UA OPTI544 量子光学8 2-level system approximation的population rate equation模型

  • Density Matrix的稳态(假设无非弹性碰撞)
    • Elastic Collision Broadening
  • 光子通量
    • Rate Equation的解(假设无非弹性碰撞)
    • Power Broadening
    • σ(Δ)\sigma(\Delta)σ(Δ)的表达式(假设无碰撞)

在上一讲的结尾,我们得到了光与粒子交互系统的2-level system approximation的density matrix的演化方程:

{ρ˙11=−Γ1ρ11+A21ρ22−i2(χρ12−χ∗ρ21)ρ˙22=−Γ2ρ22−A21ρ22+i2(χρ12−χ∗ρ21)ρ˙12=(iΔ−β)ρ12+iχ∗2(ρ22−ρ11)=ρ˙21∗β=1τ+Γ1+Γ22+A212\begin{cases} \dot \rho_{11} =-\Gamma_1\rho_{11}+A_{21}\rho_{22} -\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{22}=-\Gamma_2\rho_{22}-A_{21}\rho_{22}+\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{12} = (i \Delta-\beta) \rho_{12}+\frac{i\chi^*}{2}(\rho_{22}-\rho_{11}) = \dot \rho_{21}^* \\ \beta = \frac{1}{\tau}+\frac{\Gamma_1+\Gamma_2}{2}+\frac{A_{21}}{2}\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧​ρ˙​11​=−Γ1​ρ11​+A21​ρ22​−2i​(χρ12​−χ∗ρ21​)ρ˙​22​=−Γ2​ρ22​−A21​ρ22​+2i​(χρ12​−χ∗ρ21​)ρ˙​12​=(iΔ−β)ρ12​+2iχ∗​(ρ22​−ρ11​)=ρ˙​21∗​β=τ1​+2Γ1​+Γ2​​+2A21​​​

ρ11,ρ22\rho_{11},\rho_{22}ρ11​,ρ22​代表population,ρ12,ρ21\rho_{12},\rho_{21}ρ12​,ρ21​代表coherence,这个方程虽然具有一般性,但要解这个方程十分困难。因此这一讲我们在不解演化方程的情况下,用它来推导光与粒子交互系统的2-level system approximation的一些性质。


Density Matrix的稳态(假设无非弹性碰撞)

假设Γ1=Γ2=0\Gamma_1=\Gamma_2=0Γ1​=Γ2​=0,稳态说明population与coherence都没有变化,即其导数为0,所以
ρ˙12=0⇒{ρ12=iχ∗/2β−iΔ(ρ22−ρ11)ρ21=−iχ/2β+iΔ(ρ22−ρ11)\dot \rho_{12} =0 \Rightarrow \begin{cases} \rho_{12}=\frac{i\chi^*/2}{\beta-i\Delta}(\rho_{22}-\rho_{11}) \\ \rho_{21}=\frac{-i\chi/2}{\beta+i\Delta}(\rho_{22}-\rho_{11}) \end{cases}ρ˙​12​=0⇒{ρ12​=β−iΔiχ∗/2​(ρ22​−ρ11​)ρ21​=β+iΔ−iχ/2​(ρ22​−ρ11​)​

代入到population中,
{ρ˙11=A21ρ22−i2(χρ12−χ∗ρ21)=A21ρ22+∣χ∣2β/2Δ2+β2(ρ22−ρ11)ρ˙22=−A21ρ22+i2(χρ12−χ∗ρ21)=−A21ρ22−∣χ∣2β/2Δ2+β2(ρ22−ρ11)\begin{cases} \dot \rho_{11} =A_{21}\rho_{22} -\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21})=A_{21}\rho_{22}+\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}(\rho_{22}-\rho_{11}) \\ \dot \rho_{22}=-A_{21}\rho_{22}+\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21})= -A_{21}\rho_{22}-\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}(\rho_{22}-\rho_{11})\end{cases}{ρ˙​11​=A21​ρ22​−2i​(χρ12​−χ∗ρ21​)=A21​ρ22​+Δ2+β2∣χ∣2β/2​(ρ22​−ρ11​)ρ˙​22​=−A21​ρ22​+2i​(χρ12​−χ∗ρ21​)=−A21​ρ22​−Δ2+β2∣χ∣2β/2​(ρ22​−ρ11​)​

这两个方程被称为population rate equation,就物理意义而言,这个方程组描述的是激发过程,
∣2⟩|2 \rangle∣2⟩代表高能态,∣1⟩|1 \rangle∣1⟩代表低能态,A21ρ22A_{21}\rho_{22}A21​ρ22​代表从高能态向低能态的自发衰变,Γ1ρ11,Γ2ρ22\Gamma_1 \rho_{11},\Gamma_2 \rho_{22}Γ1​ρ11​,Γ2​ρ22​代表两个量子态的population的非弹性碰撞衰变,R12ρ11R_{12}\rho_{11}R12​ρ11​代表由低能态向高能态的激发,R12ρ22R_{12}\rho_{22}R12​ρ22​代表由高能态向低能态的释放,R12R_{12}R12​代表两个能态之间的激发率(absorption rate或者stimulated emission rate),
R12=∣χ∣2β/2Δ2+β2R_{12}=\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}R12​=Δ2+β2∣χ∣2β/2​

Elastic Collision Broadening

在高温且稠密的气体介质中,弹性碰撞在粒子的非哈密顿行为(弹性碰撞、非弹性碰撞、自发衰变)中占主体,即β>>A21,Γ1,Γ2\beta>>A_{21},\Gamma_1,\Gamma_2β>>A21​,Γ1​,Γ2​,在这种情况下,coherence会比population更先到达稳态,这种情况被称为Elastic Collision Broadening,此时population ρ11,ρ22\rho_{11},\rho_{22}ρ11​,ρ22​的行为可以用Rabi Oscillation类比。

在这种情况下,如果碰撞次数足够多,且dipole moment方向相对driving field随机分布时,⟨∣p⃗12⋅ϵ^E0/h∣2⟩angle=13∣p⃗12∣2E02=13∣χ∣2\langle |\vec p_{12} \cdot \hat \epsilon E_0/h|^2 \rangle_{\text{angle}}=\frac{1}{3}|\vec p_{12}|^2E_0^2=\frac{1}{3}|\chi|^2⟨∣p​12​⋅ϵ^E0​/h∣2⟩angle​=31​∣p​12​∣2E02​=31​∣χ∣2,
R12=13∣χ∣2β/2Δ2+β2R_{12}=\frac{1}{3}\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}R12​=31​Δ2+β2∣χ∣2β/2​


光子通量

记R12=σ(Δ)ϕR_{12}=\sigma(\Delta)\phiR12​=σ(Δ)ϕ,其中ϕ\phiϕ是光子通量(photon flux),满足
ℏwϕ=12cϵ0∣E0∣2⏟光强intensity\hbar w \phi =\underbrace{ \frac{1}{2}c\epsilon_0|E_0|^2}_{光强\text{intensity}}ℏwϕ=光强intensity21​cϵ0​∣E0​∣2​​

由此可以将population rate equation用光子通量表示,
{ρ˙11=−Γ1ρ11+A21ρ22+σ(Δ)ϕ(ρ22−ρ11)ρ˙22=−Γ2ρ22−A21ρ22−σ(Δ)ϕ(ρ22−ρ11)\begin{cases} \dot \rho_{11} =-\Gamma_1 \rho_{11}+A_{21}\rho_{22}+\sigma(\Delta)\phi(\rho_{22}-\rho_{11}) \\ \dot \rho_{22}=-\Gamma_2 \rho_{22} -A_{21}\rho_{22}-\sigma(\Delta)\phi(\rho_{22}-\rho_{11})\end{cases}{ρ˙​11​=−Γ1​ρ11​+A21​ρ22​+σ(Δ)ϕ(ρ22​−ρ11​)ρ˙​22​=−Γ2​ρ22​−A21​ρ22​−σ(Δ)ϕ(ρ22​−ρ11​)​

如果有NNN个粒子,则

  • Number of Absorption Events为Nσ(Δ)ϕρ11N\sigma(\Delta)\phi \rho_{11}Nσ(Δ)ϕρ11​
  • Number of Stimulated Emission Events为Nσ(Δ)ϕρ22N\sigma(\Delta)\phi \rho_{22}Nσ(Δ)ϕρ22​

Rate Equation的解(假设无非弹性碰撞)

假设Γ1=Γ2=0\Gamma_1=\Gamma_2=0Γ1​=Γ2​=0,并且根据ρ11+ρ22=1\rho_{11}+\rho_{22}=1ρ11​+ρ22​=1,
ρ˙22=−A21ρ22−σ(Δ)ϕ(2ρ22−1)=σ(Δ)ϕ−(A21+2σ(Δ))ρ22⏟damping effect\begin{aligned}\dot \rho_{22} & = -A_{21}\rho_{22}-\sigma(\Delta)\phi(2 \rho_{22}-1) \\ & =\sigma(\Delta)\phi\underbrace{-(A_{21}+2\sigma(\Delta))\rho_{22} }_{\text{damping\ effect}}\end{aligned}ρ˙​22​​=−A21​ρ22​−σ(Δ)ϕ(2ρ22​−1)=σ(Δ)ϕdamping effect−(A21​+2σ(Δ))ρ22​​​​

记γ=A21+2σ(Δ)\gamma=A_{21}+2\sigma(\Delta)γ=A21​+2σ(Δ)为damping coefficient,这个方程的解为
ρ22(t)=[ρ22(0)−ρ22(∞)]e−γt+ρ22(∞)ρ22(∞)=σ(Δ)ϕγ\rho_{22}(t)=[\rho_{22}(0)-\rho_{22}(\infty)]e^{-\gamma t}+\rho_{22}(\infty) \\ \rho_{22}(\infty)=\frac{\sigma(\Delta)\phi}{\gamma}ρ22​(t)=[ρ22​(0)−ρ22​(∞)]e−γt+ρ22​(∞)ρ22​(∞)=γσ(Δ)ϕ​

其中ρ22(0)\rho_{22}(0)ρ22​(0)为初始值,ρ22(∞)\rho_{22}(\infty)ρ22​(∞)为稳态值,

Power Broadening

代入受激发射率的表达式,
ρ22(∞)=σ(Δ)ϕγ=∣χ∣2β2A21Δ2+β2+∣χ∣2βA21\rho_{22}(\infty)=\frac{\sigma(\Delta)\phi}{\gamma}=\frac{\frac{|\chi|^2\beta }{2A_{21}}}{\Delta^2+\beta^2+\frac{|\chi|^2\beta }{A_{21}}}ρ22​(∞)=γσ(Δ)ϕ​=Δ2+β2+A21​∣χ∣2β​2A21​∣χ∣2β​​


当σ(Δ)ϕ>>A21\sigma(\Delta)\phi>>A_{21}σ(Δ)ϕ>>A21​时,ρ22(∞)→12\rho_{22}(\infty) \to \frac{1}{2}ρ22​(∞)→21​,这种情况被称为Power Broadening,此时粒子处于高能态与低能态的概率相等,系统处于饱和(saturation)状态,此时光子通量和光强为
ϕsat=A212σ(0),Isat=ℏwϕsat\phi_{\text{sat}}=\frac{A_{21}}{2\sigma(0)},I_{\text{sat}}=\hbar w\phi_{\text{sat}}ϕsat​=2σ(0)A21​​,Isat​=ℏwϕsat​

σ(Δ)\sigma(\Delta)σ(Δ)的表达式(假设无碰撞)

因为
R12=∣χ∣2β/2Δ2+β2R12=σ(Δ)ϕ=σ(Δ)12cϵ0∣E0∣2ℏwR_{12}=\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2} \\ R_{12} = \sigma(\Delta) \phi = \sigma(\Delta) \frac{\frac{1}{2}c\epsilon_0 |E_0|^2}{\hbar w}R12​=Δ2+β2∣χ∣2β/2​R12​=σ(Δ)ϕ=σ(Δ)ℏw21​cϵ0​∣E0​∣2​

其中
∣χ∣2=f∣p⃗12∣2∣E0∣2ℏ2,13≤f≤1|\chi|^2=f \frac{|\vec p_{12}|^2|E_0|^2}{\hbar^2},\frac{1}{3} \le f \le 1∣χ∣2=fℏ2∣p​12​∣2∣E0​∣2​,31​≤f≤1

1/31/31/3对应elastic collision broadening,111对应elastic collision free,由此
σ(Δ)=fw∣p⃗12∣2ℏcϵ0ββ2Δ2+β2=σ(0)β2Δ2+β2\sigma(\Delta) = f \frac{w|\vec p_{12}|^2}{\hbar c \epsilon_0 \beta} \frac{\beta^2}{\Delta^2+\beta^2}=\sigma(0)\frac{\beta^2}{\Delta^2+\beta^2}σ(Δ)=fℏcϵ0​βw∣p​12​∣2​Δ2+β2β2​=σ(0)Δ2+β2β2​

假设collision free(无弹性碰撞与非弹性碰撞),则
σ(0)=f2w∣p⃗12∣2ℏcϵ0A21=f4πℏϵ0λ∣p⃗12∣2A21\sigma(0)= f \frac{2w|\vec p_{12}|^2}{\hbar c \epsilon_0A_{21}}=f \frac{4 \pi}{\hbar \epsilon_0 \lambda}\frac{|\vec p_{12}|^2}{A_{21}} σ(0)=fℏcϵ0​A21​2w∣p​12​∣2​=fℏϵ0​λ4π​A21​∣p​12​∣2​

A21A_{21}A21​与∣p⃗12∣2|\vec p_{12}|^2∣p​12​∣2的关系推导需要用到量子电动力学,所以这里先直接给结论,
A21=∣p⃗12∣2w33πϵℏc3A_{21}=\frac{|\vec p_{12}|^2 w^3}{3 \pi \epsilon \hbar c^3}A21​=3πϵℏc3∣p​12​∣2w3​

代入σ(0)\sigma(0)σ(0)的表达式可得,
σ(0)=f3λ22π\sigma(0)=f \frac{3 \lambda^2}{2 \pi}σ(0)=f2π3λ2​

综上,
σ(Δ)=f3λ22πβ2Δ2+β2\sigma(\Delta) =f \frac{3 \lambda^2}{2 \pi} \frac{\beta^2}{\Delta^2+\beta^2} σ(Δ)=f2π3λ2​Δ2+β2β2​

UA OPTI544 量子光学8 2-level system approximation的population rate equation模型相关推荐

  1. UA OPTI544 量子光学2 光与介质相互作用的经典力学方法

    UA OPTI544 量子光学2 光与介质相互作用的经典力学方法 Lorentz模型 Complex Polarizability Complex index of refraction 气体介质中的 ...

  2. UA OPTI544 量子光学9 2-level system approximation的向量模型

    UA OPTI544 量子光学9 2-level system approximation的向量模型 Bloch Vector与Optical Bloch Equation Bloch变量及其物理含义 ...

  3. UA OPTI544 量子光学7 2-level system approximation的Density Matrix模型

    UA OPTI544 量子光学7 2-level system approximation的Density Matrix模型 Density Matrix的Rabi Equation Non-Hami ...

  4. UA OPTI544 量子光学4 光与介质相互作用 2-level System Approximation

    UA OPTI544 量子光学4 光与介质相互作用 2-level System Approximation Interacting.State Space与薛定谔方程 Rotating Wave A ...

  5. UA OPTI544 量子光学6 光与介质相互作用 Raman Coupling in 3-level System

    UA OPTI544 量子光学6 光与介质相互作用 Raman Coupling in 3-level System Raman Coupling及其模型 等效为2-level System Rama ...

  6. UA OPTI544 量子光学11 Maxwell-Bloch方程

    UA OPTI544 量子光学11 Maxwell-Bloch方程 Maxwell-Bloch方程的推导 Maxwell-Bloch方程的Steady State 光强的表达式 Maxwell-Blo ...

  7. UA OPTI544 量子光学5 光与介质相互作用:Electric Dipole Selection Rule

    UA OPTI544 量子光学5 光与介质相互作用:Multi-level Atoms 球面基与球谐函数 Electric Dipole Selection Rule 从氢原子出发,它的Hamilto ...

  8. UA OPTI544 量子光学3 光与介质相互作用的量子方法简介

    UA OPTI544 量子光学3 光与介质相互作用的量子方法简介 Semi-classical描述 介质粒子的量子态 Semi-classical描述 在light-matter interactio ...

  9. UA OPTI544 量子光学1 Maxwell方程与Lorentz Oscillator回顾

    UA OPTI544 量子光学1 Maxwell方程与Lorentz Oscillator回顾 Maxwell方程基础 Lorentz Oscillator Maxwell方程基础 Maxwell方程 ...

最新文章

  1. 产品经理如何评估产品机会
  2. mysql sleep详解_关于MySQL的SLEEP(N)函数
  3. eclipse出现updating error reports database一直运行解决方案
  4. html分为哪两种,css伪类分为哪几种
  5. Unity发布WebGl注意事项
  6. 【渝粤教育】国家开放大学2019年春季 2080现代教育思想 参考试题
  7. vnc用户名 查看linux_vnc用户名未被识别,5步教你如何解决vnc用户名未被识别
  8. php 连接sap rfc 乱码,[RFC] sap rfc调用时判断连接状态
  9. 云计算发展备受瞩目的五大方向
  10. laravel一键安装包
  11. Javascript 通用Excel导出函数
  12. hdu 5698 瞬间移动(2016百度之星 - 初赛(Astar Round2B)——数学题)
  13. 图片尺寸放大不改变清晰度
  14. R语言ggplot2可视化:使用ggpubr包的ggviolin函数可视化小提琴图、使用add_summary函数(设置参数为median_iqr)在可视化图像中添加中位数数据点、IQR线条
  15. 【云原生 | Envoy 系列】--Envoy Http Ingress,Egress,front Proxy静态配置
  16. pat乙级 1006 题解
  17. input 只能输入正整数,包括 0
  18. Android 虚拟按键隐藏或显示之后共享元素动画异常解决方案
  19. 计算机备份与恢复教案,15数据备份与恢复(教案)
  20. iphone手机显示itunes store无法连接服务器,iphone无法连接到itunes store怎么解决?

热门文章

  1. 【IM】关于在线学习(被动攻击学习和适应正则化学习)的理解
  2. Java实现Redis分布锁
  3. tensorflow 模型预训练后的参数restore finetuning
  4. pip安装ipython_Python -- 关于pip安装Ipython
  5. JUC里面的相关分类|| java并发编程中,关于锁的实现方式有两种synchronized ,Lock || Lock——ReentrantLock||AQS(抽象队列同步器)
  6. 模板引擎——Thymeleaf
  7. Python 自动化 - 浏览器chrome打开F12开发者工具自动Paused in debugger调试导致无法查看网站资源问题原因及解决方法,javascript反调试问题处理实例演示
  8. Java 技术篇-IntelliJ IDEA修改java、jdk版本实例演示
  9. Windows系统高质量Gif录制工具推荐:LICEcap录屏软件,非常小巧好用,只有200k
  10. CTFshow php特性 web130