一道经典的面试题

如何从N个数中选出最大(小)的n个数?

这个问题解法可以移步我的另一篇博客:
《海量数据处理:如何从10亿个数中,找出最大的10000个数?(top K问题)》https://hanquan.blog.csdn.net/article/details/108277388

本文对一些解法进行讨论。

Naive 方法:

首先,我们假设,n和N都是内存可容纳的,也就是说N个数可以一次load到内存里存放在数组里(如果非要存在链表估计又是另一个challenging的问题了)。从最简单的情况开始,如果n=1,那么没有任何疑惑,必须要进行N-1次的比较才能得到最大的那个数,直接遍历N个数就可以了。如果n=2呢?当然,可以直接遍历2遍N数组,第一遍得到最大数max1,但是在遍历第二遍求第二大数max2的时候,每次都要判断从N所取的元素的下标不等于max1的下标,这样会大大增加比较次数。对此有一个解决办法,可以以max1为分割点将N数组分成前后两部分,然后分别遍历这两部分得到两个“最大数”,然后二者取一得到max2。

也可以遍历一遍就解决此问题,首先维护两个元素max1,max2(max1>=max2),取到N中的一个数以后,先和max1比,如果比max1大(则肯定比max2大),直接替换max1,否则再和max2比较确定是否替换max2。采用类似的方法,对于n=2,3,4……一样可以处理。这样的算法时间复杂度为O(nN)。当n越来越大的时候(不可能超过N/2,否则可以变成是找N-n个最小的数的对偶问题),这个算法的效率会越来越差。但是在n比较小的时候(具体多小不好说),这个算法由于简单,不存在递归调用等系统损耗,实际效率应该很不错.

堆:

当n较大的时候,采用什么算法呢?首先我们分析上面的算法,当从N中取出一个新的数m的时候,它需要依次和max1,max2,max3……max n比较,一直找到一个比m小的max x,就用m来替换max x,平均比较次数是n/2。可不可以用更少的比较次数来实现替换呢?最直观的方法是,也就是网上文章比较推崇的堆。堆有这么一些好处:1.它是一个完全二叉树,树的深度是相同节点的二叉树中最少的,维护效率较高;2.它可以通过数组来实现,而且父节点p与左右子节l,r点的数组下标的关系是s[l] = 2s[p]+1和s[r] = 2s[p]+2。在计算机中2*s[p]这样的运算可以用一个左移1位操作来实现,十分高效。再加上数组可以随机存取,效率也很高。3.堆的Extract操作,也就是将堆顶拿走并重新维护堆的时间复杂度是O(logn),这里n是堆的大小。

具体到我们的问题,如何具体实现呢?首先,开辟一个大小为n的数组区A,从N中读入n个数填入到A中,然后将A维护成一个小顶堆(即堆顶A[0]中存放的是A中最小的数)。然后从N中取出下一个数,即第n+1个数m,将m与堆顶A[0]比较,如果m<=A[0],直接丢弃m。否则应该用m替换A[0]。但此时A的堆特性可能已被破坏,应该重新维护堆:从A[0]开始,将A[0]与左右子节点分别比较(特别注意,这里需要比较“两次”才能确定最大数,在后面我会根据这个来和“败者树”比较),如果A[0]比左右子节点都小,则堆特性能够保证,勿需继续,否则如左(右)节点最大,则将A[0]与左(右)节点交换,并继续维护左(右)子树。依次执行,直到遍历完N,堆中保留的n个数就是N中最大的n个数。这都是堆排序的基本知识,唯一的trick就是维护一个小顶堆,而不是大顶堆。不明白的稍微想一下。维护一次堆的时间复杂度为O(logn),总体的复杂度是O(Nlogn)这样一来,比起上面的O(nN),当n足够大时,堆的效率肯定是要高一些的。当然,直接对N数组建堆,然后提取n次堆顶就能得到结果,而且其复杂度是O(nlogN),当n不是特别小的时候这样会快很多。但是对于online数据就没办法了,比如N不能一次load进内存,甚至是一个流,根本不知道N是多少。

败者树:

有没有别的算法呢?我先来说一说败者树(loser tree)。

也许有些人对loser tree不是很了解,其实它是一个比较经典的外部排序方法,也就是有x个已经排序好的文件,将其归并为一个有序序列。败者树的思想咋一看有些绕,其实是为了减小比较次数。

首先简单介绍一下败者树:败者树的叶子节点是数据节点,然后两两分组(如果节点总数不是2的幂,可以用类似完全树的结构构成树),内部节点用来记录左右子树的优胜者中的“败者”(注意记录的是输的那一方),而优胜者则往上传递继续比较,一直到根节点。

如果我们的优胜者是两个数中较小的数,则根节点记录的是最后一次比较中的“败者”,也就是所有叶子节点中第二小的那个数,而最小的那个数记录在一个独立的变量中。这里要注意,内部节点不但要记录败者的数值,还要记录对应的叶子节点。

如果是用链表构成的树,则内部节点需要有指针指向叶子节点。这里可以有一个trick,就是内部节点只记录“败者”对应的叶子节点,具体的数值可以在需要的时候间接访问(这一方法在用数组来实现败者树时十分有用,后面我会讲到)。

关键的来了,当把最小值输出后,最小值所对应的叶子节点需要变成一个新的数(或者改为无穷大,在文件归并的时候表示文件已读完)。

接下来维护败者树,从更新的叶子节点网上,依次与内部节点比较,将“败者”更新,胜者往上继续比较。由于更新节点占用的是之前的最小值的叶子节点,它往上一直到根节点的路径与之前的最小值的路径是完全相同的。内部节点记录的“败者”虽然称为“败者”,但却是其所在子树中最小的数。也就是说,只要与“败者”比较得到的胜者,就是该子树中最小的那个数(这里讲得有点绕了,看不明白的还是找本书看吧,对照着图比较容易理解)。

注:也可以直接对N构建败者树,但是败者树用数组实现时不能像堆一样进行增量维护,当叶子节点的个数变动时需要完全重新构建整棵树。为了方便比较堆和败者树的性能,后面的分析都是对n个数构建的堆和败者树来分析的。

总而言之,败者树在进行维护的时候,比较次数是logn+1

与堆不同的是,败者树是从下往上维护,每上一层,只需要和败者节点比较“一次”即可。而堆在维护的时候是从上往下,每下一层,需要和左右子节点都比较,需要比较两次。从这个角度,败者树比堆更优一些。

但是,请注意但是,败者树每一次维护,必定需要从叶子节点一直走到根节点,不可能中间停止;而堆维护时,“有可能”会在中间的某个层停止,不需要继续往下

这样一来,虽然每一层败者树需要的比较次数比堆少一倍,但是走的层数堆会比败者树少。具体少多少,从平均意义上到底哪一个的效率会更好一些?那我就不知道了,这个分析起来有点麻烦。感兴趣的人可以尝试一下,讨论讨论。但是至少说明了,也许堆并非是最优的。

具体到我们的问题。类似的方法,先构建一棵有n个叶子节点的败者树,胜出者w是n个中最小的那一个。从N中读入一个新的数m后,和w比较,如果比w小,直接丢弃,否则用m替换w所在的叶子节点的值,然后维护该败者树。依次执行,直到遍历完N,败者树中保留的n个数就是N中最大的n个数。时间复杂度也是O(Nlogn)

类快速排序方法:

快速排序大家大家都不陌生了。主要思想是找一个“轴”节点,将数列交换变成两部分,一部分全都小于等于“轴”,另一部分全都大于等于“轴”,然后对两部分递归处理。其平均时间复杂度是O(NlogN)。

从中可以受到启发,如果我们选择的轴使得交换完的“较大”那一部分的数的个数j正好是n,不也就完成了在N个数中寻找n个最大的数的任务吗?当然,轴也许不能选得这么恰好。可以这么分析,如果j>n,则最大的n个数肯定在这j个数中,则问题变成在这j个数中找出n个最大的数;否则如果j<n,则这j个数肯定是n个最大的数的一部分,而剩下的j-n个数在小于等于轴的那一部分中,同样可递归处理。

令人愉悦的是,这个算法的平均复杂度是O(N)的。怎么样?比堆的O(Nlogn)可能会好一些吧?!(n如果比较大肯定会好)

需要注意的是,这里的时间复杂度是平均意义上的,在最坏情况下,每次分割都分割成1:N-2,这种情况下的时间复杂度为O(n)。但是我们还有杀手锏,可以有一个在最坏情况下时间复杂度为O(N)的算法,这个算法是在分割数列的时候保证会按照比较均匀的比例分割,at least 3n/10-6。具体细节我就不再说了,感兴趣的人参考算法导论(Introduction to Algorithms 第二版第九章 “Medians and Orders Statistics”)。

还是那个结论,堆不见得会是最优的。

本文快要结束了,但是还有一个问题:如果N非常大,存放在磁盘上,不能一次装载进内存呢?怎么办?

对于介绍的Naive方法,堆,败者树等等,依然适用,需要注意的就是每次从磁盘上尽量多读一些数到内存区,然后处理完之后再读入一批。减少IO次数,自然能够提高效率。

而对于类快速排序方法,稍微要麻烦一些:分批读入,假设是M个数,然后从这M个数中选出n个最大的数缓存起来,直到所有的N个数都分批处理完之后,再将各批次缓存的n个数合并起来再进行一次类快速排序得到最终的n个最大的数就可以了。

在运行过程中,如果缓存数太多,可以不断地将多个缓存合并,保留这些缓存中最大的n个数即可。由于类快速排序的时间复杂度是O(N),这样分批处理再合并的办法,依然有极大的可能会比堆和败者树更优。当然,在空间上会占用较多的内存。

总结:

对于这个问题,我想了很多,但是觉得还有一些地方可以继续深挖:

  1. 堆和败者树到底哪一个更优?可以通过理论分析,也可以通过实验来比较。也许会有人觉得这个很无聊;
  2. 有没有近似的算法或者概率算法来解决这个问题?我对这方面实在不熟悉,如果有人有想法的话可以一块交流。如果有分析错误或遗漏的地方,请告知!最后请时刻谨记,时间复杂度不等于实际的运行时间,一个常数因子很大的O(logN)算法也许会比常数因子小的O(N)算法慢很多。所以说,n和N的具体值,以及编程实现的质量,都会影响到实际效率。看过一篇论文,给出的算法在进行字符串查找时,比hash还要快,是不是难以想象?

数据结构:堆和败者树的区别是什么?相关推荐

  1. 【外排序】外排序算法(磁盘排序、磁带排序) 外存设备结构分析 败者树多路归并 最佳归并树白话讲解

    外排序 外排序概述 外排序的基本方法是归并排序法 例子 总结 存储设备(可忽略) 磁带 磁带结构 磁盘 硬盘结构 块 硬盘上的数据定位 磁盘排序 磁盘排序过程 1.生成初始顺串 方法1(常规方法): ...

  2. 数据结构(八):排序 | 插入排序 | 希尔排序 | 冒泡排序 | 快速排序 | 简单选择排序 | 堆排序 | 归并排序 | 基数排序 | 外部排序 | 败者树 | 置换-选择排序 | 最佳归并树

    文章目录 第八章 排序 一.排序的基本概念 (一)什么是排序 (二)排序的应用 (三)排序算法的评价指标 (四)排序算法的分类 (五)总结 二.插入排序 (一)算法思想 (二)算法实现 (三)算法效率 ...

  3. 浅谈树形结构的特性和应用(上):多叉树,红黑树,堆,Trie树,B树,B+树......

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试文章 上篇文章我们主要介绍了线性数据结构,本篇233酱带大家看看 无所不 ...

  4. 外部排序---置换选择+败者树

    当需要对一个大文件进行排序时,计算机内存可能不够一次性装入所有数据,解决办法是归并.归并的大概做法是将大文件分为若干段,依次读入内存进行排序,排序后再重新写入硬盘.这些排好序的片段成为顺串.然后对这些 ...

  5. 浅谈树形结构的特性和应用(上):多叉树,红黑树,堆,Trie树,B树,B+树...

    上篇文章我们主要介绍了线性数据结构,本篇233酱带大家康康 无所不在的非线性数据结构之一:树形结构的特点和应用. 树形结构,是指:数据元素之间的关系像一颗树的数据结构.我们看图说话: 它具有以下特点: ...

  6. 外部排序归并排序 败者树

    一.定义问题 外部排序指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存,需要在内存和外部存储器之间进行多次数据交换,以达到排序整个文件的目的.外部排序最常用的算法是多路 ...

  7. java中的堆、栈、方法区等比较

    • 堆.栈.方法区 1. java中的栈(stack)和堆(heap)是java在内存(ram)中存放数据的地方 2. 堆区 存储的全部是对象,每个对象都包含一个与之对应的class的信息.(clas ...

  8. 数据结构与算法--B树原理及实现

    B树 前几篇文中讨论的数据结构我们都是假设所有的数据都存储在计算机的主存中.可说总要那么海量的数据需要通过个中数据结构去存储,我们不可能有这么多内存区存放这些数据.那么意味着我们需要将他们放磁盘.所以 ...

  9. C++数据结构与算法(九) 树,优先级队列,最大堆的实现

    树: 用来表示具有结构层次的数据,应用: 软件工程技术:模块化技术 根: 子树: 在树中,每个元素都代表一个节点. 树的级: 根是一级,根的孩子是二级,一次往下,有三级,四级... 树的高度(深度): ...

最新文章

  1. asp格式化日期函数
  2. Android中asset文件夹和raw文件夹区别
  3. 【转】DICOM之Print!!!!!!!!!
  4. VS2010 MFC多文档中的工具栏CMFCToolBar停靠的问题
  5. IntelliJ IDEA:文件的路径本该是”\“,却变成了”¥“
  6. IPD+CMMI企业产品开发系统性解决方案
  7. Druid 在有赞的实践
  8. Pr 视频效果:过渡、透视、通道
  9. c语言中取反位运算的作用,C语言位运算符及作用与或异或取反左移和右移
  10. 百度智能云NIRO MAX机器人,打造智慧党建新体验!
  11. 无人机基础知识:多旋翼无人机各模式控制框图
  12. Docker(9) 安装Oracle18c
  13. ARTS-9(幸福的奥秘是什么?)
  14. 状语和状语从句的使用
  15. 日活100wAPP一天的广告收益有多少?
  16. 转:sourceingsight 破解版下载安装
  17. 关于论坛发帖图片不显示之解决策略
  18. 智能无纸化办公,方便快捷,DIY也很简单
  19. 大数据Spark入门案例5–统计广告点击数量排行Top3(scala版本)
  20. Ubuntu18.04系统下安装IDL8.4版本(破解版)

热门文章

  1. HDU - 5988 Coding Contest(最大费用最大流+思维建边)
  2. 洛谷 - P1217 [USACO1.5]回文质数 Prime Palindromes(欧拉线性筛+数论小知识)
  3. 中石油训练赛 - 01 Matrix(构造)
  4. HDU - 2795 Billboard(线段树)
  5. TensorFlow2-高阶操作
  6. DenseNet详述
  7. 广度优先遍历算法-02合法的括号问题
  8. linux网络培训题目,linux 网络学习问题命令总结
  9. python 去除所有的中文 英文标点符号
  10. 图文:关于进程与线程,我看过最通俗的解释!