TCP(Transmission Control Protocol) 传输控制协议

TCP为什么需要3次握手?

防止请求失效,或者确认丢失。
“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。 client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”。主要目的防止server端一直等待,浪费资源。

三次握手的目的是同步连接双方的序列号和确认号并交换 TCP 窗口大小信息。
然后可以回答为什么两次握手不行,两次握手可能因为丢包而出现死锁,假设在两次握手场景中,C向S发送请求,S收到并发送确认请求给C,这时候S认为连接已经建立,并开始发送数据给C,但是那个确认请求丢包了,C不认为请求建立了,C当然会拒绝接受S发送来的数据,并且再去请求连接。这样,一个资源就死锁了。

为什么4次断开?

因为TCP有个半关闭状态,假设A.B要释放连接,那么A发送一个释放连接报文给B,B收到后发送确认,这个时候A不发数据,但是B如果发数据A还是要接受,这叫半关闭。然后B还要发给A连接释放报文,然后A发确认,所以是4次。

在tcp连接握手时为何ACK是和SYN一起发送,这里ACK却没有和FIN一起发送呢。原因是因为tcp是全双工模式,接收到FIN时意味将没有数据再发来,但是还是可以继续发送数据。

三次握手

TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:
位码即tcp标志位,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)
Sequence number(顺序号码) Acknowledge number(确认号码)
第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机;
第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=7654321的包
第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。
完成三次握手,主机A与主机B开始传送数据。

在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态; 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。 完成三次握手,客户端与服务器开始传送数据.
实例:
IP 192.168.1.116.3337 > 192.168.1.123.7788: S 3626544836:3626544836
IP 192.168.1.123.7788 > 192.168.1.116.3337: S 1739326486:1739326486 ack 3626544837
IP 192.168.1.116.3337 > 192.168.1.123.7788: ack 1739326487,ack 1
第一次握手:192.168.1.116发送位码syn=1,随机产生seq number=3626544836的数据包到192.168.1.123,192.168.1.123由SYN=1知道192.168.1.116要求建立联机;
第二次握手:192.168.1.123收到请求后要确认联机信息,向192.168.1.116发送ack number=3626544837,syn=1,ack=1,随机产生seq=1739326486的包;
第三次握手:192.168.1.116收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,192.168.1.116会再发送ack number=1739326487,ack=1,192.168.1.123收到后确认seq=seq+1,ack=1则连接建立成功。

图解:
一个三次握手的过程(图1,图2)

(图1)

(图2)

第一次握手的标志位(图3)
我们可以看到标志位里面只有个同步位,也就是在做请求(SYN)

(图3)

第二次握手的标志位(图4)
我们可以看到标志位里面有个确认位和同步位,也就是在做应答(SYN + ACK)

(图4)

第三次握手的标志位(图5)
我们可以看到标志位里面只有个确认位,也就是再做再次确认(ACK)

(图5)

一个完整的三次握手也就是 请求—应答—再次确认

三次握手图解

四次挥手图解

为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

TCP的可靠性如何保证

在TCP的连接中,数据流必须以正确的顺序送达对方。TCP的可靠性是通过顺序编号和确认(ACK)来实现的。TCP在开始传送一个段时,为准备重传而首先将该段插入到发送队列之中,同时启动时钟。其后,如果收到了接受端对该段的ACK信息,就将该段从队列中删去。如果在时钟规定的时间内,ACK未返回,那么就从发送队列中再次送出这个段。TCP在协议中就对数据可靠传输做了保障,握手与断开都需要通讯双方确认,数据传输也需要双方确认成功,在协议中还规定了:分包、重组、重传等规则;而UDP主要是面向不可靠连接的,不能保证数据正确到达目的地。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接

tcp协议和三次握手相关推荐

  1. TCP协议的三次握手与四次挥手

    tcp协议的三次握手和四次挥手 三次握手: 第一次握手: 客户端发起一个链接(SYN) 第二次握手: 服务端就会返回一条(ACK)确认信息,同时服务端也会向客户端发起一个链接请求(SYN),此二者可合 ...

  2. TCP协议中三次握手

    TCP/IP是互联网相关的各类协议族的总称 TCP/IP协议族分为:应用层,传输层,网络层,数据链路层 应用层:向用户提供应用服务时的通讯的活动 传输层:提供处于网络连接中的两台计算机之间的数据传输 ...

  3. 用wireshark抓包分析TCP协议的三次握手连接、四次握手断开

    用wireshark抓包分析TCP协议的三次握手连接.四次握手断开 一.TCP三次握手图解 二.TCP得四次挥手过程 三.用Fiddler抓包,分析验证一个HTTPS网站的TCP连接过程 一.TCP三 ...

  4. TCP协议的三次握手和四次挥手

    转自:http://uule.iteye.com/blog/2213562 TCP协议的三次握手和四次挥手 博客分类: http/tcp TCP/IP协议三次握手与四次握手流程解析 Http协议三次握 ...

  5. TCP协议及三次握手的过程

    在这里插入代码片@TOC TCP协议以及三次握手 提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 TCP协议以及三次握手 1.TCP协议是什么? 2.TCP协议的作用 3. ...

  6. 计算机网络【UDP与TCP协议(三次握手、四次挥手)】

    计算机网络[UDP与TCP协议(三次握手.四次挥手)]

  7. TCP 协议的三次握手、四次分手

    详细描述了 TCP 协议的连接和关闭的整个过程.解释了为什么 TCP 协议是面向连接的.可靠的数据传输协议. TCP 在互联网上之间的通信交流,一般是基于 TCP (Transmission Cont ...

  8. 通俗大白话来理解TCP协议的三次握手和四次分手

    最近在恶补计算机网络方面的知识,之前对于TCP的三次握手和四次分手也是模模糊糊,对于其中的细节更是浑然不知,最近看了很多这方面的知识,也在系统的学习计算机网络,加深自己的CS功底,就把看过的一些比较好 ...

  9. JavaSE(二十二)——TCP协议的三次握手

    文章目录 1. TCP协议 2. TCP的三次握手 3. 为什么一定是三次握手? 1. TCP协议 TCP协议:传输控制协议,是可靠连接,类似于打电话,只有等待对方接通的时候才可以交流,也就是确认了对 ...

  10. TCP协议的三次握手、四次挥手

    TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,通过三次握手建立一个连接 TCP 三次握手图示: 位码即tc ...

最新文章

  1. Quartz2D初体验(二)
  2. CSS_文字与特殊符号浏览器兼容性
  3. ios-NSMutableAttributedString 更改文本字符串颜色、大小
  4. PCB 周期计算采用 SQL 函数调用.net Dll 标量函数 实现
  5. 【Python教你一招】用Python实现黑客帝国代码雨效果(3种方式)
  6. asm bin hex elf文件区别
  7. html自动弹出公告代码,可定时自动关闭的弹出层广告窗口代码
  8. E - Enigma Gym - 101889E dp求可除一个整数的最小数
  9. Xilinx FPGA资源解析与使用系列——Transceiver(一)参考时钟解析
  10. Lecture6:激活函数、权值初始化、数据预处理、批量归一化、超参数选择
  11. C语言中getch()、getche()和getchar()
  12. 灌注桩如何计算机械台班,钢护筒造价计算及套定额
  13. 运维监控系列(16)-Alertmanager路由、抑制、静默功能使用详解。
  14. Android手机修改hosts文件
  15. python编写计算您的周岁年龄
  16. CarSim 2022软件
  17. Linux sed工具
  18. 分享一个app内日志查看工具
  19. 潛行空間中1~6的編織法(A)
  20. 首席架构师推荐:史上最全微服务架构简史详解!

热门文章

  1. error This module isn‘t specified in a package.json file.
  2. php控制变量的显示字数,3.PHP流程控制结构
  3. 全频音箱与分频音箱的区别
  4. 在石家庄扣完五险一金到手5000,算什么水平?
  5. 折扇的保养方法是什么?
  6. 人类历史上有哪些逆天的文物?
  7. 社区团购到底有什么魔力
  8. 社群产品定位三种方式
  9. 婆媳关系不好首先就有一个斤斤计较的婆婆
  10. 为什么macOS比Windows快那么多,是硬件的缘故么?