STM32 HAL 驱动有刷直流电机和无刷直流电机

(有刷)直流电机和无刷直流电机的机电结构不同,(有刷)直流电机通过两根线供电,由这两根线的电压方向控制电机轴转动的方向,调节额定范围内的电压可控制转动的速度,在驱动电压一定的条件下就存在对应的最大速度,还可以通过在电压线上提供PWM波形调节速度,采用PWM波形会比恒定电压供电时速度降低,因此恒定电压驱动时也叫做全速。

无刷直流电机则由驱动器向其输出相位驱动信号,并接收霍尔反馈信号,不断调整相位驱动信号输出,进行驱动控制。对于驱动器而言,其控制无刷直流电机转动方向是通过换向相位的控制,控制无刷直流电机速度则是由检测反馈相位和驱动换向的速度决定,此速度固定后,无刷直流电机的全速也就确定了。

STM32驱动有刷直流电机方式

有刷直流电机需要的供电常常高于MCU的供电,因此STM32驱动更高电压供电的有刷直流电机时,可以通过直流电机驱动模块,实际上就是P沟道MOS和N沟道MOS构成的PUSH-PULL电路,而涉及到需要换向的操作,则用H桥的模块。

有刷直流电机的转动速度受驱动电压影响,在驱动电压固定后,由驱动PWM波形占空比决定转速。

STM32驱动无刷直流电机方式

无刷直流电机有驱动模块内置(如BLDC-38SRZ-S)和驱动模块外置的类型区别。STM32通过驱动模块控制无刷直流电机,这种情况下,STM32面对的就不是要做换向信号输出,而是通过输出PWM波形由驱动模块控制无刷直流电机的速度,且通过方向信号线的高低电平控制无刷直流电机的转向。并通过刹车信号线控制无刷直流电机停止。实际上,驱动模块接收STM32发来的方向信号电平,PWM波形里的高电平时间,以及刹车信号控制向无刷直流电机相位驱动信号的输出。

需要注意的事项:

  1. 驱动模块有FG的接线,对于不同的无刷直流电机定义不同,有的无刷直流电机,这根线是接STM32的GND作为共地线(如型号为BLDC-38SRZ-S的无刷直流电机);有的无刷直流电机,这根线是作为转速反馈信号线(如型号为22H893F010的无刷直流电机),这种情况下,通常需要将驱动模块供电的GND和STM32端供电的GND连接。
  2. 驱动模块接收一定频率范围内的PWM输入,而由PWM内的占空比决定无刷直流电机的速度。也就是说输入频率为1KHz和10KHz的PWM波形,单个周期内的占空比相同如都是30%,则单位时间内的高电平时间还是相同的,所以控制的无刷直流电机转速相同。实际上驱动模块在输入的PWM波形高电平时间内进行对无刷直流电机的换向驱动,反之则不输出换向信号。
  3. 不同的驱动模块,在其连接STM32接口的设计有不同,有的输入端口有上拉,因此STM32按照Open Drain方式输出。而有的输入端口有反相器重驱,这种情况下,要将STM32原本要输出的信号先做反相,才能反反为正,得到正确的响应。
  4. 无刷直流电机的转动速度不受供电电压影响(能正常带载情况下),只受换向驱动速度影响。在换向速度固定后,由外部输入的PWM波形高电平决定转速。

STM32驱动有刷直流电机范例(HAL)

这里以STM32F401CCU6开发板和STM32CUBEIDE开发环境构建范例环境。可以通过TIM输出PWM波形(输出波形更稳定),或者通过延时控制输出PWM波形的方式(容易调整),实现对驱动模块的控制。这里介绍通过延时控制输出PWM波形的方式,采用的延时函数参考 STM32 HAL us delay(微秒延时)的指令延时实现方式及优化 。

首先建立工程并设置时钟系统:

然后设置2个GPIO为输出如PA0和PA1,连接到驱动模块的IN1, IN2输入端,而驱动模块的对应输出端连接到有刷直流电机的两端。

保存并生成初始工程代码:

范例代码(main.c)实现定时切换有刷直流电机的速度和方向:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2022 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes *//* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
float usDelayBase;
void PY_usDelayTest(void)
{uint32_t firstms, secondms;uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{uint32_t delayReg;uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{uint32_t firstms, secondms;float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{uint32_t delayReg;uint32_t msNum = Delay/1000;uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t dir = 0;
uint32_t period = 1000;
uint32_t speed = 0;
uint32_t counter = 0;/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(dir == 0){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);speed = 100;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 300;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 500;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 700;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}dir = 1;}else{HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);speed = 100;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 300;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 500;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}speed = 700;for(counter=0;counter<50000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(period-speed);}dir = 1;}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;RCC_OscInitStruct.PLL.PLLM = 16;RCC_OscInitStruct.PLL.PLLN = 168;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 4;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_RESET);/*Configure GPIO pins : PA0 PA1 */GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32驱动无刷直流电机范例(HAL)

这里以STM32F401CCU6开发板和STM32CUBEIDE开发环境构建范例环境。可以通过TIM输出PWM波形(更稳定),或者通过延时控制输出PWM波形的方式(快速功能测试),实现对驱动模块的控制。这里介绍通过延时控制输出PWM波形的方式,采用的延时函数参考 STM32 HAL us delay(微秒延时)的指令延时实现方式及优化 。

首先建立工程并设置时钟系统:

设置4个GPIO如PA0, PA1, PA2, PA3分别作为PWM, CW(方向),BRAKE(刹车)和FG, 这里针对BLDC-38SRZ-S无刷直流电机,所以FG设置为输出并常态置为接地态。

保存并生成初始工程代码:

这里针对BLDC-38SRZ-S进行控制,这款电机的控制特点:

  1. FG为接地共地
  2. BRAKE输入为低电平,电机停转
  3. BRAKE输入为高电平,由PWM控制转速
  4. PWM在输入接口做了反相,原来前高后低的PWM,要先转换为前低后高的PWM

范例代码(main.c)实现定时切换无刷直流电机的速度和方向。

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2022 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/** PA0 CW* PA1 PWM* PA2 BRAKE* PA3 FG*/
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
float usDelayBase;
void PY_usDelayTest(void)
{uint32_t firstms, secondms;uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{uint32_t delayReg;uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{uint32_t firstms, secondms;float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{uint32_t delayReg;uint32_t msNum = Delay/1000;uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t dir = 0;
uint32_t period = 1000;
uint32_t speed = 0;
uint32_t counter = 0;/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2, GPIO_PIN_SET);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(dir == 0){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);speed = 100;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 300;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 500;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 700;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}dir = 1;}else{HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);speed = 100;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 300;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 500;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}speed = 700;for(counter=0;counter<5000;counter++){HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);PY_Delay_us_t(period-speed);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);PY_Delay_us_t(speed);}dir = 1;}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;RCC_OscInitStruct.PLL.PLLM = 16;RCC_OscInitStruct.PLL.PLLN = 168;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 4;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_3, GPIO_PIN_RESET);/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2, GPIO_PIN_SET);/*Configure GPIO pins : PA0 PA1 */GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/*Configure GPIO pins : PA2 PA3 */GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

–End–

STM32 HAL 驱动有刷直流电机和无刷直流电机相关推荐

  1. STM32 HAL 驱动I2C总线0.91寸OLED模块(基于SSD1306显示驱动芯片)

    STM32 HAL 驱动I2C总线0.91寸OLED模块(基于SSD1306显示驱动芯片) 基于SSD1306驱动芯片的OLED模块有多种型号,有0.91英寸,0.96英寸等等.OLED采用单色显示方 ...

  2. STM32 HAL 驱动SPI总线2.13寸电子纸墨水屏

    STM32 HAL 驱动SPI总线2.13寸电子纸墨水屏 电子纸墨水屏具有断电界面不失和低反光度的护眼效果.QYEG0213RWS800是2.13寸黑白红三色墨水屏,分辨率为250*122. STM3 ...

  3. 电钻有刷好还是无刷好_高中物理好的来看看,永磁同步直流电机是怎样实现无刷驱动的?...

    相信很多新能源车的车主或者打算购买新能源车的用户都听说过永磁同步直流电机这个名词,因为它在市售的纯电动车中使用率非常高,特别是对于那些20万以下,续航里程400公里以下的纯电动车型,应用非常广泛.吉利 ...

  4. STM32 电机教程 32 - 基于ST X-CUBE-SPN7 无刷无感电机库的电机驱动实现

    前言 上一节给大家分享几篇比较好的介绍无刷电机无传感控制的文章,不知大家学习得怎么样,其实很多芯片公司(比如TI,ST,MICROCHIP,SILICON)都有推出针对他们家控制或驱动芯片的无感无刷电 ...

  5. stm32代码生成,基于模型的设计(MBD) 无刷直流电机MATLAB开发板建模代码生成控制 MBD电机控制资料

    stm32代码生成,基于模型的设计(MBD) 无刷直流电机MATLAB开发板建模代码生成控制 MBD电机控制资料 控制算法采用MATLAB建模并生成代码的方式 配套电机 开发板 模型 源代码和视频 P ...

  6. STM32 电机教程 30 - 无刷无感入门2

    前言 无刷直流 (Brushless Direct Current, BLDC)电机是一种正快速普及的电机类型,它可在家用电器.汽车.航空航天.消费品.医疗.工业自动化设备和仪器等行业中使用.正如名称 ...

  7. STM32 电机教程 31 - 无刷无感控制原理

    前言 前面<STM32 电机教程 29 - 无刷无感入门1>和<STM32 电机教程 30 - 无刷无感入门2>我们通过两种方式有BLDC电机无HAL传感器的情况下成功地让电机 ...

  8. STM32 电机教程 29 - 无刷无感入门1

    前言 无刷直流 (Brushless Direct Current, BLDC)电机是一种正快速普及的电机类型,它可在家用电器.汽车.航空航天.消费品.医疗.工业自动化设备和仪器等行业中使用.正如名称 ...

  9. 【春节歌曲回味 | STM32小音乐盒 】PWM+定时器驱动无源蜂鸣器(STM32 HAL库)

    l  STM32通过PWM与定时器方式控制无源蜂鸣器鸣响 l  STM32小音乐盒,歌曲进度条图形显示与百分比显示,歌曲切换 l  编程使用STM32 HAL库 l  IIC OLED界面编程,动画实 ...

最新文章

  1. WindowsPhone基础琐碎总结-----数据绑定(一)
  2. 软件工程第二次作业——结对编程
  3. 运动目标的背景建模-混合高斯背景建模和KNN模型建模的OpenCV代码实现
  4. java 简单的计算器程序,Java 简易计算器程序
  5. moel vue 自定义v_vue如何在自定义组件中使用v-model
  6. java注解编程_Java注解编程原理
  7. iisapp 查看PID所对应的IIS应用程序池及详细介绍
  8. 查找两个单词链表共同后缀的起始结点(C++,单链表/双向链表解法)
  9. Linux指令:AWK - 可编程流编辑器
  10. 一个字符串中包含另一个字符串所有字符的最短子串长度?——《编程之美》最短摘要的生成的简化
  11. pythonfor循环语句例子_Python for循环学习总结
  12. PHP开发网站全过程技术知识分析
  13. OpenWRT配置 -- 网络配置network文件
  14. Unity_UIBuilder插件入门
  15. 形式化方法-- petri net
  16. 汽车销售管理系统数据库的设计与实现
  17. 数据透视表如何做累计求和
  18. 体育类素质赛道升温,迎来转型时机
  19. X-Powered-By: Servlet/3.0漏洞修复
  20. fedora RPM包下载地址

热门文章

  1. mpeg2是信源还是信道编码_解析信源编码与信道编码之间的区别
  2. Volo.Abp 整合 WebApiClient 从请求中获取 Headers 信息
  3. 机器学习必会技能之微积分【一文到底】
  4. 高效的股票数据接口工具有哪些?
  5. C语言算平均数,让用户输入一系列的正整数,输入-1表示输入结束,算出这些数字的平均数
  6. PHP框架 - laravel
  7. 联接新机遇,跨界赢未来,OFweek 2017中国物联网大会圆满落幕
  8. 国际互联网计算与物联网大会ICOMP 2017高度赞誉DroiBaaS全栈式优化架构
  9. 20180316 三对角矩阵
  10. 求前驱字符和后继字符。输入一个字符,找出它的前驱字符和后继字符,并按ASCII码值,按从大到小的顺序输出这三个字符及其对应的ASCII码值。