卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍
(Introduction to the Kalman Filter)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨论真正工程系统上的卡尔曼。

3. 卡尔曼滤波器算法
(The Kalman Filter Algorithm)

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k) 
再加上系统的测量值:
Z(k)=H X(k)+V(k) 
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子。。。

4. 简单例子
(A Simple Example)

这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1) ……….. (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1度,P(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。

××××××××××××××××××

附matlab下面的kalman滤波程序:

clear
N=200;
w(1)=0;
w=randn(1,N)
x(1)=0;
a=1;
for k=2:N;
x(k)=a*x(k-1)+w(k-1);
endV=randn(1,N);
q1=std(V);
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2;
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;p(1)=0;
s(1)=0;
for t=2:N;
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
p(t)=p1(t)-c*b(t)*p1(t);
endt=1:N;
plot(t,s,'r',t,Y,'g',t,x,'b');

另一篇关于卡尔曼滤波的文章链接如下:

基于Matlab的卡尔曼滤波算法仿真和视频图像的卡尔曼滤波跟踪_ IT技术猿猴的博客-CSDN博客

卡尔曼滤波原理及matlab仿真相关推荐

  1. 光栅原理及其c语言仿真,光栅原理及MATLAB仿真

    <光栅原理及MATLAB仿真>由会员分享,可在线阅读,更多相关<光栅原理及MATLAB仿真(8页珍藏版)>请在人人文库网上搜索. 1.取样光纤光栅的原理及基于MATLAB的反射 ...

  2. matlab 光栅 傅里叶,光栅原理及MATLAB仿真汇编.doc

    光栅原理及MATLAB仿真汇编 取样光纤光栅的原理及基于MATLAB的反射谱仿真 取样光纤光栅其实与相称光纤光栅基本上一致,不同的地方在于,相移光栅是在均匀布拉格光栅的某一点处引入相移,导致在反射谱中 ...

  3. matlab 脉冲压缩算法,线性调频脉冲压缩原理及其MATLAB仿真+程序

    摘 要:脉冲压缩技术在现代雷达系统和超带宽通信系统等领域具有越来越重要的应用.本文首先阐述了线性调频脉冲压缩的基本原理,并提出了增大信号等效带宽可以提高雷达距离分辨率,然后分析了匹配滤波器的特性,给出 ...

  4. 数字PID控制算法原理及Matlab仿真

    引言 最近碰到一个项目需要用到PID控制算法,于是在网上找了一些资料学习了一下,发现网上对于PID算法的Matlab仿真方面的内容比较少,所以我就把我自己所学习到的内容分享给大家.本次博文主要介绍了位 ...

  5. 光栅原理及其c语言仿真,取样光栅原理及MATLAB仿真.doc

    取样光纤光栅的原理及基于MATLAB的反射谱仿真 张睿 摘要 文章主要运用了基于耦合模理论的传输矩阵法来分析取样光栅的原理,并利用MATLAB模拟和分析了取样光栅长度.调制折射率强度.取样光栅节点的长 ...

  6. 基于FMCW的测距原理及matlab仿真

    FMCW是什么 FMCW(Frequency Modulated Continuous Wave),即调频连续. FMCW实现测距 利用发射信号与接收信号进行混频,得到包含目标距离和速度信息的中频信号 ...

  7. (DUC/DDC)数字上混频/正交下混频原理及matlab仿真

    数字上混频.下混频matlab仿真,读者有兴趣的话后面更新FPGA实现代码. 代码中lowpass低通滤波器用matlab内部APP Filter Designer生成,具体配置如下: 仿真运行结果: ...

  8. DBSCAN原理及matlab仿真代码

    本文原理转自 https://www.cnblogs.com/pinard/p/6208966.html   DBSCAN(Density-Based Spatial Clustering of Ap ...

  9. MIMO大规模天线阵列原理与matlab仿真(含GUI)

    一 设计实现流程 1.MIMO系统原理 传统的无线通信系统是采用一个发送天线和一个接收天线的通信系统,即单输入单输出(SISO)天线系统.但由于单天线系统的信道容量较低,不能满足4G.5G数据传输需求 ...

  10. 【全套完结】通信原理----全套Matlab仿真实验报告

    目录 实验一.基于Matlab的模拟信号的调制和解调 实验二.角度调制实验 实验三.数字基带码型产生实验 实验四.数字基带信号的眼图实验 实验五.基于Matlab的2ASK和2FSK调制解调 实验六. ...

最新文章

  1. 记selenium1.0升级到selenium2.0
  2. 有向无环图(DAG)可以描述含有公共子式的表达式
  3. 企业微信oauth认证_OAuth2身份认证
  4. Matlab错误:Y must be a vector or a character array
  5. xmpp协议框架包介绍:org.xmpp.packet.Packet+JID+PacketInterceptor+Session
  6. py 的 第 30 天
  7. 【算法】算法 动态规划 背包问题
  8. 学Mysql怎样快速入门?
  9. 小程序获取用户手机号_借助云开发5行代码获取小程序用户的手机号
  10. apache tomcat ajp协议安全限制绕过漏洞_【高危安全通告】Apache Tomcat 文件包含漏洞(CVE20201938)...
  11. 【机器学习】【Apriori算法-1】Apriori算法原理详解 + 示例展示数学求解过程
  12. 解决Monterey12系统CleanMyMac X闪退问题
  13. CC2530基础实验四 串口通信
  14. python-字符串补录
  15. Android .9图片制作教程(二)
  16. element表格里面放图片_elementUI 表格中预览图片
  17. 区块链到底是个什么鬼?
  18. 【干】探索自己的云米冰箱
  19. 各厂内推整理 | 第二期
  20. 中间件是什么,常用的中间件有哪些

热门文章

  1. webpack之基础篇(四):webpack-dev-server介绍
  2. 暴力破解zip,rar密码
  3. 2021厦门湖滨中学高考成绩查询,厦门各高中本科上线率2020
  4. 现代控制工程(二)状态方程的解
  5. 苹果手机数据线充不了电_自动洗地机充不了电,洗地机厂家
  6. GTX1060 Windows10 旧版显卡驱动下载链接
  7. axure能做剪切蒙版吗_二手车销售好做吗?没经验能做二手销售吗?
  8. 6.4 利用色彩范围命令快速选择一定色彩范围内的像素 [原创Ps教程]
  9. LM393实现简易PWM调压电路
  10. GBase 8a - 开启防火墙安装集群添加端口策略