•   RCNN

RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。

算法可以分为四步:

        1)候选区域选择

Region Proposal是一类传统的区域提取方法,可以看作不同宽高的滑动窗口,通过窗口滑动获得潜在的目标图像,关于Proposal大家可以看下SelectiveSearch,一般Candidate选项为2k个即可,这里不再详述;

根据Proposal提取的目标图像进行归一化,作为CNN的标准输入。

        2)CNN特征提取

标准CNN过程,根据输入进行卷积/池化等操作,得到固定维度的输出;

        3)分类与边界回归

实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器);二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出。

        RCNN存在三个明显的问题:

1)多个候选区域对应的图像需要预先提取,占用较大的磁盘空间;

2)针对传统CNN需要固定尺寸的输入图像,crop/warp(归一化)产生物体截断或拉伸,会导致输入CNN的信息丢失;

3)每一个ProposalRegion都需要进入CNN网络计算,上千个Region存在大量的范围重叠,重复的特征提取带来巨大的计算浪费。

•   SPP-Net

        智者善于提出疑问,既然CNN的特征提取过程如此耗时(大量的卷积计算),为什么要对每一个候选区域独立计算,而不是提取整体特征,仅在分类之前做一次Region截取呢?智者提出疑问后会立即付诸实践,于是SPP-Net诞生了。

        SPP-Net在RCNN的基础上做了实质性的改进:

1)取消了crop/warp图像归一化过程,解决图像变形导致的信息丢失以及存储问题;

2)采用空间金字塔池化(SpatialPyramid Pooling )替换了 全连接层之前的最后一个池化层(上图top),翠平说这是一个新词,我们先认识一下它。

        为了适应不同分辨率的特征图,定义一种可伸缩的池化层,不管输入分辨率是多大,都可以划分成m*n个部分。这是SPP-net的第一个显著特征,它的输入是conv5特征图 以及特征图候选框(原图候选框 通过stride映射得到),输出是固定尺寸(m*n)特征;

        还有金字塔呢?通过多尺度增加所提取特征的鲁棒性,这并不关键,在后面的Fast-RCNN改进中该特征已经被舍弃;

        最关键的是SPP的位置,它放在所有的卷积层之后,有效解决了卷积层的重复计算问题(测试速度提高了24~102倍),这是论文的核心贡献。

        尽管SPP-Net贡献很大,仍然存在很多问题:

1)和RCNN一样,训练过程仍然是隔离的,提取候选框 | 计算CNN特征| SVM分类 | Bounding Box回归独立训练,大量的中间结果需要转存,无法整体训练参数;

2)SPP-Net在无法同时Tuning在SPP-Layer两边的卷积层和全连接层,很大程度上限制了深度CNN的效果;

3)在整个过程中,Proposal Region仍然很耗时。

•   Fast-RCNN

        问题很多,解决思路同样也非常巧妙,ok,再次感谢 RBG 大神的贡献,直接引用论文原图(描述十分详尽)。

        Fast-RCNN主要贡献在于对RCNN进行加速,快是我们一直追求的目标(来个山寨版的奥运口号- 更快、更准、更鲁棒),问题在以下方面得到改进:

        1)卖点1 - 借鉴SPP思路,提出简化版的ROI池化层(注意,没用金字塔),同时加入了候选框映射功能,使得网络能够反向传播,解决了SPP的整体网络训练问题;

        2)卖点2 - 多任务Loss层

A)SoftmaxLoss代替了SVM,证明了softmax比SVM更好的效果;

B)SmoothL1Loss取代Bouding box回归。

        将分类和边框回归进行合并(又一个开创性的思路),通过多任务Loss层进一步整合深度网络,统一了训练过程,从而提高了算法准确度。

        3)全连接层通过SVD加速

            这个大家可以自己看,有一定的提升但不是革命性的。

        4)结合上面的改进,模型训练时可对所有层进行更新,除了速度提升外(训练速度是SPP的3倍,测试速度10倍),得到了更好的检测效果(VOC07数据集mAP为70,注:mAP,mean Average Precision)。

        接下来分别展开这里面的两大卖点:

        前面已经了解过可伸缩的池化层,那么在训练中参数如何通过ROI Pooling层传导的?根据链式求导法则,对于yj = max(xi) 传统的max pooling的映射公式:

        其中 为判别函数,为1时表示选中为最大值,0表示被丢弃,误差不需要回传,即对应 权值不需要更新。如下图所示,对于输入 xi 的扩展公式表示为:

 (i,r,j) 表示 xi 在第 r 个框的第  j 个节点是否被选中为最大值(对应上图 y0,8 和 y1,0),xi 参数在前向传导时受后面梯度误差之和的影响。

多任务Loss层(全连接层)是第二个核心思路,如上图所示,其中cls_score用于判断分类,bbox_reg计算边框回归,label为训练样本标记。

其中Lcls为分类误差:

px 为对应Softmax分类概率,pl 即为label所对应概率(正确分类的概率),pl = 1时,计算结果Loss为0, 越小,Loss值越大(0.01对应Loss为2)。

       Lreg为边框回归误差:

即在正确分类的情况下,回归框与Label框之间的误差(Smooth L1), 对应描述边框的4个参数(上下左右or平移缩放),g对应单个参数的差异,|x|>1 时,变换为线性以降低离群噪声:

Ltotal为加权目标函数(背景不考虑回归Loss):

细心的小伙伴可能发现了,我们提到的SPP的第三个问题还没有解决,依然是耗时的候选框提取过程(忽略这个过程,Fast-RCNN几乎达到了实时),那么有没有简化的方法呢?

必须有,搞学术一定要有这种勇气。

•   Faster-RCNN

对于提取候选框最常用的SelectiveSearch方法,提取一副图像大概需要2s的时间,改进的EdgeBoxes算法将效率提高到了0.2s,但是这还不够。

候选框提取不一定要在原图上做,特征图上同样可以,低分辨率特征图意味着更少的计算量,基于这个假设,MSRA的任少卿等人提出RPN(RegionProposal Network),完美解决了这个问题,我们先来看一下网络拓扑。

通过添加额外的RPN分支网络,将候选框提取合并到深度网络中,这正是Faster-RCNN里程碑式的贡献。

RPN网络的特点在于通过滑动窗口的方式实现候选框的提取,每个滑动窗口位置生成9个候选窗口(不同尺度、不同宽高),提取对应9个候选窗口(anchor)的特征,用于目标分类和边框回归,与FastRCNN类似。

目标分类只需要区分候选框内特征为前景或者背景。

边框回归确定更精确的目标位置,基本网络结构如下图所示:

训练过程中,涉及到的候选框选取,选取依据:

1)丢弃跨越边界的anchor;

2)与样本重叠区域大于0.7的anchor标记为前景,重叠区域小于0.3的标定为背景;

对于每一个位置,通过两个全连接层(目标分类+边框回归)对每个候选框(anchor)进行判断,并且结合概率值进行舍弃(仅保留约300个anchor),没有显式地提取任何候选窗口,完全使用网络自身完成判断和修正。

从模型训练的角度来看,通过使用共享特征交替训练的方式,达到接近实时的性能,交替训练方式描述为:

1)根据现有网络初始化权值w,训练RPN;

2)用RPN提取训练集上的候选区域,用候选区域训练FastRCNN,更新权值w;

3)重复1、2,直到收敛。

因为Faster-RCNN,这种基于CNN的real-time 的目标检测方法看到了希望,在这个方向上有了进一步的研究思路。至此,我们来看一下RCNN网络的演进,如下图所示:

Faster RCNN的网络结构(基于VGG16):

Faster实现了端到端的检测,并且几乎达到了效果上的最优,速度方向的改进仍有余地,于是YOLO诞生了。

•   YOLO

YOLO来自于“YouOnly Look Once”,你只需要看一次,不需要类似RPN的候选框提取,直接进行整图回归就可以了,简单吧?

算法描述为:

1)将图像划分为固定的网格(比如7*7),如果某个样本Object中心落在对应网格,该网格负责这个Object位置的回归;

2)每个网格预测包含Object位置与置信度信息,这些信息编码为一个向量;

3)网络输出层即为每个Grid的对应结果,由此实现端到端的训练。

YOLO算法的问题有以下几点:

1)7*7的网格回归特征丢失比较严重,缺乏多尺度回归依据;

2)Loss计算方式无法有效平衡(不管是加权或者均差),Loss收敛变差,导致模型不稳定。

Object(目标分类+回归)<=等价于=>背景(目标分类)

导致Loss对目标分类+回归的影响,与背景影响一致,部分残差无法有效回传;

整体上YOLO方法定位不够精确,贡献在于提出给目标检测一个新的思路,让我们看到了目标检测在实际应用中真正的可能性。

        这里备注一下,直接回归可以认为最后一层即是对应7*7个网格的特征结果,每一个网格的对应向量代表了要回归的参数(比如pred、cls、xmin、ymin、xmax、ymax),参数的含义在于Loss函数的设计。

•   SSD

由于YOLO本身采用的SingleShot基于最后一个卷积层实现,对目标定位有一定偏差,也容易造成小目标的漏检。

借鉴Faster-RCNN的Anchor机制,SSD(Single Shot MultiBox Detector)在一定程度上解决了这个问题,我们先来看下SSD的结构对比图。

基于多尺度特征的Proposal,SSD达到了效率与效果的平衡,从运算速度上来看,能达到接近实时的表现,从效果上看,要比YOLO更好。

        对于目标检测网络的探索仍在一个快速的过程中,有些基于Faster-RCNN的变种准确度已经刷到了87%以上,而在速度的改进上,YOLO2也似乎会给我们带来一定的惊喜,“未来已来”,我们拭目以待!

目标检测-RCNN系列相关推荐

  1. 目标检测R-CNN系列简要总结(RCNN, FastRCNN, FasterRCNN)

    R-CNN: Region with CNN feature,是一个双阶段目标检测算法系列. 内容基于 b站霹雳吧啦Wz 博主,讲的很好,这里只是做简要总结. R-CNN: 只有Feature ext ...

  2. 目标检测—RCNN系列

    工程应用中,检测算法以one-stage算法yolo系列等为主,因为one-stage通常来说速度快,可以完成良好的实时检测. 本文回顾的是two-stage算法:RCNN系列 One-stage a ...

  3. 目标检测方法系列:R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD

    本文转载自: http://www.cnblogs.com/lillylin/p/6207119.html 目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN ...

  4. anchor free 目标检测_《目标检测》系列之二:目标检测中的Anchor机制回顾

    前段时间,YOLOv4&v5大火,很多人忽视了yolov5在anchor上的一些细节变化,因此,本文从Faster RCNN着手,逐步分析SSD.YOLOv4&v5的anchor机制. ...

  5. 目标检测 | YOLO系列超全讲解v1,v2,v3

    前言 一.YOLOv1 1. 网络结构 2. 实现方法 3. 损失函数 4. 缺点 二.YOLOv2 1. 网络结构 2. 改进方法 3. YOLO9000 4. 网络训练细节 三.YOLOv3 1. ...

  6. 目标检测YOLO系列------YOLO简介

    目标检测YOLO系列------YOLO简介 1.为什么会出现YOLO算法 2.YOLO算法会逐渐成为目标检测的主流吗     YOLO以及各种变体已经广泛应用于目标检测算法所涉及到的方方面面,为了梳 ...

  7. 目标检测-RCNN家族

    基于深度学习的目标检测RCNN家族 一. R-CNN R-CNN系列论文(R-CNN,fast-RCNN,faster-RCNN)是使用深度学习进行物体检测的鼻祖论文,其中fast-RCNN 以及fa ...

  8. 激动~这是我看到的最好的目标检测RCNN了!

    目标检测是近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性算法,对后续的人脸识别.步态识别.人群计数.实例分割 ...

  9. 【目标检测实验系列】使用yolov3 spp训练西工大遥感数据集NWPU VHR-10(包括如何将NWPU VHR-10转为VOC格式和yolov3 spp实验调试的详细步骤,且附上训练完的权重文件)

    目录 1. 文章主要内容 2. 西工大数据集转换为VOC格式数据集 2.1 VOC数据集结构 2.2 西工大数据集 2.3 转换格式 2.3.1 构建与VOC类似的数据集文件结构(文件夹名可以自定义) ...

  10. 浅谈目标检测RCNN,SPPNET,Fast-RCNN,Faster-RCNN

    RCNN 目标检测-R-CNN模型 ●CVPR 2014 ●候选区域方法(region proposal method) :提供了额物体检测的一个重要思路 ●RCNN步骤: .1.对于一张图片,找出默 ...

最新文章

  1. 不说技术~我需要调整自己,最近整整两天状态不是很好
  2. c语言平滑raw图像(取平均值法)
  3. Redis 如何保持和 MySQL 数据一致
  4. 固定上栏目html div,CSS_固定定位div(示例代码)
  5. 170525、解决maven隐式依赖包版本问题
  6. ISP 图像传感器camera原理
  7. POJ 1577 Falling Leaves(二叉查找树)
  8. vsftpd FTP Server ‘ls.c‘ 远程拒绝服务漏洞(CVE-2011-0762)漏洞修复方案
  9. Android 功耗优化(13)---功耗基础知识
  10. 系统学习NLP(九)--中文分词算法综述
  11. IE报错,VS定位不到错误的常见原因
  12. ospf 指定dr_OSPF中DR、BDR竞选机制
  13. linux的mysql数据配置文件
  14. 0基础入门学PLC,只需掌握好这5个步骤让您从0变精通
  15. 方差 标准差_总体、样本、总体方差、样本方差、抽样方差和标准误
  16. java对txt记事本文件的读取与写入
  17. 三极管构成的电流负反馈放大器
  18. 驱动器中的软盘不对_在“提示”框中:基于位置的待办事项提醒,DIY软盘驱动器音乐以及易于访问的产品手册...
  19. Delphi Web前端开发教程(9):基于TMS WEB Core框架
  20. 亲测centos下mysql安装,不行锤我

热门文章

  1. Paypal绑定WorldFirst美元账户免费转账教程!
  2. 非常量引用的初始值必须是左值的处理方法
  3. idea中的maven项目的xml文件的xmlns报错的解决办法
  4. overleaf表格_LaTeX插入表格
  5. 百面机器学习(5)——非监督学习
  6. 腾讯云域名转到阿里云
  7. Qt5-将手机上B站下载的视频提取到到电脑上并批量移动到指定文件夹和重命名
  8. bmc控制卡_BMC IPMI 管理远程服务器
  9. win10 戴尔电脑 禁用触摸板
  10. 也谈正方形不是长方形