像sum _ ...

  5. 凸优化第四章凸优化问题 4.2凸优化

    4.2凸优化 标准形式的凸优化问题 局部最优解与全局最优解 可微函数的最优性准则 等价的凸问题 拟凸优化 标准形式的凸优化问题 是凸函数,等式约束是仿射函数.则此优化问题是凸优化问题. 也可以写成 重 ...

  6. 精通安卓性能优化-第五章(三)

    Concurrency 在java.util.concurrent.atomic和java.util.concurrent.locks包中定义了更多的类.java.util.concurrent.at ...

  7. 凸优化第三章凸函数 3.1基本性质和例子

    3.1基本性质和例子 定义 扩展值延伸 一阶条件 二阶条件 例子 下水平集 上境图 Jensen不等式及其扩展 不等式 定义 函数f是凸函数,当f的定义域S是凸集,且 严格凸函数: 从几何上来看,如下 ...

  8. 凸优化第三章凸函数 3.5 对数-凹函数和对数-凸函数

    3.5 对数-凹函数和对数-凸函数 定义 相关性质 定义 称函数对数凹,如果是凹函数. 称函数对数凸,如果是凸函数. 函数f是对数凸的当且仅当1/f是对数凹的. 当时,,相当于对log(f)进行扩展值 ...

  9. 凸优化第三章凸函数 3.3 共轭函数

    3.3 共轭函数 定义 基本性质 定义 设函数,定义函数为: 此函数称为f(x)的共轭函数.从3.2节逐点上确界的内容也可以看出,此函数也是的逐点上确界函数,而是关于y的仿射函数,可以将其看成是凸函数 ...

  10. 凸优化第三章凸函数 3.3共轭函数

    3.3共轭函数 定义 基本性质 定义 设函数,定义函数为: 此函数称为f(x)的共轭函数.从3.2节逐点上确界的内容也可以看出,此函数也是的逐点上确界函数,而是关于y的仿射函数,可以将其看成是凸函数, ...

最新文章

  1. Vue+Openlayers中实现地图旋转
  2. 关于java.math.BigDecimal的操作(亲测)
  3. react学习(59)--this.props语法糖
  4. 深入剖析Linux IO原理和几种零拷贝机制的实现
  5. iOS之 开发学习笔记-block
  6. android studio手机与蓝牙收发数据_QT for Android :蓝牙
  7. 怎样让硬盘分区显示整数大小
  8. Android-入门教程-内部存储/外部存储-概览
  9. 软件测试的步骤和方法
  10. 人工智能之产生式系统
  11. matlab无法复制图形到剪切板,cad图纸无法复制到剪贴板如何解决
  12. 遥感图像计算机分类论文,遥感影像和监督分类论文,关于基于监督分类的土地利用遥感影像提取方法相关参考文献资料-免费论文范文...
  13. MySQL 数据归档清理方法
  14. 禅定是否一定要打坐,为什么?
  15. 霍夫斯特拉大学计算机科学专业排名,2019usnews美国大学排名霍夫斯特拉大学排名第140...
  16. 湖南省大学生程序设计竞赛系统设计
  17. vue3.0之写tsx语法
  18. bindec() 函数
  19. 2020大疆秋招笔试题B卷
  20. 机器人让你摆脱电销压力

热门文章

  1. CentOS7和Ubuntu16设置静态ip的方法
  2. 最后2天!快去登录你的百度网盘,不然。。。
  3. Ajax及jQuery学习
  4. python魔法属性_python魔法方法-属性转换和类的表示详解
  5. 点击按钮测试用例标题_如何才能设计出高质量的测试用例
  6. e-r 概念模型 关系模型_数据库数据模型(分类、三要素、概念)
  7. java. base关键字_C#基础知识之base关键字介绍
  8. django mysql debug_django mysql db 日志无输出
  9. python整型为空的情况_深度剖析凭什么python中整型不会溢出
  10. [HDU4352]XHXJ's LIS