电子技术——共模抑制

我们在之前学习过,无论是MOS还是BJT的差分输入对,共模信号并不会改变漏极电流的大小,因此我们说差分输入对共模信号无响应。但是实际上由于各种客观非理想因素,例如电流源有限阻抗等,此时共模是影响差分输入对的。

MOS的情况

RSSR_{SS}RSS​ 的影响

下图是一个MOS的差分输入对,但是电流源是有限阻抗的,阻抗大小为 RSSR_{SS}RSS​ ,而且我们输入端有两个电压,一是信号本身固有的共模电压 VCMV_{CM}VCM​ ,另外一个是外界干扰的共模电压 vicmv_{icm}vicm​ 可能是干扰信号,也可能是噪波。我们的目的就是讨论 vicmv_{icm}vicm​ 对输出电压的影响:


首先我们讨论一下 RSSR_{SS}RSS​ 对偏置的影响,由于 RSSR_{SS}RSS​ 的存在,流过MOS的电流要比 I/2I/2I/2 稍稍大一些。然而一般情况下 RSSR_{SS}RSS​ 都是非常巨大的,因此超出 I/2I/2I/2 的那一部分几乎可以忽略。其次 RSSR_{SS}RSS​ 对 AdA_dAd​ 也是没有影响的,这是因为假设MOS都是完全相同的,此时源极永远都是虚拟地, RSSR_{SS}RSS​ 无影响。

现在我们讨论 vicmv_{icm}vicm​ 存在的影响,考虑下面的电路:


我们移除了所有的DC分量,只考虑信号作用,此时电路仍然是完全对称的,我们将MOS的漏极信号电流记为 iii 则流过 RSSR_{SS}RSS​ 的电流为 2i2i2i 。我们使用等效T模型分析:


则有:

vicm=igm+2iRSSv_{icm} = \frac{i}{g_m} + 2iR_{SS} vicm​=gm​i​+2iRSS​

所以:

i=vicm1/gm+2RSSi = \frac{v_{icm}}{1/g_m + 2R_{SS}} i=1/gm​+2RSS​vicm​​

输出信号电压为:

vo1=vo2=−RD1/gm+2RSSvicmv_{o1} = v_{o2} = -\frac{R_D}{1/g_m + 2R_{SS}}v_{icm} vo1​=vo2​=−1/gm​+2RSS​RD​​vicm​

这就说明 vo1v_{o1}vo1​ 和 vo2v_{o2}vo2​ 是受 vicmv_{icm}vicm​ 影响的,影响的比例大约为:

vovicm≃−RD2RSS\frac{v_o}{v_{icm}} \simeq -\frac{R_D}{2R_{SS}} vicm​vo​​≃−2RSS​RD​​

这里我们假设 2RSS≫1/gm2R_{SS} \gg 1/g_m2RSS​≫1/gm​ ,尽管如此,其差分输出信号仍然为零。

vod=vo2−vo1=0v_{od} = v_{o2} - v_{o1} = 0 vod​=vo2​−vo1​=0

MOS差分输入对抑制了全部的共模信号,是我们想要的结果。但是事实上并不总是如此,特别是电路不对称的情况。由于现在电路的对称性,我们仍然可以使用半电路分析:


这种半电路我们称为 共模半电路

RDR_DRD​ 不匹配的影响

另一种非理想因素是 RDR_DRD​ 不匹配,我们假设 Q1Q_1Q1​ 为 RDR_DRD​ 而 Q2Q_2Q2​ 为 RD+ΔRDR_D + \Delta R_DRD​+ΔRD​ ,此时的输出端信号电流为:

vo1≃−RD2RSSvicmv_{o1} \simeq -\frac{R_D}{2R_{SS}} v_{icm} vo1​≃−2RSS​RD​​vicm​

vo2≃−RD+ΔRD2RSSvicmv_{o2} \simeq -\frac{R_D + \Delta R_D}{2R_{SS}} v_{icm} vo2​≃−2RSS​RD​+ΔRD​​vicm​

所以差分信号电压为:

vod=vo2−vo1=−ΔRD2RSSvicmv_{od} = v_{o2} - v_{o1} = -\frac{\Delta R_D}{2R_{SS}}v_{icm} vod​=vo2​−vo1​=−2RSS​ΔRD​​vicm​

我们记其 共模增益 为:

Acm≡vodvicm=−ΔRD2RSSA_{cm} \equiv \frac{v_{od}}{v_{icm}} = -\frac{\Delta R_D}{2R_{SS}} Acm​≡vicm​vod​​=−2RSS​ΔRD​​

还可以表示为:

Acm=−(RD2RSS)(ΔRDRD)A_{cm} = -(\frac{R_D}{2R_{SS}})(\frac{\Delta R_D}{R_D}) Acm​=−(2RSS​RD​​)(RD​ΔRD​​)

这说明 RDR_DRD​ 不匹配会影响 vodv_{od}vod​ 的输出,即 vodv_{od}vod​ 存在 vicmv_{icm}vicm​ 分量,这个分量是我们不想要的。为了衡量 vicmv_{icm}vicm​ 的占比,我们引入 共模抑制比 定义为:

CMRR≡∣Ad∣∣Acm∣CMRR \equiv \frac{|A_d|}{|A_{cm}|} CMRR≡∣Acm​∣∣Ad​∣​

经常使用分贝来表示:

CMRR(dB)=20log⁡∣Ad∣∣Acm∣CMRR(dB) = 20 \log{\frac{|A_d|}{|A_{cm}|}} CMRR(dB)=20log∣Acm​∣∣Ad​∣​

RDR_DRD​ 不匹配带来的共模抑制比为:

CMRR=(2gmRSS)/(ΔRDRD)CMRR = (2g_mR_{SS}) / (\frac{\Delta R_D}{R_D}) CMRR=(2gm​RSS​)/(RD​ΔRD​​)

为了获得更大的共模抑制比,我们可以增大偏置电流,或者增大电流源输出阻抗,以及尽可能使得电路匹配,即 (ΔRDRD)(\frac{\Delta R_D}{R_D})(RD​ΔRD​​) 尽量小。

gmg_mgm​ 不匹配的影响

另外一种非理想因素是两个MOS管本身不匹配,可以看做是 gmg_mgm​ 不匹配的影响。我们假设:

gm1=gm+12Δgmg_{m1} = g_m + \frac{1}{2}\Delta g_m gm1​=gm​+21​Δgm​

gm2=gm−12Δgmg_{m2} = g_m - \frac{1}{2}\Delta g_m gm2​=gm​−21​Δgm​

也就是:

gm1−gm2=Δgmg_{m1} - g_{m2} = \Delta g_m gm1​−gm2​=Δgm​

虽然此时电路不对称,我们无法使用半电路法分析,我们可以使用直接计算得到:

Acm≃(RD2RSS)(Δgmgm)A_{cm} \simeq (\frac{R_D}{2R_{SS}})(\frac{\Delta g_m}{g_m}) Acm​≃(2RSS​RD​​)(gm​Δgm​​)

则共模抑制比为:

CMRR=(2gmRSS)/(Δgmgm)CMRR = (2g_mR_{SS}) / (\frac{\Delta g_m}{g_m}) CMRR=(2gm​RSS​)/(gm​Δgm​​)

这个形式和 RDR_DRD​ 不匹配的影响一样。同样的为了获得更大的共模抑制比,我们可以增大偏置电流,或者增大电流源输出阻抗,以及尽可能使得电路匹配,即 (Δgmgm)(\frac{\Delta g_m}{g_m})(gm​Δgm​​) 尽量小。

差分输出和单端输出

以上的讨论都是基于差分输出而言的,如果使用的是单端输出,则CMRR会大大降低,这是因为在本节一开始我们就分析了,即使如果电路是对称的,那么 vicmv_{icm}vicm​ 也会出现在输出端的两端,如果使用单端输出 vicmv_{icm}vicm​ 就会出现在输出电压上。如果我们想获得较大的CMRR,我们推荐使用差分输出。之后我们会介绍如何保持CMRR无损的将差分信号转换为单端信号。

BJT的情况

同样对于BJT也存在共模抑制的情况,我们使用如下图的电路以及对应的半电路:


输出信号电压为:

vo1=vo2=−αRCre+2REEvicmv_{o1} = v_{o2} = -\frac{\alpha R_C}{r_e + 2R_{EE}}v_{icm} vo1​=vo2​=−re​+2REE​αRC​​vicm​

说明BJT的同样抑制共模信号。但是当出现电路不匹配的情况下,例如存在 ΔRC\Delta R_CΔRC​ :

Acm=−αΔRC2REE+reA_{cm} = -\frac{\alpha \Delta R_C}{2R_{EE} + r_e} Acm​=−2REE​+re​αΔRC​​

因为 α≃1,re≪2REE\alpha \simeq 1,r_e \ll 2R_{EE}α≃1,re​≪2REE​ 所以:

Acm≃−(RC2REE)(ΔRCRC)A_{cm} \simeq - (\frac{R_C}{2R_{EE}})(\frac{\Delta R_C}{R_C}) Acm​≃−(2REE​RC​​)(RC​ΔRC​​)

因此共模抑制比为:

CMRR=(2gmREE)/(ΔRCRC)CMRR = (2g_m R_{EE}) / (\frac{\Delta R_C}{R_C}) CMRR=(2gm​REE​)/(RC​ΔRC​​)

与MOS具有相同的形式。

BJT的输入阻抗是有限的,因此对于 vicmv_{icm}vicm​ 来说也存在输入阻抗,如图:


我们定义 RicmR_{icm}Ricm​ 是共模信号的输入阻抗,对应的等效半电路输入阻抗为 2Ricm2R_{icm}2Ricm​ 我们有:

Ricm≃βREE1+RC/βro1+RC+2REEroR_{icm} \simeq \beta R_{EE} \frac{1 + R_C / \beta r_o}{1 + \frac{R_C + 2R_{EE}}{r_o}} Ricm​≃βREE​1+ro​RC​+2REE​​1+RC​/βro​​

电子技术——共模抑制相关推荐

  1. 共模(Common Mode)差模(Differential Mode)共模抑制(Common Mode Rejection)

    这里要介绍几个概念,以便大家能够更好的理解共模抑制比CMRR. 共模(Common Mode):差分信号两端具有相同幅度和相位的信号成分,用表达式表示为Vcm =(Vin+ + Vin-)/2. 由于 ...

  2. TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制

    TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制 抑制可能是一件好事,特别是在共模或电源电压错误的情况下. 本系列视频介绍了如何改变运算放大器的共模电压或电源电压,从而在交流和直流两端引入误差 ...

  3. 关于YY1139-2013心电诊断设备的共模抑制测试项的理解

    我自己在看yy1139时,关于共模抑制测试一直没太搞明白,就只知道怎么去测试,测试的数值来计算共模抑制比,但是一直不理解为啥是这样就可以算出来,然后我看了yy1139-2000国标以及一篇" ...

  4. 1000份电子技术(模电、数电、电子元件、电路视频教程)全套资料!

    小编花了一周的时间精心整理了电子技术(模电.数电.电子元件.电路视频教程)全套资料!赶紧收藏吧! 里面包含的资料如下: 模电.数电及电路学习 电子设计100例 800个电子设计竞赛毕业设计产品 电路基 ...

  5. 平衡线共模抑制原理和距离

    一句话概括: 双(或4)平衡线的物理式设计(共模抑制).差分信号的数字式抑制噪声的原理都是统一的,大多数的外在干扰都对相似(相同距离.相同阻抗等)的信号产生同样的干扰影响:-- 平衡线传输靠末端的共模 ...

  6. 【电子技术】如何抑制共模、差模噪声?

    共模信号,差模信号,你是否一直在模电中一直听到,又或者在emc中听到呢? 首先,我们先来说下怎样定义的共模信号,差模信号: 共模信号:幅度相等,相位相同的信号 差模信号:幅度相等,相位相反的信号 我记 ...

  7. 复习总结:模拟电子技术(模电)

    说明:本篇笔记仅针对模电中二极管.三极管的核心知识进行了整理总结.我认为这些知识是模电的灵魂,掌握了它们,运算放大器.MOS管等其它部分就都比较容易掌握了.

  8. 开关电源的共模干扰抑制技术

    开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解 0 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来 ...

  9. 电子技术——电流镜负载的差分放大器

    电子技术--电流镜负载的差分放大器 目前我们学习的差分放大器都是使用的是差分输出的方式,即在两个漏极之间获取电压.差分输出主要有以下优势: 降低了共模信号的增益,提高了共模抑制比. 降低了输入偏移电压 ...

最新文章

  1. 文件处理之解决使用 feof(c语言)或(fin.eof())出现多读问题
  2. JSP下Forward和Redirect的区别分析
  3. MySQL自定义排序函数FIELD()
  4. atomiclong_想要更快地使用AtomicLong? 等待它。
  5. 01-Eureka是什么?
  6. 一个15年的架构师谈“如何成为一名优秀的解决方案架构师”
  7. jupyter怎么调字体_夏天冰箱调到几档最好 冷藏调多少度合适
  8. python 深浅拷贝案例_python(深浅拷贝)
  9. linux根目录9个g,linux根目录下5个主要的目录,及目录的功能
  10. Hexo博客优化之Next主题美化
  11. 灵悟礼品网上专卖店——分析类似项目的布局和商品的分类模式
  12. “莫兰迪色系” 高级灰
  13. TideSec远控免杀学习四(BackDoor-Factory+Avet+TheFatRat)
  14. 电脑桌面的照片文件不见了怎么办
  15. 《站在巨人的肩膀上-英语交流会有感》
  16. 银河麒麟桌面系统V10解决微信无法登录
  17. 老K仿真的惊人发现|社会的阶层分化过程
  18. ps裁剪和裁切的区别_PS详细工具讲解剪切,裁剪的区别
  19. 区块链技术有什么影响?
  20. 知乎采集问答栏目以及文章教学

热门文章

  1. 有N个学生,学号,姓名,性别,四门课成绩,键盘上输入信息,输出总平均分成绩最高
  2. macOS Monterey 12.0.1 App闪退问题
  3. leetcode 45. 跳跃游戏 II 46. 全排列
  4. 简单的python网络爬虫实现
  5. 日历公历农历C语言大作业,C语言编写一个带农历的万年历
  6. STC单片机仿FX1N的PLC.需要的直接拍,包含原理图,PCB和源程序
  7. 《海错图笔记》的笔记 |【介部】
  8. 人生导师——如何学习C++的Windows方向
  9. unity第一人称射击游戏,枪击游戏,功能完整可以当大作业或者毕设
  10. 凤飞飞方法方法方法凤飞飞飞凤飞飞飞凤飞飞凤飞飞