一.随机变量

随机变量是指随机事件的数量表现,按照随机变量可能取得的值,可以把它们分为两种基本类型:随机变量包括离散型随机变量和连续型随机变量。

离散型随机变量:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量的概率分布包括伯努利分布、二项分布、几何分布、泊松分布。

连续型随机变量:在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。连续型随机变量的概率分布包括正态分布、幂律分布

二.准备工作

在python中实现计算常见概率分布的概率值,需要安装python的科学计算包scipy,并用matplotlib 包进行绘图。打开终端Anaconda Prompt,在conda中运行以下命令:

conda install scipy

三.概率分布

概率分布,是概率论的基础概念之一,是指用于表述随机变量取值的概率规律。事件的概率表示了一次试验中某一个结果发生的可能性大小。若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布。以下介绍几种概率分布:

1.伯努利分布

伯努利分布亦称“零一分布”、“两点分布”,一个非常简单的试验是只有两个可能结果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复。伯努利分布是一个离散型机率分布,是N=1时二项分布的特殊情况。

案例:玩抛硬币的游戏,只抛1次硬币,成功抛出正面朝上记录为1,反面朝上即抛硬币失败记录为0

python代码实现:

2.二项分布

二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

案例:连续玩抛硬币游戏,假如抛硬币5次,求抛出正面朝上次数的概率

python实现:

3.几何分布

几何分布的定义是:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。

案例:连续玩5次抛硬币游戏,第N次才出现正面朝上

python实现:

4.泊松分布

泊松分布描述的是已知一段时间内事件发生的平均数,求某个时间内发生的概率。泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。

案例:已知某路口发生事故的比率是每天2次,那么在此处一天内发生k次事故的概率是多少?

python实现:

5.正态分布

正态分布又名高斯分布,属于连续概率分布,正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当平均值 = 0,标准差 = 1时的正态分布是标准正态分布。

python实现:

python概率分布拟合_用Python实现概率分布相关推荐

  1. python正弦函数拟合_在Python中拟合正弦数据

    我想将下面附带的数据与-a*sin(b*x + c)(或可能也可以使用-a*sin(2*x))与a b c作为要确定的值的函数拟合.我使用了scipy.optimize.curve_fit,但效果不好 ...

  2. python正弦函数拟合_用Python拟合正弦数据

    我想用-a*sin(b*x + c)(或者也可以是-a*sin(2*x))形式的函数来拟合下面所附的数据,a b c作为要确定的值.我使用了scipy.optimize.curve_fit,但它的工作 ...

  3. python三角函数拟合_使用python进行数据拟合最小化函数

    这是我对这个问题的理解. 首先,我通过以下代码生成一些数据import numpy as np from scipy.integrate import quad from random import ...

  4. python 时间序列预测_使用Python进行动手时间序列预测

    python 时间序列预测 Time series analysis is the endeavor of extracting meaningful summary and statistical ...

  5. python 概率分布模型_使用python的概率模型进行公司估值

    python 概率分布模型 Note from Towards Data Science's editors: While we allow independent authors to publis ...

  6. 使用python预测基金_使用python先知3 1创建预测

    使用python预测基金 This tutorial was created to democratize data science for business users (i.e., minimiz ...

  7. python集群_使用Python集群文档

    python集群 Natural Language Processing has made huge advancements in the last years. Currently, variou ...

  8. python 网页编程_通过Python编程检索网页

    python 网页编程 The internet and the World Wide Web (WWW), is probably the most prominent source of info ...

  9. python机器学习预测_使用Python和机器学习预测未来的股市趋势

    python机器学习预测 Note from Towards Data Science's editors: While we allow independent authors to publish ...

  10. python高斯求和_利用Python进行数据分析(3)- 列表、元组、字典、集合

    本文主要是对Python的数据结构进行了一个总结,常见的数据结构包含:列表list.元组tuple.字典dict和集合set. image 索引 左边0开始,右边-1开始 通过index()函数查看索 ...

最新文章

  1. SpringBoot部署脚本,拿走即用!
  2. JAVAC 命令详解
  3. 汇编语言--div指令
  4. 全球及中国清洁能源发电行业需求容量及应用前景分析报告2021-2027年
  5. 【SQL】去除表中的重复行
  6. 美图手机告别文,写得真好!
  7. 取最大值_举一反三17——线段平方和的最小值与最大值
  8. 指派问题的遗传算法求解 Java实现
  9. C语言(静态链接库和动态链接库)
  10. 巨头们的盈利之道:药店的这个营销方法,其他行业也适用!
  11. Android 开发中渐变背景的简单使用
  12. 宥马运动服务器正在维护,宥马运动ios版
  13. 深入分析ConcurrentHashMap的源码设计(中)-hash冲突
  14. 嵌入式开发基本环境搭建---ubuntu
  15. 【ELT.ZIP】OpenHarmony啃论文俱乐部——多维探秘通用无损压缩
  16. RecyclerView.Adapter notifyDataSetChanged 不起作用
  17. 仿网易云音乐Android端歌手资料页面的实现
  18. java递归20元买汽水,瓶盖递归 1块钱买一瓶水,三个瓶盖是换一瓶汽水,问20块钱能买 多少瓶汽水(不能借)...
  19. C++ Primer Plus (第六版)编程练习记录(chapter8 函数探幽)
  20. 000.塔木德 Talmud

热门文章

  1. SQL Server之——SQL Server 2005 sa 登录失败,该用户与可信SQL Server连接无关联
  2. filter grok 判断_logstash grok使用案例
  3. TI-RTOS---Semaphores
  4. 上海成为50岁以上房东数量最多的中国城市,成都、青岛、重庆、杭州紧随其后...
  5. 计算机只能在安全模式下起动,电脑不能进入正常的XP系统,只能在安全模式下启动?...
  6. 王者荣耀英雄分析--孙悟空
  7. Quartile收购Sidecar,打造首屈一指的跨渠道电商广告平台
  8. android设置wifi蓝牙共享文件,无需互联网或蓝牙即可通过WiFi通过android共享文件...
  9. python最全面试题!
  10. 【noi.ac #1759】ZYB的测验计划